Skip to main content
Frontiers in Microbiology logoLink to Frontiers in Microbiology
editorial
. 2020 Jan 30;11:56. doi: 10.3389/fmicb.2020.00056

Editorial: Microbial Hydrogen Metabolism

Chris Greening 1,*, Eric Boyd 2,*
PMCID: PMC7002543  PMID: 32082284

Among the most ancient and widespread metabolic traits of microbial life is the ability to interconvert molecular hydrogen (H2; Lane et al., 2010; Schwartz et al., 2013; Peters et al., 2015). Two classes of metalloenzymes, [FeFe]-hydrogenase and [NiFe]-hydrogenase, catalyze the reversible oxidation of H2 to electrons and protons (Volbeda et al., 1995; Peters et al., 1998); a third class of hydrogenase, termed [Fe]-hydrogenase or Hmd, catalyzes the reduction of the substrate methenyltetrahydromethanopterin with H2 (Shima et al., 2008). The three classes of enzyme differ structurally and are phylogenetically unrelated. As such, they represent profound examples of convergent evolution (Wu and Mandrand, 1993; Vignais and Billoud, 2007; Greening et al., 2016).

Approximately a third of sequenced microorganisms, spanning at least 70 microbial phyla, encode hydrogenases and are thus predicted to be capable of interconverting H2 (Peters et al., 2015; Greening et al., 2016). The earliest evolving hydrogenase enzymes harbor a [NiFe] co-factor and these are thought to have functioned oxidatively (Boyd et al., 2014; Weiss et al., 2016), with [FeFe]-hydrogenases thought to have emerged more recently (Mulder et al., 2010). Both [NiFe] and [FeFe]-hydrogenases have since diversified to function in aerobic and anaerobic, heterotrophic, and autotrophic, and chemotrophic and phototrophic metabolic backgrounds (Kovács et al., 2005; Tamagnini et al., 2007; Thauer et al., 2010; Schwartz et al., 2013; Koch et al., 2014; Schuchmann and Muller, 2014; Pinske and Sawers, 2016). Many bacteria and archaea oxidize H2 as a low potential electron donor, an activity typically (albeit not exclusively) attributed to various lineages of [NiFe]-hydrogenase enzymes. Various bacteria, archaea, and microbial eukaryotes also evolve H2 as a diffusible end product during fermentative metabolism through the activity of [FeFe]- or [NiFe]-hydrogenases (Horner et al., 2000; Kim and Kim, 2011; Marreiros et al., 2013; Schwartz et al., 2013; Pinske and Sawers, 2016). In many organisms, the ability to metabolize H2 is a facultative trait that is regulated through the expression and maturation of hydrogenases (Schwartz et al., 2013; Greening and Cook, 2014). In such taxa, H2 represents a substrate that organisms utilize to supplement their energy metabolism, thereby allowing for an expansion of their niche space in ecosystems where other sources of reductant are low or variable in supply (e.g., Amenabar et al., 2018).

The implications of H2 in ecosystem level processes is increasingly being realized in both environmental and biomedical settings. A wide range of ecosystems have now been described where H2 cycling supports the bulk of primary production and where it forms the basis by which species interact, leading to ecologically structured communities. Much of the research on H2 metabolism to date has focused on ecosystems where H2 is present at elevated concentrations due to biological activity (e.g., anoxic sediments, gastrointestinal tracts; Sørensen et al., 1981; Wolf et al., 2016; Greening et al., 2019; Kessler et al., 2019) or geological activity (e.g., hydrothermal vents, subsurface systems; Petersen et al., 2011; Brazelton et al., 2012; Telling et al., 2015; Dong et al., 2019; Lindsay et al., 2019). More recently, it has been recognized that atmospheric H2 can serve as source of reductant for aerobic soil microorganisms and that this can influence the composition of the atmosphere (Conrad, 1996; Constant et al., 2010; Ji et al., 2017; Cordero et al., 2019). In parallel, medical microbiologists have shown that H2 metabolism is critical for the virulence of numerous pathogens, including Helicobacter, Clostridia, and Enterobacteriaceae (Kaji et al., 1999; Olson and Maier, 2002; Maier et al., 2004, 2013).

This special issue, featuring 10 articles from 46 different authors, explores microbial H2 metabolism from the molecular to the ecosystem scale. In the area of anaerobic metabolism, there are articles exploring the metabolism of H2-metabolizing bacteria capable of sulfate reduction, acetogenesis, halorespiration, and fermentation. Two articles investigate H2 oxidation in sulfate-reducing bacteria using the model system Desulfovibrio vulgaris (Fauque et al., 1988; Caffrey et al., 2007). Smith et al. present a mathematical model of the growth and metabolism of this bacterium, whereas Löffler et al. investigate the kinetic isotope fractionation associated with its H2 oxidation activity. A comprehensive review led by Schuchmann et al. covers recent advances in understanding clostridial H2 metabolism; it details the discovery and characterization of multimeric electron-bifurcating [FeFe]-hydrogenases, including those associated with formate dehydrogenases (Schut and Adams, 2009; Schuchmann and Müller, 2012, 2013; Buckel and Thauer, 2018). Another article led by Dragomirova et al. focuses on heterologous expression of a [NiFe]-hydrogenase from dehalogenating Chloroflexi (Kublik et al., 2016; Hartwig et al., 2017), reporting another unexpected association with formate dehydrogenase activity. Pinske explores a third type of formate dehydrogenase-linked hydrogenase, namely the classical formate hydrogenlyase complex of Enterobacteriaceae (McDowall et al., 2014), and its association with two novel iron-sulfur proteins.

Several articles also investigate aerobic H2 metabolism. Islam et al. report two other novel iron-sulfur proteins in mycobacteria, demonstrating that they are essential for the activity of the two high-affinity hydrogenases described in this lineage (Greening et al., 2014). Carere et al. meanwhile, build on the recent discovery that verrucomicrobial methanotrophs are facultative mixotrophs (Carere et al., 2017; Mohammadi et al., 2017) by showing resource allocation of Methylacidiphilum varies depending on H2 availability. Three articles also explore H2 metabolism at the ecosystem level. Adam and Perner explore the diversity of aerobic and anaerobic H2 metabolism in deep-sea hydrothermal vent systems, whereas Meyer-Dombard et al. investigate the influence of H2 on biogeochemical cycling in serpentinizing springs in the Philippines. Teng et al. review the previously underexplored area of H2 metabolism in bioremediation, including in the reduction of organohalides, nitroaromatic compounds, and heavy metals (Chardin et al., 2003; Hong et al., 2008; Schubert et al., 2018).

In summary, this special Research Topic sheds light on the diverse role of H2 in microbial metabolism and uncovers novel enzymes and pathways that mediate this process. This body of work highlights the intricate linkages between H2 cycling and the cycling of various other compounds, including methane, formate, carbon dioxide, sulfate, and organohalides, among others. In turn, these findings pave way for future studies on the biochemistry, physiology, ecology, and industrial applications of microbial H2 metabolism.

Author Contributions

CG and EB drafted this editorial together and approve its submission.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We would like to acknowledge all authors, peer reviewers, guest editors, and the Frontiers team for their support in developing this Research Topic. The salary of CG is covered by an Australian Research Council DECRA Fellowship (DE170100310) and a National Health & Medical Research Council EL2 Fellowship (APP1178715).

Footnotes

Funding. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award DE-SC0020246 (EB).

References

  1. Amenabar M. J., Colman D. R., Poudel S., Roden E. E., Boyd E. S. (2018). Electron acceptor availability alters carbon and energy metabolism in a thermoacidophile. Environ. Microbiol. 20, 2523–2537. 10.1111/1462-2920.14270 [DOI] [PubMed] [Google Scholar]
  2. Boyd E. S., Schut G., Adams M. W. W., Peters J. W. (2014). Hydrogen metabolism and the evolution of respiration. Microbe 9, 361–367. 10.1128/microbe.9.361.1 [DOI] [Google Scholar]
  3. Brazelton W. J., Nelson B., Schrenk M. O. (2012). Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities. Front. Microbiol. 2:268 10.3389/fmicb.2011.00268 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buckel W., Thauer R. K. (2018). Flavin-based electron bifurcation, a new mechanism of biological energy coupling. Chem. Rev. 118, 3862–3886. 10.1021/acs.chemrev.7b00707 [DOI] [PubMed] [Google Scholar]
  5. Caffrey S. M., Park H.-S., Voordouw J. K., He Z., Zhou J., Voordouw G. (2007). Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 189, 6159–6167. 10.1128/JB.00747-07 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carere C. R., Hards K., Houghton K. M., Power J. F., McDonald B., Collet C., et al. (2017). Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J 11, 2599–2610. 10.1038/ismej.2017.112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chardin B., Giudici-Orticoni M.-T., De Luca G., Guigliarelli B., Bruschi M. (2003). Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Appl. Microbiol. Biotechnol. 63, 315–321. 10.1007/s00253-003-1390-8 [DOI] [PubMed] [Google Scholar]
  8. Conrad R. (1996). Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Mol. Biol. Rev. 60, 609–640. 10.1128/MMBR.60.4.609-640.1996 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Constant P., Chowdhury S. P., Pratscher J., Conrad R. (2010). Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ. Microbiol. 12, 821–829. 10.1111/j.1462-2920.2009.02130.x [DOI] [PubMed] [Google Scholar]
  10. Cordero P. R. F., Grinter R., Hards K., Cryle M. J., Warr C. G., Cook G. M., et al. (2019). Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. J. Biol. Chem. 294, 18980–18991. 10.1074/jbc.RA119.011076 [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dong X., Greening C., Rattray J. E., Chakraborty A., Chuvochina M., Mayumi D., et al. (2019). Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat. Commun. 10:1816. 10.1038/s41467-019-09747-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fauque G., Peck H. D., Moura J. J. G., Huynh B. H., Berlier Y., DerVartanian D. V, et al. (1988). The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol. Lett. 54, 299–344. 10.1111/j.1574-6968.1988.tb02748.x [DOI] [PubMed] [Google Scholar]
  13. Greening C., Berney M., Hards K., Cook G. M., Conrad R. (2014). A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc. Natl. Acad. Sci. U.S.A. 111, 4257–4261. 10.1073/pnas.1320586111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Greening C., Biswas A., Carere C. R., Jackson C. J., Taylor M. C., Stott M. B., et al. (2016). Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 10, 761–777. 10.1038/ismej.2015.153 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greening C., Cook G. M. (2014). Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Curr. Opin. Microbiol. 18, 30–38. 10.1016/j.mib.2014.02.001 [DOI] [PubMed] [Google Scholar]
  16. Greening C., Geier R., Wang C., Woods L. C., Morales S. E., McDonald M. J., et al. (2019). Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME J. 13, 2617–2632. 10.1038/s41396-019-0464-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hartwig S., Dragomirova N., Kublik A., Türkowsky D., von Bergen M., Lechner U., et al. (2017). A H2-oxidizing, 1, 2, 3-trichlorobenzene-reducing multienzyme complex isolated from the obligately organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1. Environ. Microbiol. Rep. 9, 618–625. 10.1111/1758-2229.12560 [DOI] [PubMed] [Google Scholar]
  18. Hong Y.-G., Guo J., Sun G.-P. (2008). Identification of an uptake hydrogenase for hydrogen-dependent dissimilatory azoreduction by Shewanella decolorationis S12. Appl. Microbiol. Biotechnol. 80:517. 10.1007/s00253-008-1597-9 [DOI] [PubMed] [Google Scholar]
  19. Horner D. S., Foster P. G., Embley T. M. (2000). Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol. Biol. Evol. 17, 1695–1709. 10.1093/oxfordjournals.molbev.a026268 [DOI] [PubMed] [Google Scholar]
  20. Ji M., Greening C., Vanwonterghem I., Carere C. R., Bay S. K., Steen J. A., et al. (2017). Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400–403. 10.1038/nature25014 [DOI] [PubMed] [Google Scholar]
  21. Kaji M., Taniguchi Y., Matsushita O., Katayama S., Miyata S., Morita S., et al. (1999). The hydA gene encoding the H2-evolving hydrogenase of Clostridium perfringens: molecular characterization and expression of the gene. FEMS Microbiol. Lett. 181, 329–336. 10.1111/j.1574-6968.1999.tb08863.x [DOI] [PubMed] [Google Scholar]
  22. Kessler A. J., Chen Y.-J., Waite D. W., Hutchinson T., Koh S., Popa M. E., et al. (2019). Bacterial fermentation and respiration processes are uncoupled in permeable sediments. Nat. Microbiol. 4, 1014–1023. 10.1038/s41564-019-0391-z [DOI] [PubMed] [Google Scholar]
  23. Kim D.-H., Kim M.-S. (2011). Hydrogenases for biological hydrogen production. Bioresour. Technol. 102, 8423–8431. 10.1016/j.biortech.2011.02.113 [DOI] [PubMed] [Google Scholar]
  24. Koch H., Galushko A., Albertsen M., Schintlmeister A., Gruber-Dorninger C., Lucker S., et al. (2014). Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 345, 1052–1054. 10.1126/science.1256985 [DOI] [PubMed] [Google Scholar]
  25. Kovács K. L., Kovács Á. T., Maróti G., Meszaros L. S., Balogh J., Latinovics D., et al. (2005). The hydrogenases of Thiocapsa roseopersicina. Biochem. Soc. Trans. 33, 61–63. 10.1042/BST0330061 [DOI] [PubMed] [Google Scholar]
  26. Kublik A., Deobald D., Hartwig S., Schiffmann C. L., Andrades A., von Bergen M., et al. (2016). Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB 1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement. Environ. Microbiol. 18, 3044–3056. 10.1111/1462-2920.13200 [DOI] [PubMed] [Google Scholar]
  27. Lane N., Allen J. F., Martin W. (2010). How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32, 271–280. 10.1002/bies.200900131 [DOI] [PubMed] [Google Scholar]
  28. Lindsay M. R., Colman D. R., Amenabar M. J., Fristad K. E., Fecteau K. M., Debes R. V, et al. (2019). Probing the geological source and biological fate of hydrogen in Yellowstone hot springs. Environ. Microbiol. 21, 3816–3830. 10.1111/1462-2920.14730 [DOI] [PubMed] [Google Scholar]
  29. Maier L., Vyas R., Cordova C. D., Lindsay H., Sebastian T., Schmidt B., et al. (2013). Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem. Cell Host Microbe 14, 641–651. 10.1016/j.chom.2013.11.002 [DOI] [PubMed] [Google Scholar]
  30. Maier R. J., Olczak A., Maier S., Soni S., Gunn J. (2004). Respiratory hydrogen use by Salmonella enterica serovar Typhimurium is essential for virulence. Infect. Immun. 72, 6294–6299. 10.1128/IAI.72.11.6294-6299.2004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Marreiros B. C., Batista A. P., Duarte A. M. S., Pereira M. M. (2013). A missing link between complex I and group 4 membrane-bound [NiFe] hydrogenases. Biochim. Biophys. Acta 1827, 198–209. 10.1016/j.bbabio.2012.09.012 [DOI] [PubMed] [Google Scholar]
  32. McDowall J. S., Murphy B. J., Haumann M., Palmer T., Armstrong F. A., Sargent F. (2014). Bacterial formate hydrogenlyase complex. Proc. Natl. Acad. Sci. U.S.A. 111, E3948–E3956. 10.1073/pnas.1407927111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mohammadi S., Pol A., van Alen T. A., Jetten M. S. M., Op den Camp H. J. M. (2017). Methylacidiphilum fumariolicum SolV, a thermoacidophilic “Knallgas” methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J. 11, 945–958. 10.1038/ismej.2016.171 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mulder D. M., Boyd E. S., Sarma R., Endrizzi J. A., Lange R., Broderick J. B., et al. (2010). Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG. Nature 465, 248–252. 10.1038/nature08993 [DOI] [PubMed] [Google Scholar]
  35. Olson J. W., Maier R. J. (2002). Molecular hydrogen as an energy source for Helicobacter pylori. Science 298, 1788–1790. 10.1126/science.1077123 [DOI] [PubMed] [Google Scholar]
  36. Peters J. W., Lanzilotta W. N., Lemon B. J., Seefeldt L. C. (1998). X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom resolution. Science 282, 1853–1858. 10.1126/science.282.5395.1853 [DOI] [PubMed] [Google Scholar]
  37. Peters J. W., Schut G. J., Boyd E. S., Mulder D. W., Shepard E. M., Broderick J. B., et al. (2015). [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta 1853, 1350–1369. 10.1016/j.bbamcr.2014.11.021 [DOI] [PubMed] [Google Scholar]
  38. Petersen J. M., Zielinski F. U., Pape T., Seifert R., Moraru C., Amann R., et al. (2011). Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476:176. 10.1038/nature10325 [DOI] [PubMed] [Google Scholar]
  39. Pinske C., Sawers R. G. (2016). Anaerobic formate and hydrogen metabolism. EcoSal Plus 7. 10.1128/ecosalplus.ESP-0011-2016 [DOI] [PubMed] [Google Scholar]
  40. Schubert T., Adrian L., Sawers R. G., Diekert G. (2018). Organohalide respiratory chains: composition, topology and key enzymes. FEMS Microbiol. Ecol. 94:fiy035. 10.1093/femsec/fiy035 [DOI] [PubMed] [Google Scholar]
  41. Schuchmann K., Müller V. (2012). A bacterial electron-bifurcating hydrogenase. J. Biol. Chem. 287, 31165–31171. 10.1074/jbc.M112.395038 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schuchmann K., Müller V. (2013). Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342, 1382–1385. 10.1126/science.1244758 [DOI] [PubMed] [Google Scholar]
  43. Schuchmann K., Muller V. (2014). Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809–821. 10.1038/nrmicro3365 [DOI] [PubMed] [Google Scholar]
  44. Schut G. J., Adams M. W. W. (2009). The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J. Bacteriol. 191, 4451–4457. 10.1128/JB.01582-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Schwartz E., Fritsch J., Friedrich B. (2013). H2-Metabolizing Prokaryotes. eds Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F. Berlin; Heidelberg: Springer Berlin Heidelberg. [Google Scholar]
  46. Shima S., Pilak O., Vogt S., Schick M., Stagni M. S., Meyer-Klaucke W., et al. (2008). The crystal structure of [Fe]-Hydrogenase reveals the geometry of the active site. Science 321, 572–575. 10.1126/science.1158978 [DOI] [PubMed] [Google Scholar]
  47. Sørensen J., Christensen D., Jørgensen B. B. (1981). Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl. Environ. Microbiol. 42, 5–11. 10.1128/AEM.42.1.5-11.1981 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tamagnini P., Leitão E., Oliveira P., Ferreira D., Pinto F., Harris D. J., et al. (2007). Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol. Rev. 31, 692–720. 10.1111/j.1574-6976.2007.00085.x [DOI] [PubMed] [Google Scholar]
  49. Telling J., Boyd E. S., Bone N., Jones E. L., Tranter M., MacFarlane J. W., et al. (2015). Rock comminution as a source of hydrogen for subglacial ecosystems. Nat. Geosci. 8, 851–857. 10.1038/ngeo2533 [DOI] [Google Scholar]
  50. Thauer R. K., Kaster A.-K., Goenrich M., Schick M., Hiromoto T., Shima S. (2010). Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu. Rev. Biochem. 79, 507–536. 10.1146/annurev.biochem.030508.152103 [DOI] [PubMed] [Google Scholar]
  51. Vignais P. M., Billoud B. (2007). Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206–4272. 10.1021/cr050196r [DOI] [PubMed] [Google Scholar]
  52. Volbeda A., Charon M. H., Piras C., Hatchikian E. C., Frey M., Fontecilla-Camps J. C. (1995). Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373, 580–587. 10.1038/373580a0 [DOI] [PubMed] [Google Scholar]
  53. Weiss M. C., Sousa F. L., Mrnjavac N., Neukirchen S., Roettger M., Nelson-Sathi S., et al. (2016). The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1:16116. 10.1038/nmicrobiol.2016.116 [DOI] [PubMed] [Google Scholar]
  54. Wolf P. G., Biswas A., Morales S. E., Greening C., Gaskins H. R. (2016). H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes 7, 235–245. 10.1080/19490976.2016.1182288 [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wu L. F., Mandrand M. A. (1993). Microbial hydrogenases: primary structure, classification, signatures and phylogeny. FEMS Microbiol. Rev. 10, 243–269. 10.1111/j.1574-6968.1993.tb05870.x [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES