Skip to main content
Toxicological Research logoLink to Toxicological Research
. 2009 Dec 30;25(4):231–235. doi: 10.5487/TR.2009.25.4.231

Real-Time Voltammetric Assay of Lead Ion in Biological Cell Systems

Suw Young Ly 1,
PMCID: PMC7006261  PMID: 32038843

Abstract

Trace lead detection for cyclic voltammetry (CV) and square-wave (SW) stripping voltammetry was performed using mercury immobilized onto a carbon nanotube electrode (HNPE). Using the characteristics of mercury and the catalytic carbon nanotube structure, a modified technique, the 0.45 µg/l detection limit of lead ion was attained. The developed method can be applied to pond water, fish tissue, plant tissue, and in vivo direct assay.

Key words: Lead, Voltammetry, Tissue

References

  1. Alastair NB, Richard PA, Richard GC. Sono-electroanalysis: Application to the detection of lead in petrol. Electroanal. 2000;12:16–20. doi: 10.1002/(SICI)1521-4109(20000101)12:1<16::AID-ELAN16>3.0.CO;2-Z. [DOI] [Google Scholar]
  2. Andrew JS, CeÂsar AG, Mark PT, Frank M, Richard GC. Sono-cathodic stripping voltammetry of lead at a polished boron-doped diamond electrode: Application to the determination of lead in river sediment. Electroanal. 1999;11:1083–1088. doi: 10.1002/(SICI)1521-4109(199911)11:15<1083::AID-ELAN1083>3.0.CO;2-I. [DOI] [Google Scholar]
  3. Bhim B, Bhavana A. Imprinted polymer modified hanging mercury drop electrode for differential pulse adsorptive stripping voltammetric analysis of a diquat herbicide. Electroanal. 2003;2:108–114. [Google Scholar]
  4. DomeÂnech C, DomeÂnech CMT, Gimeno AJV, Moya M, Bosch RF. Voltammetric identification of lead(II) and (IV) in mediaeval glazes in abrasion-modified carbon paste and polymer film electrodes. Application to the study of alterations in archaeological ceramic. Electroanal. 2000;12:120–127. doi: 10.1002/(SICI)1521-4109(200002)12:2<120::AID-ELAN120>3.0.CO;2-E. [DOI] [Google Scholar]
  5. Ellen KS. Facilitative mechanisms of lead as a carcinogen. Mutat. Res. 2003;533:121–133. doi: 10.1016/j.mrfmmm.2003.07.010. [DOI] [PubMed] [Google Scholar]
  6. Eric HDC, Khalil JS. Retrospective analysis of anthropogenic inputs of lead and other heavy metals to the hawaiian sedimentary environmentw. Appl. Organomet. Chem. 1997;11:415–437. doi: 10.1002/(SICI)1099-0739(199705)11:5<415::AID-AOC599>3.0.CO;2-P. [DOI] [Google Scholar]
  7. Huge Y, Keyrati S, Rhonda E, Kanta B, Palph EK. Capillary blood collection by paper for lead analysis by graphite furnace atomic absorption spectrometry. Microchem. J. 1995;52:370–375. doi: 10.1006/mchj.1995.1110. [DOI] [Google Scholar]
  8. Jin T, Yin H, Jian ZZ, Jin L, Zhong HL. Electrochemical behaviors of DNA at mercury film electrode. Bioeletrochem. Bioenerg. 1997;44:51–154. doi: 10.1016/S0302-4598(97)00044-5. [DOI] [Google Scholar]
  9. Joseph W, Jianmin L, Samo B, Bozidar O. Bismuth-coated screen printed electrodes for stripping vol-tammetric measurements of trace lead. Electroanal. 2001;13:13–16. doi: 10.1002/1521-4109(200101)13:1<13::AID-ELAN13>3.0.CO;2-F. [DOI] [Google Scholar]
  10. Joseph W, Samo B, Bozidar O. Carbon nan-otube-modified glassy carbon electrode foradsorptive stripping voltammetric detection of ultratrace levels of 2,4,6-trinitrotoluene. Electrochem. Commun. 2004;6:176–179. doi: 10.1016/j.elecom.2003.11.010. [DOI] [Google Scholar]
  11. Lauralynn T, Robert L, Lorna K, James AD, Kevin A, Wayne TS. Evaluation of a portable blood lead analyzer with occupationally exposed populations. Am. J. Ind. Med. 2001;40:354–362. doi: 10.1002/ajim.1109. [DOI] [PubMed] [Google Scholar]
  12. Maria SD, Miriam EP, Beatriz SFB. A sensitive spectrophotometric method for lead determination by flow injection analysis with on-line preconcentration. Talanta. 2004;63:405–409. doi: 10.1016/j.talanta.2003.11.012. [DOI] [PubMed] [Google Scholar]
  13. Percio A Farias, Angela LRW, Margarida BRB, Adriana TS, Arnaldo M LP, Gustavo AR. Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes. Electrochem. Commun. 2004;6:10–16. doi: 10.1016/j.elecom.2003.10.008. [DOI] [Google Scholar]
  14. Richard PA, Jon CB, Frank M, Richard GC. The use of sonotrodes for electroanalysis: Sono-ASV detection of lead in aqueous solution. Electroanal. 1998;10:26–32. doi: 10.1002/(SICI)1521-4109(199801)10:1<26::AID-ELAN26>3.0.CO;2-G. [DOI] [Google Scholar]
  15. Sandra CCM, Helena MC, João EJS, Armando CD. Optimisation of mercury film deposition on glassy carbon electrodes: Evaluation of the combined effects of pH, thiocyanate ion and deposition potential. Anal. Chim. Acta. 2004;503:203–212. doi: 10.1016/j.aca.2003.10.034. [DOI] [Google Scholar]
  16. Tesfaye HD, Bhagwan S, Hailemichael A. Differential pulse anodic stripping voltammetric determination of lead(II) with N-p-chloro phenylcinnamo hydrox-amic acid modifed carbon paste electrode. Electroanal. 1999;17:1305–1311. [Google Scholar]
  17. Vagn E, Nils G, Lars G, Lars R, Gunnar N. Lung cancer risks among lead smelter workers alsoex-posed to arsenic. Sci. Total Environ. 2001;273:77–82. doi: 10.1016/S0048-9697(00)00843-3. [DOI] [PubMed] [Google Scholar]
  18. Yu CT, Barry AC, Katherine H, John SF, Frank M, Richard G. Compton, microwave-enhanced anodic stripping detection of leadin a river sediment sample. A mercury-free procedure employing a boron-doped diamond electrode. Electroanal. 2001;13:831–835. [Google Scholar]

Articles from Toxicological Research are provided here courtesy of Korean Society of Toxicology

RESOURCES