Skip to main content
Toxicological Research logoLink to Toxicological Research
. 2008 Dec 1;24(4):315–320. doi: 10.5487/TR.2008.24.4.315

Subcutaneous Four-Week Repeated Dose Toxicity Studies of Rice Cell-Derived Recombinant Human Granulocyte-Macrophage Colony Stimulating Factor in Rats

Jung Eun Ji 110, Jung Min Lee 110, Jong Min Choi 110, Young Hwa Choi 110, Eun Kyung Kim 110, So Jung Chu 110, Seok Kyun Kim 110, Kyong Hoon Ahn 110, Dong Hoon Lee 110, Ha Hyung Kim 110, Kyuboem Han 210, Dae Kyong Kim 110,
PMCID: PMC7006265  PMID: 32038810

Abstract

Recombinant human granulocyte-macrophage colony stimulating factor (hGM-CSF) is a glycoprotein and hematopoietic growth factors that regulates the proliferation of myeloid precursor cells and activates mature granulocytes and macrophages. In a previous study, we reported that hGM-CSF could be produced in transgenic rice cell suspension culture, termed rhGM-CSF. In the present study, we examined the repeated dose toxicity of rhGM-CSF in SD rats. The repeated dose toxicity study was performed at each dose of 50 and 200 µg/kg subcutaneous administration of rhGM-CSF everyday for 28-days period. The results did not show any changes in food and water intake. There were also no significant changes in both body and organ weights between the control and the tested groups. The hematological and blood biochemical parameters were statistically not different in all groups. These results suggest that rhGM-CSF may show no repeated dose toxicity in SD rats under the conditions.

Keywords: Recombinant hGM-CSF, Rice cells, Repeated dose toxicity, SD rats

Abbreviations

hGM-CSF

Recombinant human granulocyte-macrophage colony stimulating factor

LD50

50% lethal dose

E. coli

Escherichia coli

CHO

Chinese hamster ovary

rhGM-CSF

rice cells-derived hGM-CSF

PBS

phosphate buffered saline

EDTA

ethylenediaminetetraacetic acid

RBC

red blood cell

WBC

white blood cell

NEU

neutrophil

LYM

lymphocyte

MONO

monocyte

EOS

eosinophil

BASO

basophil

PLT

platelet

HCT

hematocrit

MCV

mean corpuscular volume

HGB

hemoglobin

MCH

mean corpuscular hemoglobin

MCHC

mean corpuscular hemoglobin concentration

AST

aspartate aminotransferase

ALT

alanine aminotransferase

ALP

alkaline phosphatase

BUN

blood urea nitrogen

CRE

creatinine

GLU

glucose

CHO

total cholesterol

PRO

total protein

CPK

creatine phosphokinase

ALB

albumin

BIL

total bilirubin

yhGM-CSF

yeast-derived hGMCSF

s.c.

subcutaneous

b.wt.

body weight

SD

standard deviation

References

  1. Armitage JO. Emerging applications of recombinant human granulocyte-macrophage colony-stimulating factor. Blood. 1998;92:4491–4508. doi: 10.1182/blood.V92.12.4491. [DOI] [PubMed] [Google Scholar]
  2. Cantrell MA, Anderson D, Cerretti DP, Price V, Mckereghan K, Tushinski RJ, Mochizuki DY, Larsen A, Grabstein K, Gillis S, Cosman D. Cloning, sequencing, and expression of a human granulocyte/macropharge colony-stimulating factor. Proc. Natl. Acad. Sci. USA. 1985;82:6250–6254. doi: 10.1073/pnas.82.18.6250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cho SA, Park JH, Seok SH, Juhn JH, Kim SJ, Ji HJ, Choo YS, Park JH. Effect of granulocyte macrophage-colony stimulating factor (GM-CSF) on 5-FU-induced ulcerative mucositis in hamster buccal pouches. Exper. Toxicol. Pathol. 2006;57:321–328. doi: 10.1016/j.etp.2005.09.006. [DOI] [PubMed] [Google Scholar]
  4. Doran P. Foreign protein production in plant tissue cultures. Trends Biotechnol. 2000;11:199–204. doi: 10.1016/s0958-1669(00)00086-0. [DOI] [PubMed] [Google Scholar]
  5. Dorr RT. Clinical properties of yeast-derived versus Escherichia coli-derived granulocyte-macrophage colonystimulating factor. Clin. Ther. 1993;15:19–29. [PubMed] [Google Scholar]
  6. Giddings G. Transgenic plants as protein factories. Curr. Opin. Biotechnol. 2001;12:450–454. doi: 10.1016/S0958-1669(00)00244-5. [DOI] [PubMed] [Google Scholar]
  7. Han JH, Hesson C, Lee JH, Suh JE, Lee GS, Kim JC, Kang BH. Single and two-week repeated oral dose toxicity study of DHP2, a hydrophobic drug delivery vehicle in mice. J. Toxicol. Pub. Health. 2004;20:123–129. [Google Scholar]
  8. Hovgaard D, Mortensen BT, Schifter S, Nissen NI. Comparative pharmacokinetics of single-dose administration of mammalian and bacterially-derived recombinant human granulocyte-macrophage colony-stimulating factor. Eur. J. Haematol. 1993;50:32–36. doi: 10.1111/j.1600-0609.1993.tb00071.x. [DOI] [PubMed] [Google Scholar]
  9. Ji JE, Lee JM, Choi JM, Choi YH, Kim SK, Ahn KH, Lee DH, Kim HH, Han KB, Kim DK. Intravenous single and two week repeated dose toxicity studies of rice cells-derived recombinant human granulocyte-macrophage colony-stimulating factor on rats. J. Toxicol. Pub. Health. 2007;23:383–389. doi: 10.5487/TR.2008.24.4.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kim HJ, Lee DH, Kim DK, Han GB, Kim HJ. The glycosylation and in vivo stability of human granulocyte-macrophage colony-stimulating factor produced in rice cells. Biol. Pharm. Bull. 2008;31:290–294. doi: 10.1248/bpb.31.290. [DOI] [PubMed] [Google Scholar]
  11. Kim YC, Kim HJ, Kong MK, Lim AK, Kwon MH, Kim KS, Lee GD. Single and four-week repeated oral toxicity study of antidiabetic herb extract microcapsule in sprague-dawley rats. J. Toxicol. Pub. Health. 2007;23:87–96. [Google Scholar]
  12. Krumwieh D, Weinmann E, Siebold B, Seiler FR. Preclinical studies on synergistic effects of IL-1, IL-3, G-CSF and GM-CSF in cynomolgus monkeys. Int. J. Cell Cloning. 1990;8:229–248. doi: 10.1002/stem.5530080722. [DOI] [PubMed] [Google Scholar]
  13. Lee F, Yokota T, Otsuka T, Gemmell L, Larson N, Luh J, Aria K, Rennick D. Isolation of cDNA for a human granulocyte-macropharge colony-stimulating factor by functional expression in mammalian cells. Proc. Natl. Acad. Sci. USA. 1985;82:4360–4364. doi: 10.1073/pnas.82.13.4360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lieschke GJ, Burgess AW. Granulocyte colonystimulating factor and granulocyte-macrophage colonystimulating factor. N. Engl. J. Med. 1992;327:99–106. doi: 10.1056/NEJM199207093270207. [DOI] [PubMed] [Google Scholar]
  15. Lowry NJ, Rosebrough AL, Farr RJ, Randall Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  16. Metcalf D. Control of granulocytes and macropharges: molecular, cellular, and clinical aspects. Science. 1991;254:529–533. doi: 10.1126/science.1948028. [DOI] [PubMed] [Google Scholar]
  17. Okamoto M, Nakai M, Nakayama C, Yanagi H, Matsui H, Noguchi H, Namiki M, Sakai J, Kadota K, Fukui M. Purification and characterization of three forms of differently glycosylated recombinant human granulocyte-macrophage colony-stimulating factor. Arch. Biochem. Biophys. 1991;286:562–568. doi: 10.1016/0003-9861(91)90080-3. [DOI] [PubMed] [Google Scholar]
  18. Ragnhammar P, Friesen HJ, Frodin JE, Lefvert AK, Hassan M, Osterborg A, Mellstedt H. Induction of anti-recombinant human granulocyte-macrophage colony-stimulating factor (Escherichia coli-derived) antibodies and clinical effects in nonimmunocompromised patients. Blood. 1994;84:4078–4087. doi: 10.1182/blood.V84.12.4078.bloodjournal84124078. [DOI] [PubMed] [Google Scholar]
  19. Rasko, J.E. and Gough, N.M. (1994). Granulocyte-macrophage colony stimulating factor: The cytokine handbook (Thomson, Ed.). Academic Press, London, pp. 343–369.
  20. Sardana R, Dudani AK, Tackaberry E, Alli Z, Porter S, Rowlandson K, Ganz P, Altosaar I. Biologically active human GM-CSF produced in seeds of transgenic rice plants. Transgenic Res. 2007;16:713–721. doi: 10.1007/s11248-006-9062-y. [DOI] [PubMed] [Google Scholar]
  21. Shin YJ, Hong SY, Kwon TH, Jang YS, Yang MS. High level of expression of recombinant human granulocyte-macrophage colony stimulating factor in transgenic rice cell suspension culture. Biotechnol. Bioeng. 2003;82:778–783. doi: 10.1002/bit.10635. [DOI] [PubMed] [Google Scholar]
  22. Song SW, Jung W, Hong DH. Thirteen-week repeated-dose toxicity studies of STB-HO-BM in rats. J. Toxicol. Pub. Health. 2006;22:135–144. [Google Scholar]
  23. Song ZP, Lu BR, Zhu YG, Chen JK. Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytol. 2003;157:657–665. doi: 10.1046/j.1469-8137.2003.00699.x. [DOI] [PubMed] [Google Scholar]
  24. Vandekerckhove J, Damme J, van Lijsebettens M, Botterman J, De Block M, Vandewiele M, De Clercq A, Leemans J, van Montagu M, Krebbers E. Enkephalins produced in transgenic plants using modified 2S seed storage proteins. Biotechnology (N.Y.) 1989;7:929–932. [Google Scholar]
  25. Vazquez JA, Gupta S, Villanueva A. Potential utility of recombinant human GM-CSF as adjunctive treatment of refractory oropharyngeal candidiasis in AIDS patients. Eur. J. Clin. Microbiol. Infect. Dis. 1998;17:781–783. doi: 10.1007/s100960050185. [DOI] [PubMed] [Google Scholar]
  26. Wadhwa M, Skog A-L, Bird C, Ragnhammar P, Liljefors M, Gaines-Das R, Mellstedt H, Thorpe R. Immunogenicity of granulocyte-macrophage colonystimulating factor (GM-CSF) products in patients undergoing combination therapy with GM-CSF. Clin. Cancer Res. 1999;5:1353–1361. [PubMed] [Google Scholar]
  27. Wong GG, Witek JS, Temple PA, Wikens KM, Leary AC, Luxenberg DP, Jones SS, Brown EL, Kay RM, Orr EC, Shoemaker C, Golde DW, Kaufman RJ, Hewick RM, Wang EA, Clark SC. Human GM-CSF: molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science. 1985;228:810–815. doi: 10.1126/science.3923623. [DOI] [PubMed] [Google Scholar]

Articles from Toxicological Research are provided here courtesy of Korean Society of Toxicology

RESOURCES