Skip to main content
Toxicological Research logoLink to Toxicological Research
. 2008 Mar 1;24(1):29–36. doi: 10.5487/TR.2008.24.1.029

The Effects of Crinum asiaticum on the Apoptosis Induction and the Reversal of Multidrug Resistance in HL-60/MX2

Jae-Hee Hyun 15, Jung-Il Kang 15, Sang-Cheol Kim 15, Elvira Kim 15, Ji-Hoon Kang 15, Jung-Mi Kwon 15, Doek-Bae Park 15, Young-Jae Lee 25, Eun-Sook Yoo 15, Hee-Kyoung Kang 15,
PMCID: PMC7006299  PMID: 32038774

Abstract

The present study investigated the anti-proliferative and chemosensitizing effects of Crinum asiaticum var. japonicum against multi-drug resistant (MDR) cancer cells. The 80% methanol extract, chloroform (CHCI3) fraction and butanol (BuOH) fraction of C asiaticum inhibited the growth of mitoxantrone (MX) resistant HL-60 (HL-60/MX2) cells. When HL-60/MX2 cells were treated with the CHCI3 and BuOH fractions, DNA ladder and sub-G1 hypodiploid cells were observed. Furthermore, the fractions reduced Bcl-2 mRNA levels, whereas Bax mRNA levels were increased. These results suggest that the inhibitory effect of C. asiaticum on the growth of the HL-60/MX2 cells might arise from the induction of apoptosis. Treatment of HL-60/MX2 cells with the fractions markedly decreased the mRNA levels of the multi-drug resistance protein-1 and breast cancer resistance protein. The CHCI3 fraction and hexane fraction increased MX accumulation in HL-60/MX2 cells. These results imply that the CHCI3 fraction of C asiaticum plays a pivotal role as a chemosensitizer. We suggest that components of C asiaticum might have a therapeutic potential for the treatment of MDR leukemia.

Key words: HL-60/MX2, Crinum asiaticum, Apoptosis, Chemosensitizer, MRP-1, BCRR

References

  1. Abdel-Halim OB, Morikawa T, Ando S, Matsuda H, Yoshikawa M J. New crinine-type alkaloids with inhibitory effect on induction of inducible nitric oxide synthase from Crinum yemense. Nat. Prod. 2004;67:1119–1124. doi: 10.1021/np030529k. [DOI] [PubMed] [Google Scholar]
  2. Allikmets R, Gerrard B, Hutchinson A, Dean M. Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the ex-pressed sequence tags database. Hum. Mol. Genet. 1996;5:1649–1655. doi: 10.1093/hmg/5.10.1649. [DOI] [PubMed] [Google Scholar]
  3. Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M. A human placenta-specific ATP binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 1998;58:5337–5339. [PubMed] [Google Scholar]
  4. Boumendjel A, Baubichon-Cortay H, Trompier D, Perrotton T, Di Pietro A. Anticancer multidrug resistance mediated by MRP 1: Recent advances in the discovery of reversal agents. Med. Res. Rev. 2005;25:453–472. doi: 10.1002/med.20032. [DOI] [PubMed] [Google Scholar]
  5. Cakici I, Ulug HY, Inci S, Tunctan B, Abacioglu N, Kanzik I, Sener B. Antinociceptive effect of some amaryllidaceae plants in mice. J. Pharm. Pharmacol. 1997;49:828–830. doi: 10.1111/j.2042-7158.1997.tb06121.x. [DOI] [PubMed] [Google Scholar]
  6. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chem-osensitivity testing. Cancer Res. 1987;47:943–946. [PubMed] [Google Scholar]
  7. Choi SU, Lee CO, Kim KH, Choi EJ, Park SH, Shin HS, Yoo SE, Jung NP, Lee BH. Reversal of multidrug resistance by novel verapamil analogs in cancer cells. Anticancer Drugs. 1998;9:157–165. doi: 10.1097/00001813-199802000-00007. [DOI] [PubMed] [Google Scholar]
  8. Cole SP, Deeley RG. Multidrug resistance-associated protein: sequence correction. Science. 1993;260:879. doi: 10.1126/science.8098549. [DOI] [PubMed] [Google Scholar]
  9. Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deely RG. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992;258:1650–1654. doi: 10.1126/science.1360704. [DOI] [PubMed] [Google Scholar]
  10. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 2002;62:3387–3394. [PubMed] [Google Scholar]
  11. Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2) Oncogene. 2003;22:7340–7358. doi: 10.1038/sj.onc.1206938. [DOI] [PubMed] [Google Scholar]
  12. Endicott JA, Ling V. The biochemistry of P-gly-coprotein-mediated multidrug resistance. Annu. Rev. Biochem. 1989;58:137–171. doi: 10.1146/annurev.bi.58.070189.001033. [DOI] [PubMed] [Google Scholar]
  13. Fojo T, Bates S. Strategies for reversing drug resistance. Oncogene. 2003;22:7512–7523. doi: 10.1038/sj.onc.1206951. [DOI] [PubMed] [Google Scholar]
  14. Furusawa E, Furusawa S. Effect of pretazettine and viva-natural, a dietary seaweed extract, on spontaneous AKR leukemia in comparison with standard drugs. Oncology. 1988;45:180–186. doi: 10.1159/000226558. [DOI] [PubMed] [Google Scholar]
  15. Furusawa E, Irie H, Combs D, Wildman WC. Therapeutic activity of pretazettine on Rauscher leukemia: comparison with the related Amaryllidaceae alkaloids. Chemotherapy. 1980;26:36–45. doi: 10.1159/000237881. [DOI] [PubMed] [Google Scholar]
  16. Gabrielsen B, Monath TP, Huggins JW, Kefauver DF, Pettit GR, Groszek G, Hollingshead M, Kirsi JJ, Shannon WM, Schubert EM. Antiviral (RNA) activity of selected Amaryllidaceae isoquinoline constituents and synthesis of related substances. J. Nat. Prod. 1992;55:1569–1581. doi: 10.1021/np50089a003. [DOI] [PubMed] [Google Scholar]
  17. Garrigues A, Loiseau N, Delaforge M, Ferte J, Garrigos M, Andre F, Orlowski S. Characterization of two pharmacophores on the multidrug transputer P-glyco-protein. Mol. Pharmacol. 2002;62:1288–1298. doi: 10.1124/mol.62.6.1288. [DOI] [PubMed] [Google Scholar]
  18. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  19. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. [DOI] [PubMed] [Google Scholar]
  20. Harker WG, Slade DL, Dalton WS, Meltzer PS, Trent JM. Multidrug resistance in mitoxantrone-selected HL-60 leukemia cells in the absence of P-glyco-protein overexpression. Cancer Res. 1989;49:4542–4549. [PubMed] [Google Scholar]
  21. Heere-Ress E, Thallinger C, Lucas T, Schlagbauer-Wadl H, Wacheck V, Monia BP, Wolff K, Pehamberger H, Jansen B. Bcl-X(L) is a chemoresistance factor in human melanoma cells that can be inhibited by antisense therapy. Int. J. Cancer. 2002;99:29–34. doi: 10.1002/ijc.10248. [DOI] [PubMed] [Google Scholar]
  22. Kalra R, Jones AM, Kirk J, Adams GE, Stratford IJ. The effect of hypoxia on acquired drug resistance and response to epidermal growth factor in Chinese hamster lung fibroblasts and human breast cancer cells in vitro. Int. J. Cancer. 1993;54:650–655. doi: 10.1002/ijc.2910540421. [DOI] [PubMed] [Google Scholar]
  23. Kim YH, Park EJ, Park MH, Badarch U, Woldemichael GM, Beutler JA. Crinamine from Crinum asi-aticum var. japonicum Inhibits hypoxia inducible factor-1 activity but not activity of hypoxia inducible factor-2. Biol. Pharm. Bull. 2006;29:2140–2141. doi: 10.1248/bpb.29.2140. [DOI] [PubMed] [Google Scholar]
  24. Kioka N, Yamano Y, Komano T, Ueda K. Heat-shock responsive elements in the induction of the multidrug resistance gene (MDR1) FEBS Lett. 1992;301:37–40. doi: 10.1016/0014-5793(92)80205-U. [DOI] [PubMed] [Google Scholar]
  25. Koch S, Mayer F, Honecker F, Schittenhelm M, Bokemeyer C. Efficacy of cytotoxic agents used in the treatment of testicular germ cell tumors under nor-moxic and hypoxic conditions in vitro. Br. J. Cancer. 2003;89:2133–2139. doi: 10.1038/sj.bjc.6601375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Larsen AK, Escargueil AE, Skladanowski A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol. Ther. 2000;85:217–229. doi: 10.1016/S0163-7258(99)00073-X. [DOI] [PubMed] [Google Scholar]
  27. Liang BC. Effects of hypoxia on drug resistance phe-notype and genotype in human glioma cell lines. J. Neu-rooncoi. 1996;29:149–155. doi: 10.1007/BF00182138. [DOI] [PubMed] [Google Scholar]
  28. Likhitwitayawuid K, Angerhofer CK, Chai H, Pezzuto JM, Cordell GA, Ruangrungsi N. Cytotoxic and antimalarial alkaloids from the bulbs of Crinum amabile. J. Nat. Prod. 1993;56:1331–1338. doi: 10.1021/np50098a017. [DOI] [PubMed] [Google Scholar]
  29. List AF. The role of multidrug resistance and its pharmacological modulation in acute myeloid leukemia. Leukemia. 1996;10:S36–38. [PubMed] [Google Scholar]
  30. Loor F, Tiberghien F, Wenandy T, Didier A, Traber R. Cyclosporins; structure activity relationships for the inhibition of the human MDR1 P-glycoprotein ABC transporter. J. Med. Chem. 2002;45:4598–4612. doi: 10.1021/jm0109863. [DOI] [PubMed] [Google Scholar]
  31. Min BS, Gao JJ, Nakamura N, Kim YH, Hattori M. Cytotoxic alkaloids and a flavan from the bulbs of Crinum asiaticum var. japonicum. Chem. Pharm. Bull. (Tokyo) 2001;49:1217–1219. doi: 10.1248/cpb.49.1217. [DOI] [PubMed] [Google Scholar]
  32. McNulty J, Nair JJ, Codina C, Bastida J, Pandey S, Gerasimoff J, Griffin C. Selective apoptosis-inducing activity of crinum-type Amaryllidaceae alkaloids. Phytochemistry. 2007;68:1068–1074. doi: 10.1016/j.phytochem.2007.01.006. [DOI] [PubMed] [Google Scholar]
  33. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;27:293–299. doi: 10.1016/0092-8674(95)90412-3. [DOI] [PubMed] [Google Scholar]
  34. Monaghan P, Robertson D, Amos TA, Dyer MJ, Mason DY, Greaves MF. Ultrastructural localization of BCL2 protein. J. Histochem. Cytochem. 1992;40:1819–1825. doi: 10.1177/40.12.1453000. [DOI] [PubMed] [Google Scholar]
  35. Oberhammer F, Wilson JW, Dive C, Morris ID, Hickman JA, Wakeling AE, Walker PR, Sikorska M. Apoptosis death in epithelial cell: cleavage of DNA to 300 and/or 50 kb fragments prior to in the absence of internu-cleosomal fragmentation. EMBO J. 1993;12:3679–3684. doi: 10.1002/j.1460-2075.1993.tb06042.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Oltvai ZN, Millman CL, Korsmeyer SJ. Bc1-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993;74:609–619. doi: 10.1016/0092-8674(93)90509-O. [DOI] [PubMed] [Google Scholar]
  37. Park MH. Chemical Constituents and Biological Activity of Crinum asiaticum var. japonicum. Taejon: Chungnam National University; 2001. pp. 79–80. [Google Scholar]
  38. Pettersson M, Jernberg-Wiklund H, Larsson LG, Sundstrom C, Givol I, Tsujimoto Y, Nilsson K. Expression of bcl-2 gene in human multiple myeloma cell lines and normal plasma cells. Blood. 1992;79:495–502. doi: 10.1182/blood.V79.2.495.495. [DOI] [PubMed] [Google Scholar]
  39. Pettit GR, Cragg GM, Singh SB, Duke JA, Doubek DL. Antineoplastic agents, 162 Zephyranthes Candida. J. Nat. Prod. 1990;53:176–178. doi: 10.1021/np50067a026. [DOI] [PubMed] [Google Scholar]
  40. Riordan JR, Ling V. Purification of P-glycoprotein from plasma membrane vesicles of Chinese hamster ovary cell mutants with reduced colchicine permeability. J. Biol. Chem. 1979;254:12701–12705. [PubMed] [Google Scholar]
  41. Sakurai K, Ishii H, Kobayashi S, Iwao T. Isolation of 4 beta-hydroxywithanolide E, a new withanolide from Physalis peruviana L. Chem. Pharm. Bull. (Tokyo) 1976;24:1403–1405. doi: 10.1248/cpb.24.1403. [DOI] [PubMed] [Google Scholar]
  42. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning Laboratory Manual. 1989;III:18–19. [Google Scholar]
  43. Samud AM, Asmawi MZ, Sharma JN, Yusof AP. Anti-inflammatory activity of Crinum asiaticum plant and its effect on bradykinin-induced contractions on isolated uterus. Immunopharmacology. 1999;43:311–316. doi: 10.1016/S0162-3109(99)00132-0. [DOI] [PubMed] [Google Scholar]
  44. Sellers WR, Fisher DE. Apoptosis in cancer drug targeting. J. Clin. Invest. 1999;104:1655–1661. doi: 10.1172/JCI9053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sherwood SW, Sheridan JP, Schimke RT. Induction of apoptosis by the anti-tubulin drug colcemid: relationship of mitotic checkpoint control to the induction of apoptosis in HeLa S3 cells. Exp. Cell Res. 1994;215:373–379. doi: 10.1006/excr.1994.1354. [DOI] [PubMed] [Google Scholar]
  46. Takagi S, Yamaki M. Studies on the purgative drugs. III. On the constituents of the flowers of Prunus persica Batsch. Yakugaku Zasshi. 1977;97:1155–1157. doi: 10.1248/yakushi1947.97.10_1155. [DOI] [PubMed] [Google Scholar]
  47. Xie C, Kokubun T, Houghton PJ, Simmonds MS. Antibacterial activity of the Chinese traditional medicine. Phytother Res. 2004;18:497–500. doi: 10.1002/ptr.1497. [DOI] [PubMed] [Google Scholar]
  48. Xie J, Wang Y, Freeman ME, Barlogie B, Yi O. Beta 2-microglobulin as a negative regulator of the immune system: high concentrations of the protein inhibit in vitro generation of sunctional dendritic cells. Blood. 2003;101:4005–4012. doi: 10.1182/blood-2002-11-3368. [DOI] [PubMed] [Google Scholar]
  49. Yang HH, Ma MH, Vescio RA, Berenson JR. Overcoming drug resistance in multiple myeloma: The emergence of therapeutic approaches to induce apoptosis. J. Clin. Oncol. 2003;21:4239–4247. doi: 10.1200/JCO.2003.06.001. [DOI] [PubMed] [Google Scholar]
  50. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP. Bcrpl gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc. Natl. Acad. Sci. USA. 2002;99:12339–12344. doi: 10.1073/pnas.192276999. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Toxicological Research are provided here courtesy of Korean Society of Toxicology

RESOURCES