Skip to main content
EFSA Journal logoLink to EFSA Journal
. 2019 Mar 28;17(3):e05664. doi: 10.2903/j.efsa.2019.5664

Avian influenza overview November 2018 – February 2019

European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian influenza, Cornelia Adlhoch, Thijs Kuiken, Isabella Monne, Paolo Mulatti, Krzysztof Smietanka, Christoph Staubach, Irene Muñoz Guajardo, Francesca Baldinelli
PMCID: PMC7009136  PMID: 32626274

Abstract

No human infections due to highly pathogenic avian influenza (HPAI) A(H5N8) or A(H5N6) viruses ‐ detected in wild birds and poultry outbreaks in Europe ‐ have been reported so far and the risk of zoonotic transmission to the general public in Europe is considered very low. Between 16 November 2018 and 15 February 2019, two HPAI A(H5N8) outbreaks in poultry establishments in Bulgaria, two HPAI A(H5N6) outbreaks in wild birds in Denmark and one low pathogenic avian influenza (LPAI) A(H5N3) in captive birds in the Netherlands were reported in the European Union (EU). Genetic characterisation of the HPAI A(H5N6) viruses reveals that they cluster with the A(H5N6) viruses that have been circulating in Europe since December 2017. The wild bird species involved were birds of prey and were likely infected due to hunting or scavenging infected wild waterfowl. However, HPAI virus was not detected in other wild birds during this period. Outside the EU, two HPAI outbreaks were reported in poultry during the reporting period from western Russia. Sequence information on an HPAI A(H5N6) virus found in a common gull in western Russia in October 2018 suggests that the virus clusters within clade 2.3.4.4c and is closely related to viruses that transmitted zoonotically in China. An increasing number of outbreaks in poultry and wild birds in Asia, Africa and the Middle East was observed during the time period for this report. Currently there is no evidence of a new HPAI virus incursion from Asia into Europe. However, passive surveillance systems may not be sensitive enough if the prevalence or case fatality in wild birds is very low. Nevertheless, it is important to encourage and maintain a certain level of passive surveillance in Europe testing single sick or dead wild birds and birds of prey as they may be sensitive sentinel species for the presence of HPAI virus in the environment. A well‐targeted active surveillance might complement passive surveillance to collect information on HPAI infectious status of apparently healthy wild bird populations.

Keywords: avian influenza, HPAI/LPAI, monitoring, poultry, captive birds, wild birds, humans

Suggested citation: EFSA (European Food Safety Authority) , ECDC (European Centre for Disease Prevention and Control) , EURL (European Reference Laboratory for Avian Influenza) , Adlhoch C, Kuiken T, Monne I, Mulatti P, Smietanka K, Staubach C, Muñoz I and Baldinelli F, 2019. Scientific report: Avian influenza overview November 2018 – February 2019. EFSA Journal 2019;17(3:5664, 35 pp. doi: 10.2903/j.efsa.2019.5664

Requestor: European Commission

Question number: EFSA‐Q‐2018‐01043

Acknowledgements: in addition to the listed authors, EFSA, ECDC and the EURL wish to thank the following: Member State representatives that provided data on avian influenza outbreaks, animal populations or wrote case reports for this scientific output: Bulgaria (Gabriela Goujgoulova and Aleksandra Miteva), Denmark (Pernille Dahl Nielsen, Stine Kjær‐Andersen and Charlotte Kristiane Hjulsager), the Netherlands (Nancy Beerens and Marcel Spierenburg); Dominique Bicout, Jan Arend Stegeman and Preben Willeberg for reviewing the document; Natalya Goncharova, Natalia Kolosova, Alexey Danilenko, Juliya Bulanovich, Vasiliy Marchenko, Alexander Ryzhikov from the State Research Center of Virology and Biotechnology (VECTOR), Koltsovo, Russian Federation for submitting the H5N6 and H5N8 sequences in GISAID's EpiFlu Database; Andrey Gogin, Alice Fusaro and Timm Harder for the support provided to this scientific output.

Figures 1–10, 12–13, 15–16 and Tables 1–4 © EFSA; Figures 11, 14, 17 © ECDC; Figures 5 © EURL

Approved: 25 March 2019

References

  1. Abolnik C, Stutchbury S and Hartman MJ, 2018. Experimental infection of racing pigeons (Columba livia domestica) with highly pathogenic Clade 2.3.4.4 sub‐group B H5N8 avian influenza virus. Veterinary Microbiology, 227, 127–132. doi: 10.1016/j.vetmic.2018.10.028 [DOI] [PubMed] [Google Scholar]
  2. Adlhoch C, Dabrera G, Penttinen P, Pebody R and Country E, 2018. Protective Measures for Humans against Avian Influenza A(H5N8) Outbreaks in 22 European Union/European Economic Area Countries and Israel, 2016‐17. Emerging Infectious Disease, 24. doi: 10.3201/eid2410.180269 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ali M, Yaqub T, Mukhtar N, Imran M, Ghafoor A, Shahid MF, Naeem M, Iqbal M, Smith GJD and Su YCF, 2019. Avian Influenza A(H9N2) Virus in Poultry Worker, Pakistan, 2015. Emerging Infectious Disease, 25, 136–139. doi: 10.3201/eid2501.180618 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arai Y, Ibrahim MS, Elgendy EM, Daidoji T, Ono T, Suzuki Y, Nakaya T, Matsumoto K and Watanabe Y, 2019. Genetic Compatibility of Reassortants between Avian H5N1 and H9N2 Influenza Viruses with Higher Pathogenicity in Mammals. Journal of Virology, 93. doi: 10.1128/jvi.01969-18 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonfante F, Mazzetto E, Zanardello C, Fortin A, Gobbo F, Maniero S, Bigolaro M, Davidson I, Haddas R, Cattoli G and Terregino C, 2018. A G1‐lineage H9N2 virus with oviduct tropism causes chronic pathological changes in the infundibulum and a long‐lasting drop in egg production. Veterinary Research, 49, 83. doi: 10.1186/s13567-018-0575-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chinese National Influenza Center , online. Chinese Influenza Weekly Report week 44 2018. Accessed on 26 March 2019. Available online: http://www.chinaivdc.cn/cnic/en/Surveillance/WeeklyReport/201811/t20181109_197046.htm
  7. Chrzastek K, Lee DH, Gharaibeh S, Zsak A and Kapczynski DR, 2018. Characterization of H9N2 avian influenza viruses from the Middle East demonstrates heterogeneity at amino acid position 226 in the hemagglutinin and potential for transmission to mammals. Virology, 518, 195–201. doi: 10.1016/j.virol.2018.02.016 [DOI] [PubMed] [Google Scholar]
  8. EFSA (European Food safety Authority), ECDC (European Centre for Disease Prevention and Control), EURL (EU Reference Laboratory for Avian Influenza) , Adlhoch C, Brouwer A, Kuiken T, Mulatti P, Smietanka K, Staubach C, Munoz Guajardo I, Amato L and Baldinelli F, 2018a. Scientific Report: Avian influenza overview May – August 2018. EFSA Journal, 16(9):5430, 1831–4732, 43 pp. doi: 10.2903/j.efsa.2018.5430 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. EFSA (European Food safety Authority), ECDC (European Centre for Disease Prevention and Control), EURL (EU Reference Laboratory for Avian Influenza) , Adlhoch C, Brouwer A, Kuiken T, Mulatti P, Smietanka K, Staubach C, Munoz Guajardo I, Verdonck F, Amato L and Baldinelli F, 2018b. Scientific Report: Avian influenza overview February – May 2018. EFSA Journal, 16(6):5358, 1831–4732, 50 pp. doi: 10.2903/j.efsa.2018.5358 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. EFSA (European Food safety Authority), ECDC (European Centre for Disease Prevention and Control), EURL (EU Reference Laboratory for Avian Influenza) , Adlhoch C, Brouwer A, Kuiken T, Mulatti P, Smietanka K, Staubach C, Willeberg P, Barrucci F, Verdonck F, Amato L and Baldinelli F, 2018c. Scientific Report: Avian influenza overview November 2017 ‐ February 2018. 16(3):5240, EFSA Journal 2018. 55 pp. doi: 10.2903/j.efsa.2018.5240 [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. EFSA (European Food safety Authority), ECDC (European Centre for Disease Prevention and Control), EURL (EU Reference Laboratory for Avian Influenza) , Adlhoch C, Brouwer A, Kuiken T, Miteva A, Mulatti P, Smietanka K, Staubach C, Gogin A, Guajardo IM and Baldinelli F, 2018d. Scientific Report: Avian influenza overview August – November 2018. Efsa Journal, 16, 1831–4732, 40 pp. doi: 10.2903/j.efsa.2018.5573 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. EFSA (European Food safety Authority), ECDC (European Centre for Disease Prevention and Control), EURL (EU Reference Laboratory for Avian Influenza) , Brown I, Kuiken T, Mulatti P, Smietanka K, Staubach C, Stroud D, Therkildsen OR, Willeberg P, Baldinelli F, Verdonck F and Adlhoch C, 2017a. Scientific Report: Avian influenza overview September – November 2017. 15(12):5141, EFSA Journal 2017. 70 pp. doi: 10.2903/j.efsa.2017.5141 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. EFSA (European Food safety Authority), ECDC (European Centre for Disease Prevention and Control), EURL (EU Reference Laboratory for Avian Influenza) , Brown I, Mulatti P, Smietanka K, Staubach C, Willeberg P, Adlhoch C, Candiani D, Fabris C, Zancanaro G, Morgado J and Verdonck F, 2017b. Scientific report: Avian influenza overview October 2016 – August 2017. 15(10):5018, EFSA Journal 2017. 101 pp. doi: 10.2903/j.efsa.2017.5018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare) , Breed A, Brouwer A, Guillemain M, Harder T, Monne I, Roberts H, Baldinelli F, Barrucci F, Fabris C, Martino L, Mosbach‐Schulz O, Verdonck F, Morgado J and Stegeman JA, 2017. Scientific opinion on avian influenza. 15(10):4991, EFSA Journal 2017. 233 pp. doi: 10.2903/j.efsa.2017.4991 [DOI] [Google Scholar]
  15. European Commission , online‐a. Animal Health ‐ Regulatory Committee presentations. Accessed on 4 September 2018. Available online: https://ec.europa.eu/food/animals/health/regulatory_committee/presentations_en
  16. European Commission , online‐b. Animal Disease Notification System (ADNS). Accessed on 26 March 2019. Available online: https://ec.europa.eu/food/animals/animal-diseases/not-system_en
  17. Fallah Mehrabadi MH, Ghalyanchilangeroudi A, Ghafouri SA, Malekan M, Ziafati Z, Hosseini H, Mousavi FS, Jabbarifakhr M and Aghaeean L, 2019. Full‐genome characterization and genetic analysis of a H9N2 virus in commercial broilers in Iran, 2017. Tropical Animal Health Production. doi: 10.1007/s11250-019-01809-1 [DOI] [PubMed] [Google Scholar]
  18. FAO, (Food and Agriculture Organization) , online‐a. H7N9 situation update ‐ 24 November 2017. Accessed on 26 March 2019. Available online: http://www.fao.org/ag/againfo/programmes/en/empres/h7n9/wave_6/Situation_update_2017_11_24.html
  19. FAO, (Food and Agriculture Organization) , online‐b. EMPRES‐i ‐ Global Animal Disease Information System. Accessed on 4 September 2018. Available online: http://empres-i.fao.org/eipws3g/
  20. GISAID , online. GISAID ‐ Homepage. Accessed on 26 March 2019. Available online: https://www.gisaid.org/
  21. Ilyicheva TN, Durymanov AG, Svyatchenko SV, Marchenko VY, Sobolev IA, Bakulina AY, Goncharova NI, Kolosova NP, Susloparov IM, Pyankova OG, Ryzhikov AB and Maksyutov RA, 2018. Humoral immunity to influenza in an at‐risk population and severe influenza cases in Russia in 2016‐2017. Archives Virology. doi: 10.1007/s00705-018-3904-9 [DOI] [PubMed] [Google Scholar]
  22. Jiang H, Wu P, Uyeki TM, He J, Deng Z, Xu W, Lv Q, Zhang J, Wu Y, Tsang TK, Kang M, Zheng J, Wang L, Yang B, Qin Y, Feng L, Fang VJ, Gao GF, Leung GM, Yu H and Cowling BJ, 2017. Preliminary Epidemiologic Assessment of Human Infections With Highly Pathogenic Avian Influenza A(H5N6) Virus, China. Clinical Infectious Diseases, 65, 383–388. doi: 10.1093/cid/cix334 [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kamiki H, Matsugo H, Kobayashi T, Ishida H, Takenaka‐Uema A, Murakami S and Horimoto T, 2018. A PB1‐K577E Mutation in H9N2 Influenza Virus Increases Polymerase Activity and Pathogenicity in Mice. Viruses, 10, 653. doi: 10.3390/v10110653 [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Krone O, Globig A, Ulrich R, Harder T, Schinkothe J, Herrmann C, Gerst S, Conraths FJ and Beer M, 2018. White‐Tailed Sea Eagle (Haliaeetus albicilla) Die‐Off Due to Infection with Highly Pathogenic Avian Influenza Virus, Subtype H5N8, in Germany. Viruses, 10. doi: 10.3390/v10090478 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kwon JH, Noh JY, Jeong JH, Jeong S, Lee SH, Kim YJ, Yuk SS, Lee DH, Bae YC, Park SC, Lee KH, Lee EK, Lee YN, Lee YJ and Song CS, 2019. Different pathogenicity of two strains of clade 2.3.4.4c H5N6 highly pathogenic avian influenza viruses bearing different PA and NS gene in domestic ducks. Virology, 530, 11–18. doi: 10.1016/j.virol.2019.01.016 [DOI] [PubMed] [Google Scholar]
  26. Lau SY, Wang X, Wang M, Liu S, Zee BC, Han X, Yu Z, Sun R, Chong KC and Chen E, 2018. Identification of meteorological factors associated with human infection with avian influenza A H7N9 virus in Zhejiang Province, China. Science Total Environment, 644, 696–709. doi: 10.1016/j.scitotenv.2018.06.390 [DOI] [PubMed] [Google Scholar]
  27. Lee CC, Zhu H, Huang PY, Peng L, Chang YC, Yip CH, Li YT, Cheung CL, Compans R, Yang C, Smith DK, Lam TT, King CC and Guan Y, 2014. Emergence and evolution of avian H5N2 influenza viruses in chickens in Taiwan. Journal of Virology, 88, 5677–5686. doi: 10.1128/JVI.00139-14 [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lee DH, Bahl J, Torchetti MK, Killian ML, Ip HS, DeLiberto TJ and Swayne DE, 2016b. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014‐2015. Emerging Infectious Disease, 22, 1283–1285. doi: 10.3201/eid2207.160048 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lee DH, Bertran K, Kwon JH and Swayne DE, 2017. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4. Journal of Veterinary Science, 18, 269–280. doi: 10.4142/jvs.2017.18.S1.269 [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lee EK, Lee YN, Kye SJ, Lewis NS, Brown IH, Sagong M, Heo GB, Kang YM, Cho HK, Kang HM, Cheon SH, Lee M, Park BK, Kim YJ and Lee YJ, 2018. Characterization of a novel reassortant H5N6 highly pathogenic avian influenza virus clade 2.3.4.4 in Korea, 2017. Emerging Microbes & Infections, 7, 103. doi: 10.1038/s41426-018-0104-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lee MS, Chen LH, Chen YP, Liu YP, Li WC, Lin YL and Lee F, 2016c. Highly pathogenic avian influenza viruses H5N2, H5N3, and H5N8 in Taiwan in 2015. Veterinary Microbiology, 187, 50–57. doi: 10.1016/j.vetmic.2016.03.012 [DOI] [PubMed] [Google Scholar]
  32. Li T, Ma Y, Li K, Tang X, Wang M and Yang Z, 2016. Death of a very young child infected with influenza A (H5N6). Journal of Infection, 73, 626–627. doi: 10.1016/j.jinf.2016.07.015 [DOI] [PubMed] [Google Scholar]
  33. Macau Special Administrative Region Government , online. Yunnan confirmed a case of human infection with H9N2 avian influenza. Accessed on 26 March 2019. Available online: https://www.gov.mo/zh-hans/news/234423/
  34. MoA (Ministry of Agriculture of the People's Republic of China) , online. H7N9 situation update. Accessed on 26 March 2019. Available online: http://english.agri.gov.cn/
  35. Mosaad Z, Arafa A, Hussein HA and Shalaby MA, 2018. In silico thermodynamic stability of mammalian adaptation and virulence determinants in polymerase complex proteins of H9N2 virus. Journal of Genetic Engineering and Biotechnology, 16, 757–767. doi: 10.1016/j.jgeb.2018.02.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Obadan AO, Santos J, Ferreri L, Thompson AJ, Carnaccini S, Geiger G, Gonzalez Reiche AS, Rajao DS, Paulson JC and Perez DR, 2018. Flexibility in vitro of amino acid 226 in the receptor‐binding site of an H9 subtype influenza A virus and its effect in vivo on virus replication, tropism, and transmission. Journal of Virology. doi: 10.1128/jvi.02011-18 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. OIE (World Organisation for Animal Health) , 2019a. H5N1 HPAI in India. 4 pp. Available online: http://www.oie.int/wahis_2/temp/reports/en_fup_0000029639_20190222_164847.pdf
  38. OIE (World Organisation for Animal Health) , 2019b. H5N8 in Pakistan. 3pp. Available online: http://www.oie.int/wahis_2/temp/reports/en_fup_0000029765_20190307_135757.pdf
  39. OIE (World Organisation for Animal Health) , 2019c. H5N8 HPAI poultry in Russia. 15 pp. Available online: http://www.oie.int/wahis_2/temp/reports/en_fup_0000029523_20190225_192838.pdf
  40. OIE (World Organisation for Animal Health) , online‐a. WAHIS Interface disease information. Accessed on 26 March 2019. Available online: http://www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/Diseasehome
  41. OIE (World Organisation for Animal Health) , online‐b. Terrestrial Animal Health Code. Accessed on 26 March 2019. Available online: http://www.oie.int/standard-setting/terrestrial-code/access-online/
  42. Olsen, K.M. and Larsson, H. 2003. Gulls of Europe, Asia, and North America. Christopher Helm, London, p. 73
  43. Ozawa M, Matsuu A, Khalil AM, Nishi N, Tokorozaki K, Masatani T, Horie M, Okuya K, Ueno K, Kuwahara M and Toda S, 2019. Phylogenetic variations of highly pathogenic H5N6 avian influenza viruses isolated from wild birds in the Izumi plain, Japan, during the 2016‐17 winter season. Transboundary and Emerging Diseases, 66, 797–806. doi: 10.1111/tbed.13087 [DOI] [PubMed] [Google Scholar]
  44. Pu Z, Xiang D, Li X, Luo T, Shen X, Murphy RW, Liao M and Shen Y, 2018. Potential Pandemic of H7N9 Avian Influenza A Virus in Human. Frontiers in Cellular and Infection Microbiology, 8. doi: 10.3389/fcimb.2018.00414 [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sanada T, Yasui F, Honda T, Kayesh MEH, Takano JI, Shiogama Y, Yasutomi Y, Tsukiyama‐Kohara K and Kohara M, 2019. Avian H5N1 influenza virus infection causes severe pneumonia in the Northern tree shrew (Tupaia belangeri). Virology, 529, 101–110. doi: 10.1016/j.virol.2019.01.015 [DOI] [PubMed] [Google Scholar]
  46. Shibata A, Harada R, Okamatsu M, Matsuno K, Arita T, Suzuki Y, Shirakura M, Odagiri T, Takemae N, Uchida Y, Saito T, Sakoda Y and Osaka H, 2019. Characterization of a novel reassortant H7N3 highly pathogenic avian influenza virus isolated from a poultry meat product taken on a passenger flight to Japan. Journal of Veterinary Science, 81, 444–448. doi: 10.1292/jvms.18-0628 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Smith GJ and Donis RO, World Health Organization/World Organisation for Animal HF and Agriculture Organization HEWG , 2015. Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013‐2014. Influenza Other Respir Viruses, 9, 271–276. doi: 10.1111/irv.12324 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Subbarao EK, London W and Murphy BR, 1993. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. Journal of Virology, 67, 1761–1764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Taiwan Centres for Disease Control , online. Press release. Accessed on 26 March 2019. Available online: https://www.cdc.gov.tw/info.aspx?treeid=45DA8E73A81D495D&nowtreeid=1BD193ED6DABAEE6&tid=F5C543C0E7541870
  50. Uchida Y, Mine J, Takemae N, Tanikawa T, Tsunekuni R and Saito T, 2019. Comparative pathogenicity of H5N6 subtype highly pathogenic avian influenza viruses in chicken, Pekin duck and Muscovy duck. Transboundary and Emerging Diseases. doi: 10.1111/tbed.13141 [DOI] [PubMed] [Google Scholar]
  51. van den Brand JM, Krone O, Wolf PU, van de Bildt MW, van Amerongen G, Osterhaus AD and Kuiken T, 2015. Host‐specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany. Veterinary Research, 46, 24. doi: 10.1186/s13567-015-0148-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. White MC, Tao H, Steel J and Lowen AC, 2019. H5N8 and H7N9 packaging signals constrain HA reassortment with a seasonal H3N2 influenza A virus. Proceedings of the National Academy of Sciences of the United States. doi: 10.1073/pnas.1818494116 [DOI] [PMC free article] [PubMed]
  53. WHO (World Organisation for Animal Health) , 2016. International Health Regulations (2005) ‐ Third edition.
  54. WHO (World Organisation for Animal Health) , 2017. Operational Guidance on Sharing Influenza Viruses with Human Pandemic Potential (IVPP) under the Pandemic Influenza Preparedness (PIP) Framework. 20 pp. Available online: http://apps.who.int/iris/bitstream/handle/10665/259402/WHO-WHE-IHM-GIP-2017.3-eng.pdf;jsessionid=FF66316FB599ADA38D34499AA56765FA?sequence=1
  55. WHO (World Organisation for Animal Health) , 2018a. Influenza at the human‐animal interface; Summary and assessment, 22 September to 1 November 2018. 3 pp Available online: http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_01_11_2018.pdf?ua=1
  56. WHO (World Organisation for Animal Health) , 2018b. Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness ‐ September 2018. 13 pp. Available online: http://www.who.int/influenza/vaccines/virus/201809_zoonotic_vaccinevirusupdate.pdf?ua=1
  57. WHO (World Organisation for Animal Health) , 2018c. Protocol to investigate non‐seasonal influenza and other emerging acute respiratory diseases. 73 pp. Available online: https://apps.who.int/iris/bitstream/handle/10665/275657/WHO-WHE-IHM-GIP-2018.2-eng.pdf?ua=1
  58. WHO (World Organisation for Animal Health) , 2018d. WHO information for molecular diagnosis of influenza virus ‐ update. 63 pp. Available online: https://www.who.int/influenza/gisrs_laboratory/Protocols_influenza_virus_detection_Nov_2018.pdf?ua=1
  59. WHO (World Organisation for Animal Health) , 2018e. Influenza at the human‐animal interface ‐ Summary and assessment, 26 January to 2 March 2018. 5 pp. Available online: http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_02_03_2018.pdf?ua=1
  60. WHO (World Organisation for Animal Health) , 2019a. Influenza at the human‐animal interface; Summary and assessment, 14 December 2018 to 21 January 2019. 3 pp. Available online: https://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_21_01_2019.pdf?ua=1
  61. WHO (World Organisation for Animal Health) , 2019b. Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO, 2003‐2019. 3 pp. Available online: https://www.who.int/influenza/human_animal_interface/2019_01_21_tableH5N1.pdf?ua=1
  62. WHO (World Organisation for Animal Health) , 2019c. Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness, February 2019. 10 pp. Available online: https://www.who.int/influenza/vaccines/virus/201902_zoonotic_vaccinevirusupdate.pdf?ua=1
  63. WHO (World Organisation for Animal Health) , online‐a. Human infection with avian influenza A(H7N4) virus – China: Update. Accessed on 26 March 2019. Available online: http://www.who.int/csr/don/05-september-2018-ah7n9-china/en/
  64. WHO (World Organisation for Animal Health) , online‐b. Influenza ‐ Virus Sharing. Accessed on 26 March 2019. Available online: http://www.who.int/influenza/pip/virus_sharing/en/
  65. Xu C, Ye H, Qiu W, Lin H, Chen Y, Zhang H and Liao M, 2018. Phylogenetic classification of hemagglutinin gene of H9N2 avian influenza viruses isolated in China during 2012–2016 and evaluation of selected candidate vaccine strains. Poultry Science, 97, 3023–3030. doi: 10.3382/ps/pey154 [DOI] [PubMed] [Google Scholar]
  66. Yang Y, Li X, Birkhead GS, Zheng Z and Lu JH, 2019a. Clinical indices and mortality of hospitalized avian influenza A (H7N9) patients in Guangdong, China. Chinise Medical Journal, 132, 302–310. doi: 10.1097/cm9.0000000000000043 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Yang Y, Wong G, Yang L, Tan S, Li J, Bai B, Xu Z, Li H, Xu W, Zhao X, Quan C, Zheng H, Liu WJ, Liu W, Liu L, Liu Y, Bi Y and Gao GF, 2019b. Comparison between human infections caused by highly and low pathogenic H7N9 avian influenza viruses in Wave Five: Clinical and virological findings. Journal of Infection. doi: 10.1016/j.jinf.2019.01.005 [DOI] [PubMed] [Google Scholar]
  68. Zeng X, Tian G, Shi J, Deng G, Li C and Chen H, 2018. Vaccination of poultry successfully eliminated human infection with H7N9 virus in China. Science China Life Sciences. doi: 10.1007/s11427-018-9420-1 [DOI] [PubMed] [Google Scholar]
  69. Zhang J, Su R, Jian X, An H, Jiang R and Mok CKP, 2018. The D253N Mutation in the Polymerase Basic 2 Gene in Avian Influenza (H9N2) Virus Contributes to the Pathogenesis of the Virus in Mammalian Hosts. Virologica Sinica, 33, 531–537. doi: 10.1007/s12250-018-0072-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Zhang J, Wu H, Zhang Y, Cao M, Brisse M, Zhu W, Li R, Liu M, Cai M, Chen J and Chen J, 2019. Molecular evolutionary and antigenic characteristics of newly isolated H9N2 avian influenza viruses in Guangdong province, China. Archives Virology, 164, 607–612. doi: 10.1007/s00705-018-4103-4 [DOI] [PubMed] [Google Scholar]
  71. Zhao Z, Liu L, Guo Z, Zhang C, Wang Z, Wen G, Zhang W, Shang Y, Zhang T, Jiao Z, Chen L, Zhang C, Cui H, Jin M, Wang C, Luo Q and Shao H, 2019. A Novel Reassortant Avian H7N6 Influenza Virus Is Transmissible in Guinea Pigs via Respiratory Droplets. Frontiers in Microbiology, 10, 18. doi: 10.3389/fmicb.2019.00018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Zhu C, Hu C, Gui B, Chen Q, Zhang S and He G, 2018. Genetic characteristics of H9N2 avian influenza viruses isolated from free‐range poultry in Eastern China, in 2014‐2015. Poultry Science, 97, 3793–3800. doi: 10.3382/ps/pey187 [DOI] [PubMed] [Google Scholar]
  73. Zou S, Zhang Y, Li X, Bo H, Wei H, Dong L, Yang L, Dong J, Liu J, Shu Y and Wang D, 2019. Molecular characterization and receptor binding specificity of H9N2 avian influenza viruses based on poultry‐related environmental surveillance in China between 2013 and 2016. Virology, 529, 135–143. doi: 10.1016/j.virol.2019.01.002 [DOI] [PubMed] [Google Scholar]

Articles from EFSA Journal are provided here courtesy of Wiley

RESOURCES