Skip to main content
EFSA Journal logoLink to EFSA Journal
. 2018 Mar 28;16(3):e05240. doi: 10.2903/j.efsa.2018.5240

Avian influenza overview November 2017 ‐ February 2018

European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian influenza, Cornelia Adlhoch, Adam Brouwer, Thijs Kuiken, Paolo Mulatti, Krzysztof Smietanka, Christoph Staubach, Preben Willeberg, Federica Barrucci, Frank Verdonck, Laura Amato, Francesca Baldinelli
PMCID: PMC7009675  PMID: 32625858

Abstract

Between 16 November 2017 and 15 February 2018, one highly pathogenic avian influenza (HPAI) A(H5N6) and five HPAI A(H5N8) outbreaks in poultry holdings, two HPAI A(H5N6) outbreaks in captive birds and 22 HPAI A(H5N6) wild bird events were reported within Europe. There is a lower incursion of HPAI A(H5N6) in poultry compared to HPAI A(H5N8). There is no evidence to date that HPAI A(H5N6) viruses circulating in Europe are associated with clades infecting humans. Clinical signs in ducks infected with HPAI A(H5N8) seemed to be decreasing, based on reports from Bulgaria. However, HPAI A(H5N8) is still present in Europe and is widespread in neighbouring areas. The majority of mortality events of wild birds from HPAIV A(H5) in this three‐month period involved single birds. This indicates that the investigation of events involving single dead birds of target species is important for comprehensive passive surveillance for HPAI A(H5). Moreover, 20 low pathogenic avian influenza (LPAI) outbreaks were reported in three Member States. The risk of zoonotic transmission to the general public in Europe is considered to be very low. The first human case due to avian influenza A(H7N4) was notified in China underlining the threat that newly emerging avian influenza viruses pose for transmission to humans. Close monitoring is required of the situation in Africa and the Middle East with regards to HPAI A(H5N1) and A(H5N8). Uncontrolled spread of virus and subsequent further genetic evolution in regions geographically connected to Europe may increase uncertainty and risk for further dissemination of virus. The risk of HPAI introduction from Third countries via migratory wild birds to Europe is still considered much lower for wild birds crossing the southern borders compared to birds crossing the north‐eastern borders, whereas the introduction via trade is still very to extremely unlikely.

Keywords: avian influenza, HPAI/LPAI , monitoring, poultry, captive birds, wild birds, humans

Supporting information

Figure: EURL phylogenetic tree

Suggested citation: EFSA (European Food Safety Authority) , ECDC (European Centre for Disease Prevention and Control) , EURL (European Reference Laboratory for Avian Influenza) , Adlhoch C, Brouwer A, Kuiken T, Mulatti P, Smietanka K, Staubach C, Willeberg P, Barrucci F, Verdonck F, Amato L and Baldinelli F, 2018. Scientific report: Avian influenza overview November 2017 ‐ February 2018. EFSA Journal 2018;16(3):5240. 55 pp. doi: 10.2903/j.efsa.2018.5240

Requestor: European Commission

Question number: EFSA‐Q‐2017‐00825

Competing interests: In line with EFSA's policy on declarations of interest, the following working group (WG) experts: Adam Brouwer, Paolo Mulatti, Krzysztof Smietanka and Christoph Staubach, have declared that they have current involvement in risk assessment activities at national level related to avian influenza, which constitutes a conflict of interest (CoI) with the mandate of the EFSA WG in hand. The CoIs have been waived and the waivers were adopted in accordance with Article 16(5) of the Decision of the Executive Director on Declarations of Interest of 31 July 2017 EFSA/LRA/DEC/02/2014, available at http://www.efsa.europa.eu/sites/default/files/corporate_publications/files/independencerules2014.pdf. Pursuant to Article 16(7) of the above mentioned Decision, the concerned experts were allowed to take part in the discussions and in the drafting phase of the EFSA Scientific report on Avian influenza monitoring (Art. 31) ‐ overview November 2017 ‐ February 2018, and have not been allowed to be, or act as, a chairman, a vice‐chairman or rapporteur of the WG.

Figures from 1 to 7, Tables 1 and 2 and Phylogenetic tree © EURL; Figures from 8 to 10 and Table 4 © EFSA; Figures 11, 13, 14, 16, 17, 18, 19, 20 © Friedrich‐Loeffler‐Institut (FLI); Figures 12, 15, 21, 22, 23 and Table 5 © ECDC.

Approved: 22 March 2018

This article was originally published on the EFSA website www.efsa.europa.eu on 23 March 2018 as part of EFSA's urgent publication procedures.

References

  1. Beerens N, Koch G, Heutink R, Harders F, Vries D, Ho C, Bossers A and Elbers A, 2018. Novel Highly Pathogenic Avian Influenza A(H5N6) Virus in the Netherlands, December 2017. Emerging Infectious Diseases, 24, doi: 10.3201/eid2404.172124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Belser JA, Johnson A, Pulit‐Penaloza JA, Pappas C, Pearce MB, Tzeng WP, Hossain MJ, Ridenour C, Wang L, Chen LM, Wentworth DE, Katz JM, Maines TR and Tumpey TM, 2017. Pathogenicity testing of influenza candidate vaccine viruses in the ferret model. Virology, 511, 135‐141. doi: 10.1016/j.virol.2017.08.024 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cao X, Yang F, Wu H and Xu L, 2017. Genetic characterization of novel reassortant H5N6‐subtype influenza viruses isolated from cats in eastern China. Archives of Virology, 162, 3501‐3505. doi: 10.1007/s00705-017-3490-2. [DOI] [PubMed] [Google Scholar]
  4. CDC (Centers for Disease Control and Prevention) , online. Bird Infections with Highly‐Pathogenic Avian Influenza A (H5N2), (H5N8), and (H5N1) Viruses: Recommendations for Human Health Investigations and Response. Available online: https://emergency.cdc.gov/han/han00378.asp [Accessed: 15 March 2018]
  5. CHP (Hong Kong Center for Health Protection of the Department of Health) , 2018. Avian Influenza Report February 18 ‐ February 24, 2018 (Week 8). Hong Kong. 8 pp., Available online: https://www.chp.gov.hk/files/pdf/2018_avian_influenza_report_vol14_wk08.pdf
  6. CNIC (Chinese National Influenza Center) , 2017. Chinese Influenza Weekly Report, Week 34 2017. pp., Available online: http://www.chinaivdc.cn/cnic/en/Surveillance/WeeklyReport/201709/t20170905_151981.htm
  7. EC (European Commission) , online‐a. Animal Health ‐ Regulatory Committee presentations. Available online: https://ec.europa.eu/food/animals/health/regulatory_committee/presentations_en [Accessed: 15 March 2018]
  8. EC (European Commission) , online‐b. Animal Disease Notification System (ADNS). Available online: https://ec.europa.eu/food/animals/animal-diseases/not-system_en [Accessed: 19 March 2018]
  9. ECDC (European Centre for Disease Prevention and Control) , 2006. Avian Influenza Portfolio ‐ Collected risk assessments, technical guidance to public health authorities and advice to the general public. ECDC, Stockholm. 50 pp., Available online: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/0606_TER_Avian_Influenza_Portafolio.pdf
  10. ECDC (European Centre for Disease Prevention and Control) , 2017. Expert opinion on neuraminidase inhibitors for the prevention and treatment of influenza ‐ review of recent systematic reviews and meta‐analyses. ECDC, Stockholm. 43 pp., doi: 10.2900/01723, Available online: https://ecdc.europa.eu/sites/portal/files/documents/Scientific-advice-neuraminidase-inhibitors-2017.pdf [DOI]
  11. EFSA (European Food Safety Authority) , ECDC (European Centre for Disease Prevention and Control), EURL (European Union Reference Laboratory for Avian Influenza) , Brown I, Kuiken T, Mulatti P, Smietanka K, Staubach C, Stroud D, Therkildsen OR, Willeberg P, Baldinelli F, Verdonck F and Adlhoch C, 2017a. Scientific Report: Avian influenza overview September ‐ November 2017., 15(12):5141, EFSA Journal 2017. 70 pp., doi: 10.2903/j.efsa.2017.5141 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. EFSA (European Food Safety Authority) , ECDC (European Centre for Disease Prevention and Control), EURL (European Union Reference Laboratory for Avian Influenza) , Brown I, Mulatti P, Smietanka K, Staubach C, Willeberg P, Adlhoch C, Candiani D, Fabris C, Zancanaro G, Morgado J and Verdonck F, 2017b. Scientific report on the avian influenza overview October 2016 ‐ August 2017., 15(10):5018, EFSA Journal 2017. 101 pp., doi: 10.2903/j.efsa.2017.5018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare) , More S, Bicout D, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin‐Bastuji B, Good M, Gortazar‐Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Thulke HH, Velarde A, Willeberg P, Winckler C, Breed A, Brouwer A, Guillemain M, Harder T, Monne I, Roberts H, Baldinelli F, Barrucci F, Fabris C, Martino L, Mosbach‐Schulz O, Verdonck F, Morgado J and Stegeman JA, 2017. Scientific opinion on avian influenza. 15(10):4991, EFSA Journal 2017. 233 pp., doi: 10.2903/j.efsa.2017.4991 [DOI] [Google Scholar]
  14. FAO (Food and Agriculture Organization) , 2018. Chinese‐origin H7N9 Avian Influenza spread in poultry and human exposure ‐ qualitative risk assessment update. FAO, Rome. 16 pp., Available online: http://www.fao.org/3/i8705en/I8705EN.PDF
  15. FAO (Food and Agriculture Organization) , online‐a. EMPRES‐i ‐ Global Animal Disease Information System. Available online: http://empres-i.fao.org/eipws3g/ [Accessed: 19 March 2018]
  16. FAO (Food and Agriculture Organization) , online‐b. H5N8 HPAI GLOBAL situation update. Available online: http://www.fao.org/ag/againfo/programmes/en/empres/H5N8/situation_update.html [Accessed: 19 March 2018]
  17. FAO (Food and Agriculture Organization) , online‐c. H7N9 situation update. Available online: http://www.fao.org/ag/againfo/programmes/en/empres/h7n9/situation_update.html [Accessed: 19 March 2018]
  18. Gao S, Kang Y, Li S, Xiang B, Ma H and Yuan R, 2017. Increasing genetic diversity of H5N6 avian influenza virus in China: A serious threat to persistence and dissemination in Guangdong province. The Journal of infection, 75, 586‐590. doi: 10.1016/j.jinf.2017.10.003. [DOI] [PubMed] [Google Scholar]
  19. Globig A, Staubach C, Sauter‐Louis C, Dietze K, Homeier‐Bachmann T, Probst C, Gethmann J. R., Depner K, Grund C, Harder TC, Starick E, Pohlmann A, Höper D, Beer M, Mettenleiter TC and Conraths FJ, 2018. Highly Pathogenic Avian Influenza H5N8 Clade 2.3.4.4b in Germany in 2016/2017. Frontiers in Veterinary Science. doi: 10.3389/fvets.2017.00240 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Herfst S, Mok CKP, vanden Brand JMA , dervan Vliet S , Rosu ME, Spronken MI, Yang Z, deMeulder D , Lexmond P, Bestebroer TM, Peiris JSM, Fouchier RAM and Richard M, 2018. Human Clade 2.3.4.4 A/H5N6 Influenza Virus Lacks Mammalian Adaptation Markers and Does Not Transmit via the Airborne Route between Ferrets. mSphere, 3. doi: 10.1128/msphere.00405-17 [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Horwood PF, Horm SV, Suttie A, Thet S, Y P, Rith S, Sorn S, Holl D, Tum S, Ly S, Karlsson EA, Tarantola A, Dussart P and Phalla Y, 2018. Co‐circulation of Influenza A H5, H7, and H9 Viruses and Co‐infected Poultry in Live Bird Markets, Cambodia. Emerging Infectious Diseases, 24, 352‐355. doi: 10.3201/eid2402.171360 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hu M, Jin Y, Zhou J, Huang Z, Li B, Zhou W, Ren H, Yue J and L. L, 2017. Genetic Characteristic and Global Transmission of Influenza A H9N2 Virus. Frontiers in Microbiology, 22, 2611. doi: 10.3389/fmicb.2017.02611 [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. ISARIC (International Severe Acute Respiratory and Emerging Infection Consortium , online. ISARIC and WHO SARI and Natural History Protocols. Available online: https://isaric.tghn.org/ [Accessed: 20 March 2018]
  24. Jiang H, Wu P, Uyeki TM, He J, Deng Z, Xu W, Lv Q, Zhang J, Wu Y, Tsang TK, Kang M, Zheng J, Wang L, Yang B, Qin Y, Feng L, Fang VJ, Gao GF, Leung GM, Yu H and Cowling BJ, 2017. Preliminary Epidemiologic Assessment of Human Infections With Highly Pathogenic Avian Influenza A(H5N6) Virus, China. Clinical Infectious Diseases, 65, 383‐388. doi: 10.1093/cid/cix334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kang Y, Shen X, Yuan R, Xiang B, Fang Z, Murphy RW, Liao M, Shen Y and Ren T, 2018. Pathogenicity and transmissibility of three avian influenza A (H5N6) viruses isolated from wild birds. The Journal of infection, 76, 286‐294. doi: 10.1016/j.jinf.2017.12.012. [DOI] [PubMed] [Google Scholar]
  26. Kaplan BS, Russier M, Jeevan T, Marathe B, Govorkova EA, Russell CJ, Kim‐Torchetti M, Choi YK, Brown I, Saito T, Stallknecht DE, Krauss S and Webby RJ, 2016. Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals. mSphere, 1. doi: 10.1128/msphere.00003-16 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kim YI, Park SJ, Kwon HI, Kim EH, Si YJ, Jeong JH, Lee IW, Nguyen HD, Kwon JJ, Choi WS, Song MS, Kim CJ and Choi YK, 2017. Genetic and phylogenetic characterizations of a novel genotype of highly pathogenic avian influenza (HPAI) H5N8 viruses in 2016/2017 in South Korea. Infection Genetics and Evolution, 53, 56‐67. doi: 10.1016/j.meegid.2017.05.001. [DOI] [PubMed] [Google Scholar]
  28. Kim YI, Si YJ, Kwon HI, Kim EH, Park SJ, Robles NJ, Nguyen HD, Yu MA, Yu KM, Lee YJ, Lee MH and Choi YK, 2018. Pathogenicity and genetic characterisation of a novel reassortant, highly pathogenic avian influenza (HPAI) H5N6 virus isolated in Korea, 2017. Eurosurveillance, 23, doi: 10.2807/1560-7917.ES.2018.23.7.18-00045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lee IH, Jin SY and Seo SH, 2017. Genetic and pathogenic analysis of a novel reassortant H5N6 influenza virus isolated from waterfowl in South Korea in 2016. Archives of Virology, 162, 3507‐3510. doi: 10.1007/s00705-017-3488-9. [DOI] [PubMed] [Google Scholar]
  30. Lee YN, Lee EK, Song BM, Heo GB, Woo SH, Cheon SH and Lee YJ, 2018. Evaluation of the zoonotic potential of multiple subgroups of clade 2.3.4.4 influenza A (H5N8) virus. Virology, 516, 38‐45. doi: 10.1016/j.virol.2017.12.037. [DOI] [PubMed] [Google Scholar]
  31. Liu D, Zhang Z, He L, Gao Z, Li J, Gu M, Hu J, Wang X, Liu X and Liu X, 2018a. Characteristics of the emerging chicken‐origin highly pathogenic H7N9 viruses: A new threat to public health and poultry industry. Journal of infection, 76, 217‐220. doi: 10.1016/j.jinf.2017.09.005. [DOI] [PubMed] [Google Scholar]
  32. Liu K, Gu M, Hu S, Gao R, Li J, Shi L, Sun W, Liu D, Gao Z, Xu X, Hu J, Wang X, Liu X, Chen S, Peng D, Jiao X and Liu X, 2018b. Genetic and biological characterization of three poultry‐origin H5N6 avian influenza viruses with all internal genes from genotype S H9N2 viruses. Archives of Virology, 1‐14, doi: 10.1007/s00705-017-3695-4. [DOI] [PubMed] [Google Scholar]
  33. Lu S, Zhao Z, Zhang J, Wang W, He X, Yu M, Zhang C, Li X, Guo Z, Yang X, Liu L, Zhi M, Fu T, Lv X, Ma W, Liao M, Chai H, Liu L, Qian J and J. M, 2018. Genetics, pathogenicity and transmissibility of novel reassortant H5N6 highly pathogenic avian influenza viruses first isolated from migratory birds in western China. Emerg Microbes Infect, 7. doi: 10.1038/s41426-017-0001-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Luo K, Zhang K, Liu L, Shen X, Jiao P, Song Y, Lv J, Wang M, Liu Y, Qi W, Ren T, Irwin DM, Liao M and Shen Y, 2018. The genetic and phylogenetic analysis of a highly pathogenic influenza A H5N6 virus from a heron, southern China, 2013. Infection Genetics and Evolution, 59, 72‐74. doi: 10.1016/j.meegid.2018.01.028. [DOI] [PubMed] [Google Scholar]
  35. Lyoo KS, Na W, Phan LV, Yoon SW, Yeom M, Song D and Jeong DG, 2017. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs. Transboundary Emerging Diseases, 64, 1669‐1675. doi: 10.1111/tbed.12731. [DOI] [PubMed] [Google Scholar]
  36. Ma L, Jin T, Wang H, Liu H, Wang R, Li Y, Yang G, Xiong Y, Chen J, Zhang J, Chen G, Li W, Liu D, Lin P, Huang Y, Gao GF and Chen Q, 2018. Two reassortant types of highly pathogenic H5N8 avian influenza virus from wild birds in Central China in 2016. Emerg Microbes Infect, 7, 14. doi: 10.1038/s41426-017-0012-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Meier S, Hüssy D, Hofmann M, Renzullo S, Vogler B, Sigrist B, Hoop R and Albini S, 2017. Outbreak of Highly Pathogenic Avian Influenza H5N8 in November 2016 in Wild Birds in Switzerland. Schweiz Arch Tierheilkd, 159, 663‐667. doi: 10.17236/sat00138. [DOI] [PubMed] [Google Scholar]
  38. MoA (Ministry of Agriculture of the People's republic of China) , online. H7N9 situation update. Available online: http://english.agri.gov.cn/ [Accessed: 20 March 2018]
  39. NCBI (Taxonomy Browser) , online‐a. Influenza A virus (A/chicken/Netherlands/10007882/2010(H7N4)). Available online: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=1963222 [Accessed: 15 March 2018]
  40. NCBI (GenBank) , online‐b. Influenza A virus (A/duck/Japan/AQ‐HE29‐22/2017(H7N9)) viral cRNA, segment 4, complete sequence. Available online: https://www.ncbi.nlm.nih.gov/nuccore/1233835231 [Accessed: 15 March 2018]
  41. OIE (World Organisation for Animal Health) , online. WAHIS Interface disease information. Available online: http://www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/Diseasehome [Accessed: 21 March 2018]
  42. Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus AD and Fouchier RA, 2006. Global patterns of influenza a virus in wild birds. Science, 312, 384‐388. doi: 10.1126/science.1122438. [DOI] [PubMed] [Google Scholar]
  43. Park SJ, Kim EH, Kwon HI, Song MS, Kim SM, Kim YI, Si YJ, Lee IW, Nguyen HD, Shin OS, Kim CJ and Choi YK, 2018. Altered virulence of Highly Pathogenic Avian Influenza (HPAI) H5N8 reassortant viruses in mammalian models. Virulence, 9, 133‐148. doi: 10.1080/21505594.2017.1366408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Poen MJ, Bestebroer TM, Vuong O, Scheuer RD, van der Jeugd HP, Kleyheeg E, Eggink D, Lexmond P, van den Brand JMA, Begeman L, van der Vliet S, Muskens G, Majoor FA, Koopmans MPG, Kuiken T and Fouchier RAM, 2018. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017. Eurosurveillance, 23, doi: 10.2807/1560-7917.es.2018.23.4.17-00449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pohlmann A, Starick E, Grund C, Hoper D, Strebelow G, Globig A, Staubach C, Conraths FJ, Mettenleiter TC, Harder T and Beer M, 2018. Swarm incursions of reassortants of highly pathogenic avian influenza virus strains H5N8 and H5N5, clade 2.3.4.4b, Germany, winter 2016/17. Sci Rep, 8, 15. doi: 10.1038/s41598-017-16936-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pulit‐Penaloza JA, Sun X, Creager HM, Zeng H, Belser JA, Maines TR and Tumpey TM, 2015. Pathogenesis and Transmission of Novel Highly Pathogenic Avian Influenza H5N2 and H5N8 Viruses in Ferrets and Mice. J Virol, 89, 10286‐10293. doi: 10.1128/jvi.01438-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Samir M, Hamed M, Abdallah F, Kinh Nguyen V, Hernandez‐Vargas EA, Seehusen F, Baumgärtner W, Hussein A, Ali AAH and Pessler F, 2018. An Egyptian HPAI H5N1 isolate from clade 2.2.1.2 is highly pathogenic in an experimentally infected domestic duck breed (Sudani duck).. Transboundary Emerging Diseases. doi: 10.1111/tbed.12816 [DOI] [PubMed] [Google Scholar]
  48. Selleck PW, Arzey G, Kirkland PD, Reece RL, Gould AR, Daniels PW and Westbury HA, 2003. An Outbreak of Highly Pathogenic Avian Influenza in Australia in 1997 Caused by an H7N4 Virus. Avian Diseases, 47, 806‐811. doi: 10.1637/0005-2086-47.s3.806. [DOI] [PubMed] [Google Scholar]
  49. Shi J, Deng G, Kong H, Gu C, Ma S, Yin X, Zeng X, Cui P, Chen Y, Yang H, Wan X, Wang X, Liu L, Chen P, Jiang Y, Liu J, Guan Y, Suzuki Y, Li M, Qu Z, Guan L, Zang J, Gu W, Han S, Song Y, Hu Y, Wang Z, Gu L, Yang W, Liang L, Bao H, Tian G, Li Y, Qiao C, Jiang L, Li C, Bu Z and Chen H, 2017. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Research, 27, 1409‐1421. doi: 10.1038/cr.2017.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Son K, Kim YK, Oem JK, Jheong WH, Sleeman JM and Jeong J, 2017. Experimental infection of highly pathogenic avian influenza viruses, Clade 2.3.4.4 H5N6 and H5N8, in Mandarin ducks from South Korea. Transboundary and Emerging Diseases. doi: 10.1111/tbed.12790 [DOI] [PubMed] [Google Scholar]
  51. Swieton E, Jóźwiak M, Minta Z and Smietanka K, 2017. Genetic characterization of H9N2 avian influenza viruses isolated from poultry in Poland during 2013/2014. Virus Genes, 54, 67‐76. doi: 10.1007/s11262-017-1513-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Takemae N, Tsunekuni R, Sharshov K, Tanikawa T, Uchida Y, Ito H, Soda K, Usui T, Sobolev I, Shestopalov A, Yamaguchi T, Mine J, Ito T and Saito T, 2017. Five distinct reassortants of H5N6 highly pathogenic avian influenza A viruses affected Japan during the winter of 2016‐2017. Virology, 512, 8‐20. doi: 10.1016/j.virol.2017.08.035. [DOI] [PubMed] [Google Scholar]
  53. Tate MD, 2018. Highly pathogenic avian H5N8 influenza viruses: should we be concerned? Virulence, 9, 20‐21. doi: 10.1080/21505594.2017.1386832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Thanh HD, Tran VT, Nguyen DT, Hung VK and Kim W, 2018. Novel reassortant H5N6 highly pathogenic influenza A viruses in Vietnamese quail outbreaks. Comparative Immunology, Microbiology and Infectious Diseases, 56, 45‐57. doi: 10.1016/j.cimid.2018.01.001. [DOI] [PubMed] [Google Scholar]
  55. The Government of Hong Kong (Special Administrative Region Press Releases) , online. CHP notified of human case of avian influenza A (H7N4) in Mainland. Available online: http://www.info.gov.hk/gia/general/201802/14/P2018021400759.htm?fontSize=1 [Accessed: 15 March 2018]
  56. Tsunekuni R, Yaguchi Y, Kashima Y, Yamashita K, Takemae N, Mine J, Tanikawa T, Uchida Y and Saito T, 2018. Spatial transmission of H5N6 highly pathogenic avian influenza viruses among wild birds in Ibaraki Prefecture, Japan, 2016‐2017. Archives of Virology, doi: 10.1007/s00705-018-3752-7. [DOI] [PubMed] [Google Scholar]
  57. Wang D, Wang J, Bi Y, Fan D, Liu H, Luo N, Yang Z, Wang S, Chen W, Wang J, Xu S, Chen J, Zhang Y and Yin Y, 2018. Characterization of avian influenza H9N2 viruses isolated from ostriches (Struthio camelus). Science Reports, 8, doi: 10.1038/s41598-018-20645-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wang N, Sun M, Wang W, Ouyang G, Chen Z, Zhang Y, Zhao B, Wu S, Huang J, Sun H, Liao M and Jiao P, 2017a. Avian Influenza (H7N9) Viruses Co‐circulating among Chickens, Southern China. Emerging Infectious Diseases, 23, 2100‐2102. doi: 10.3201/eid2312.170782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wang X, Chen S, Wang D, Zha X, Zheng S, Qin T, Ma W, Peng D and Liu X, 2017b. Synergistic effect of PB2 283M and 526R contributes to enhanced virulence of H5N8 influenza viruses in mice. Vet Res, 48, 67. doi: 10.1186/s13567-017-0471-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. WHO (World Health Organization) , 2005. International Health Regulations (2005) ‐ Third edition., 84 pp., Available online: http://www.who.int/ihr/publications/9789241580496/en/
  61. WHO (World Health Organization) , 2017a. Influenza at the human‐animal interface; Summary and assessment, 25 July 2017 to 27 September 2017., 8 pp., Available online: http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_09_27_2017.pdf?ua=1
  62. WHO (World Health Organization) , 2017b. Executive summary of the 9th meeting of the WHO working group RT‐PCR for the detection and subtyping of influenza viruses. Weekly Epidemiological Record, 92, 609‐624. [PubMed] [Google Scholar]
  63. WHO (World Health Organization) , 2017c. Influenza at the human‐animal interface; Summary and assessment, 30 October to 7 December 2017., 7 pp., Available online: http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_12_07_2017.pdf?ua=1
  64. WHO (World Health Organization) , 2018a. Influenza at the human‐animal interface; Summary and assessment, 8 December 2017 to 25 January 2018., pp., Available online: http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_25_01_2018_FINAL.pdf?ua=1
  65. WHO (World Health Organization) , 2018b. Cumulative number of confirmed human cases of avian influenza A(H5N1) reported to WHO, 2013‐2017. WHO, Geneva. 3 pp., Available online: http://www.who.int/influenza/human_animal_interface/2017_09_27_tableH5N1.pdf?ua=1
  66. WHO (World Health Organization) , 2018c. Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. WHO, Geneva. 10 pp., Available online: http://www.who.int/influenza/vaccines/virus/201802_zoonotic_vaccinevirusupdate.pdf?ua=1
  67. WHO (World Health Organization) , online. Human infection with avian influenza A(H7N4) virus ‐ China. Available online: http://www.who.int/csr/don/22-february-2018-ah7n4-china/en/ [Accessed: 19 March 2018]
  68. Woo C, Kwon JH, Lee DH, Kim Y, Lee K, Jo SD, Son KD, Oem JK, Wang SJ, Kim Y, Shin J, Song CS, Jheong W and Jeong J, 2017. Novel reassortant clade 2.3.4.4 avian influenza A (H5N8) virus in a grey heron in South Korea in 2017. Archives of Virology, 162, 3887‐3891. doi: 10.1007/s00705-017-3547-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Wu Y, Lin J, Yang S, Xie Y, Wang M, Chen X, Zhu Y, Luo L and Shi W, 2018. The molecular characteristics of avian influenza viruses (H9N2) derived from air samples in live poultry markets. Infection Genetics and Evolution, 191‐196, doi: 10.1016/j.meegid.2018.01.009. [DOI] [PubMed] [Google Scholar]
  70. Xiang B, Liang J, You R, Han L, Mei K, Chen L, Chen R, Zhang Y, Dai X, Gao P, Liao M, Xiao C and Ren T, 2017. Pathogenicity and transmissibility of a highly pathogenic avian influenza virus H5N6 isolated from a domestic goose in Southern China. Veterinary Microbiology, 212, 16‐21. doi: 10.1016/j.vetmic.2017.10.022. [DOI] [PubMed] [Google Scholar]
  71. Xu W, Dai Y, Hua C, Wang Q, Zou P, Deng Q, Jiang S and Lu L, 2017. Genomic signature analysis of the recently emerged highly pathogenic A(H5N8) avian influenza virus: implying an evolutionary trend for bird‐to‐human transmission. Microbes Infect, 19, 597‐604. doi: 10.1016/j.micinf.2017.08.006. [DOI] [PubMed] [Google Scholar]
  72. Xue R, Tian Y, Hou T, Bao D, Chen H, Teng Q, Yang J, Li X, Wang G, Li Z and Liu Q, 2018. H9N2 influenza virus isolated from minks has enhanced virulence in mice. Transboundary and Emerging Diseases, doi: 10.1111/tbed.12805. [DOI] [PubMed] [Google Scholar]
  73. Yamayoshi S, Kiso M, Yasuhara A, Ito M, Shu Y and Kawaoka Y, 2018. Enhanced Replication of Highly Pathogenic Influenza A(H7N9) Virus in Humans. Emerging Infectious Diseases, 24, doi: 10.3201/eid2404.171509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Yang L, Zhu W, Li X, Chen M, Wu J, Yu P, Qi S, Huang Y, Shi W, Dong J, Zhao X, Huang W, Li Z, Zeng X, Bo H, Chen T, Chen W, Liu J, Zhang Y, Liang Z, Shi W, Shu Y and Wang D, 2017. Genesis and Spread of Newly Emerged Highly Pathogenic H7N9 Avian Viruses in Mainland China. J Virol, 91, doi: 10.1128/JVI.01277-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Yehia N, Naguib MM, Li R, Hagag N, El‐Husseiny M, Mosaad Z, Nour A, Rabea N, Hasan WM, Hassan MK, Harder T and Arafa AA, 2017. Multiple introductions of reassorted highly pathogenic avian influenza viruses (H5N8) clade 2.3.4.4b causing outbreaks in wild birds and poultry in Egypt. Infection, genetics and evolution, 58, 56‐65. doi: 10.1016/j.meegid.2017.12.011. [DOI] [PubMed] [Google Scholar]
  76. Yu Z, Cheng K, Sun W, Zhang X, Xia X and Gao Y, 2018. Multiple adaptive amino acid substitutions increase the virulence of a wild waterfowl‐origin reassortant H5N8 avian influenza virus in mice. Virus Res, 244, 13‐20. doi: 10.1016/j.virusres.2017.11.002. [DOI] [PubMed] [Google Scholar]
  77. Zecchin B, Minoungou G, Fusaro A, Moctar S, Ouedraogo‐Kaboré A, Schivo A, Salviato A, Marciano S and Monne I, 2017. Influenza A(H9N2) Virus, Burkina Faso. Emerging Infectious Diseases, 23, 2118‐2119. doi: 10.3201/eid2312.171294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Zhang H, Liu M, Zeng X, Zhao X, Deng Z, Yang L, Chen W, Li Z, Jiao M, Xia W, Han B, Chen H, Shu Y and Wang D, 2017a. Identification of a novel reassortant A (H9N6) virus in live poultry markets in Poyang Lake region, China‐. Archives of Virology, 162, 3681‐3690. doi: 10.1007/s00705-017-3507-x. [DOI] [PubMed] [Google Scholar]
  79. Zhang J, Lao G, Zhang R, Wei Z, Wang H, Su G, Shan N, Li B, Li H, Yu Y, Jia W, Liao M and Qi W, 2017. Genetic diversity and dissemination pathways of highly pathogenic H5N6 avian influenza viruses from birds in Southwestern China along the East Asian‐Australian migration flyway. The Journal of infection, doi: 10.1016/j.jinf.2017.11.009. [DOI] [PubMed] [Google Scholar]
  80. Zhao Z, Guo Z, Zhang C, Liu L, Chen L, Zhang C, Wang Z, Fu Y, Li J, Shao H, Luo Q, Qian J and Liu L, 2017. Avian Influenza H5N6 Viruses Exhibit Differing Pathogenicities and Transmissibilities in Mammals. Sci Rep, 24, 16280. doi: 10.1038/s41598-017-16139-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Zhu R, Yang X, Zhang J, Xu D, Fan J, Shi H, Wang S and Liu X, 2018. Identification, sequence analysis, and infectivity of H9N2 avian influenza viruses isolated from geese. Journal of veterinary science. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Figure: EURL phylogenetic tree


Articles from EFSA Journal are provided here courtesy of Wiley

RESOURCES