Abstract
Minerals and trace elements play vital role in the biological functions for all organisms including human and other mammals. Therefore, imbalance in the mineral and/or trace element levels may cause formation of several diseases including cancer, diabetes, cardiovascular diseases, and neurological disorders. ICP-MS (inductively coupled plasma – mass spectrometry) is described as the most sensitive and accurate method. Here we reported an effective and fast protocol as method validation to evaluate trace element and minerals via ICP-MS in the mammalian tissue and serum samples. Our data showed that minimum relative standard deviation (RSD) values with the ICP-MS were observed when we used microwave digestion with the SUPRAPUR® grade nitric acid at the lower dilution rates. Our protocol validation may help researchers to measure trace elements and minerals in the mammalian samples fast, easily and accurately. EMSURE® grade HNO3 caused cross contamination in the serum and tissue samples. Our protocol validation may help researchers to measure trace elements and minerals in the mammalian samples fast, easily and accurately.
Keywords: ICP-MS, Minerals, Trace element, Mammalian tissue, Microwave digestion
Specifications Table
| Subject | Biology |
| Specific subject area | ICP-MS, minerals and trace elements, method validation |
| Type of data | Table Graph Figure |
| How data were acquired | ICP-MS Microwave digestion Animal experiments Statistical analysis |
| Data format | Raw and Analyzed |
| Description of data collection | Samples were digested via microwave digestion. Trace elements and minerals were measured via ICP-MS. Statistical analysis was used to compare methods. |
| Data source location | Medical School of Koc University, Istanbul, Turkey |
| Data accessibility | All data are provided in this article. Raw data is available as supplementary file. |
|
1. Data
Minerals and trace elements are essential since they play vital role in the biological functions for all organisms including human and other mammals, since they involve in the structure of various enzymes responsible for detoxification system, amino acid metabolism, immune system and DNA metabolism [[1], [2], [3], [4], [5], [6]]. ICP-MS is the most effective technique to measure trace elements and minerals in the biological samples [7]. In this report we firstly compare efficacy and accuracy of alkali dilution and acidic digestion methods in mammalian samples including brain, liver, testis, lung, kidney, heart, spleen and serum, however alkali digestion was not able to digest tissue samples (supplementary data1). Afterwards we compared acidic digestion with nitric acid (HNO3) 65% EMSURE® to SUPRAPUR® grade (Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8). EMSURE® grade HNO3 resulted in the contamination in the samples (Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8). Afterwards we compared different dilution rates to find the optimum one with the lowest RSD value. We found that SUPRAPUR® grade 65% nitric acid is suitable for microwave digestion of serum and tissue samples for ICP-MS analysis. Also, the best dilution rates are 1/10 to 1/20 to obtain the most accurate data according to the relative standard deviation values (Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8).
Fig. 1.
EMSURE® (red line) and SUPRAPUR® (blue line)-digested serum samples.
Fig. 2.
EMSURE® (red line) and SUPRAPUR® (blue line)-digested kidney samples.
Fig. 3.
EMSURE® (red line) and SUPRAPUR® (blue line)-digested liver samples.
Fig. 4.
EMSURE® (red line) and SUPRAPUR® (blue line)-digested brain samples.
Fig. 5.
EMSURE® (red line) and SUPRAPUR® (blue line)-digested testis samples.
Fig. 6.
EMSURE® (red line) and SUPRAPUR® (blue line)-digested spleen samples.
Fig. 7.
EMSURE® (red line) and SUPRAPUR® (blue line)-digested lung samples.
Fig. 8.
EMSURE® (red line) and SUPRAPUR® (blue line)-digested heart samples.
Table 1.
Mineral and trace element concentrations in rat serum samples.
| Dilution rates | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Element (mg/L) | 1:10 | 1:20 | 1:50 | 1:100 | 1:200 | 1:400 | 1:800 | 1:1000 | 1:2000 |
| EMSURE® Grade | |||||||||
| Na | 74 ± 1,2 | 76 ± 0,8 | 77 ± 0,7 | 81 ± 0,5 | 85 ± 0,7 | 91 ± 1 | 93 ± 1,6 | 97 ± 1,5 | 121 ± 0,7 |
| Mg | 0,064 ± 0,01 | 0,068 ± 0,05 | 0,080 ± 0,02 | 1,1 ± 0,01 | 1,4 ± 0,02 | 2,2 ± 0,04 | 3,4 ± 0,09 | 4 ± 0,12 | 7 ± 0,2 |
| K | 5,8 ± 0,08 | 5,9 ± 0,05 | 6,5 ± 0,04 | 7,8 ± 0,02 | 9,8 ± 0,13 | 13 ± 0,2 | 22 ± 0,3 | 26 ± 0,7 | 45 ± 0,7 |
| Ca | 0,5 ± 0,008 | 0,5 ± 0,01 | 0,7 ± 0,03 | 2 ± 0,04 | 2,7 ± 0,02 | 6,1 ± 0,2 | 6,7 ± 0,3 | 5,1 ± 0,5 | 7 ± 0,4 |
| Fe | 0,1 ± 0,004 | 0,08 ± 0,002 | ND | ND | ND | ND | ND | ND | ND |
| Cu | 0,7 ± 0,006 | 1,5 ± 0,01 | 3,8 ± 0,02 | 7,9 ± 0,06 | 16 ± 0,12 | 32 ± 0,28 | 65 ± 0,24 | 80 ± 0,94 | 166 ± 2,1 |
| Zn | 0,44 ± 0,004 | 0,8 ± 0,008 | 2,4 ± 0,01 | 4,7 ± 0,03 | 8,6 ± 0,05 | 16,6 ± 0,15 | 32 ± 0,19 | 42 ± 0,6 | 81 ± 0,7 |
| Se | 0,01 ± 0,001 | ND | ND | ND | ND | ND | ND | ND | ND |
| Rb | 0,006 ± 0,0003 | 0,007 ± 0,0004 | 0,007 ± 0,0004 | 0,009 ± 0,0006 | 0,015 ± 0,001 | 0,018 ± 0,003 | 0,03 ± 0,006 | 0,03 ± 0,006 | 0,05 ± 0,012 |
| Sr | 0,004 ± 0,0002 | 0,008 ± 0,0002 | 0,018 ± 0,0002 | 0,041 ± 0,0009 | 0,007 ± 0,002 | 0,15 ± 0,009 | 0,29 ± 0,007 | 0,34 ± 0,011 | 0,67 ± 0,02 |
| Pb | 0,041 ± 0,0003 | 0,084 ± 0,0007 | 0,2 ± 0,001 | 0,41 ± 0,002 | 0,83 ± 0,009 | 1,69 ± 0,015 | 3,36 ± 0,001 | 4,2 ± 0,06 | 8,8 ± 0,09 |
| SUPRAPUR® Grade | |||||||||
| Na | 41,9 ± 0,61 | 29,6 ± 0,24 | 28,6 ± 0,28 | 26,8 ± 0,32 | 19,5 ± 0,21 | 10,4 ± 0,24 | 14,3 ± 0,48 | 395 ± 2,8 | 324 ± 2,2 |
| Mg | 0,21 ± 0,004 | 0,14 ± 0,004 | 28,6 ± 0,28 | 0,11 ± 0,012 | 0,069 ± 0,007 | ND | ND | ND | ND |
| K | 2,3 ± 0,03 | 1,5 ± 0,02 | 1,25 ± 0,04 | 0,77 ± 0,06 | ND | ND | ND | ND | ND |
| Ca | 0,32 ± 0,011 | 0,22 ± 0,01 | 0,23 ± 0,02 | 0,23 ± 0,007 | 0,01 ± 0,008 | ND | ND | ND | ND |
| Cu | 0,016 ± 0,0001 | 0,011 ± 0,0004 | 0,008 ± 0,0009 | 0,005 ± 0,001 | 0,003 ± 0,003 | ND | ND | ND | ND |
| Zn | 0,022 ± 0,001 | 0,015 ± 0,004 | 0,13 ± 0,002 | 0,098 ± 0,01 | 0,35 ± 0,02 | ND | ND | 5,1 ± 0,14 | 11,75 ± 0,18 |
| Rb | 0,002 ± 0,0001 | 0,002 ± 0,0001 | 0,002 ± 0,0004 | 0,002 ± 0,0005 | 0,003 ± 0,001 | 0,004 ± 0,002 | 0,005 ± 0,005 | 0,01 ± 0,004 | 0,015 ± 0,02 |
| Sr | 0,001 ± 0,0001 | 0,002 ± 0,00007 | 0,003 ± 0,0004 | 0,007 ± 0,0009 | 0,01 ± 0,002 | 0,02 ± 0,005 | 0,04 ± 0,005 | 0,07 ± 0,012 | 0,14 ± 0,011 |
| Ag | 0,015 ± 0,0001 | 0,008 ± 0,0004 | 0,004 ± 0,0004 | ND | ND | ND | ND | ND | ND |
Table 2.
Mineral and trace element concentrations in rat kidney samples.
| Dilution Rates | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Element (mg/L) | 1:10 | 1:20 | 1:50 | 1:100 | 1:200 | 1:400 | 1:800 | 1:1000 | 1:2000 |
| EMSURE® Grade | |||||||||
| Na | 24 ± 0,4 | 25,5 ± 0,3 | 33,1 ± 0,2 | 32,2 ± 0,28 | 48,8 ± 0,44 | 37,4 ± 0,21 | 46,8 ± 0,71 | 98,1 ± 1,19 | 83,8 ± 0,72 |
| Mg | 2,5 ± 0,03 | 2,6 ± 0,026 | 3,4 ± 0,26 | 3,1 ± 0,026 | 3,9 ± 0,029 | 4,3 ± 0,064 | 5,2 ± 0,15 | 9,4 ± 0,14 | 9,3 ± 0,38 |
| K | 40 ± 0,43 | 42,2 ± 0,41 | 44,4 ± 0,58 | 46 ± 0,32 | 46,1 ± 0,36 | 49,8 ± 0,22 | 56,7 ± 0,86 | 66,9 ± 1,19 | 83,8 ± 1,6 |
| Ca | 0,23 ± 0,008 | 32 ± 0,007 | 2,9 ± 0,068 | 1,5 ± 0,03 | 4 ± 0,089 | 2,9 ± 0,26 | 3,5 ± 0,4 | 17,7 ± 0,81 | 7,86 ± 1,11 |
| Mn | 0,01 ± 0,0003 | 0,008 ± 0,0003 | 0,03 ± 0,001 | ND | ND | ND | ND | ND | ND |
| Fe | 0,91 ± 0,017 | 0,87 ± 0,012 | 0,53 ± 0,012 | ND | ND | ND | ND | ND | ND |
| Co | 0,002 ± 0,00007 | 0,0018 ± 0,0007 | ND | ND | ND | ND | ND | ND | ND |
| Cu | 0,79 ± 0,009 | 1,62 ± 0,013 | 4,25 ± 0,034 | 8,31 ± 0,065 | 16,6 ± 0,1 | 33,2 ± 0,12 | 65,9 ± 0,44 | 83,3 ± 0,52 | 163,1 ± 2,18 |
| Zn | 0,6 ± 0,009 | 1 ± 0,01 | 3,5 ± 0,003 | 4,6 ± 0,005 | 9,6 ± 0,07 | 16,9 ± 0,25 | 32,7 ± 0,34 | 46,6 ± 0,6 | 81,5 ± 0,85 |
| Rb | 0,07 ± 0,001 | 0,07 ± 0,001 | 0,07 ± 0,0009 | 0,07 ± 0,001 | 0,07 ± 0,002 | 0,08 ± 0,003 | 0,08 ± 0,006 | 0,09 ± 0,01 | 0,12 ± 0,008 |
| Sr | 0,041 ± 0,0003 | 0,084 ± 0,0007 | 0,2 ± 0,001 | 0,41 ± 0,002 | 0,83 ± 0,009 | 1,69 ± 0,015 | 3,36 ± 0,001 | 4,2 ± 0,06 | 8,8 ± 0,09 |
| Cs | 0,0006 ± 6x10−4 | 0,0009 ± 6x10−4 | 0,002 ± 0,0001 | 0,004 ± 0,0006 | 0,008 ± 0,003 | 0,01 ± 0,0008 | 0,03 ± 0,001 | 0,04 ± 0,004 | 0,08 ± 0,01 |
| Pb | 0,03 ± 0,0007 | 0,08 ± 0,0007 | 0,21 ± 0,002 | 0,42 ± 0,004 | 0,84 ± 0,008 | 1,68 ± 0,01 | 3,31 ± 0,06 | 4,17 ± 0,05 | 8,19 ± 0,03 |
| SUPRAPUR® Grade | |||||||||
| Na | 6,8 ± 0,11 | 6,5 ± 0,07 | 4,2 ± 0,12 | 1,8 ± 0,07 | ND | ND | ND | ND | ND |
| Mg | 1 ± 0,009 | 1 ± 0,008 | 1 ± 0,02 | 0,96 ± 0,01 | 0,91 ± 0,04 | ND | ND | ND | ND |
| K | 17,5 ± 0,16 | 17,8 ± 0,17 | 16,5 ± 0,26 | 16,1 ± 0,17 | 15,3 ± 0,12 | 13 ± 0,35 | 9,3 ± 0,75 | 7,1 ± 0,59 | ND |
| Ca | 0,11 ± 0,004 | 0,11 ± 0,01 | 0,11 ± 0,01 | 0,12 ± 0,014 | 0,34 ± 0,042 | ND | ND | ND | ND |
| Mn | 0,002 ± 0,0009 | 0,009 ± 0,0001 | ND | ND | ND | ND | ND | ND | ND |
| Fe | 0,46 ± 0,007 | 0,11 ± 0,007 | ND | ND | ND | ND | ND | ND | ND |
| Cu | 0,07 ± 0,001 | 0,07 ± 0,00009 | 0,07 ± 0,002 | 0,06 ± 0,003 | 0,07 ± 0,004 | 0,41 ± 0,009 | 0,35 ± 0,02 | ND | ND |
| Zn | 0,19 ± 0,002 | 0,25 ± 0,002 | 0,52 ± 0,011 | 0,099 ± 0,011 | 1,78 ± 0,05 | 1,09 ± 0,035 | 1,09 ± 0,048 | 5,3 ± 0,14 | 11,6 ± 0,29 |
| Rb | 0,029 ± 0,0004 | 0,029 ± 0,0004 | 0,029 ± 0,0001 | 0,028 ± 0,001 | 0,030 ± 0,002 | 0,028 ± 8x10−4 | 0,024 ± 0,002 | ND | ND |
Table 3.
Mineral and trace element concentrations in rat liver samples.
| Dilution Rates | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Element (mg/L) | 1:10 | 1:20 | 1:50 | 1:100 | 1:200 | 1:400 | 1:800 | 1:1000 | 1:2000 |
| EMSURE® Grade | |||||||||
| Na | 5,3 ± 0,07 | 5,5 ± 0,1 | 7,1 ± 0,09 | 7,6 ± 0,01 | 16,8 ± 0,12 | 20,3 ± 0,21 | 30,7 ± 0,51 | 32,6 ± 1,24 | 61,8 ± 4,3 |
| Mg | 1,24 ± 0,02 | 1,3 ± 0,01 | 1,4 ± 0,01 | 1,6 ± 0,01 | 2,1 ± 0,04 | 2,9 ± 0,08 | 4,1 ± 0,08 | 4,5 ± 0,2 | 7,9 ± 0,2 |
| K | 21,5 ± 0,9 | 22,3 ± 0,25 | 23,4 ± 0,23 | 22,9 ± 0,13 | 25,9 ± 0,2 | 31,6 ± 0,3 | 38 ± 1,1 | 40 ± 0,67 | 59,8 ± 1,5 |
| Ca | 0,13 ± 0,006 | 0,3 ± 0,007 | 0,64 ± 0,017 | 0,99 ± 0,04 | 3 ± 0,13 | 5,8 ± 0,17 | 6,9 ± 0,33 | 4,3 ± 0,45 | 8,3 ± 0,79 |
| Mn | 0,012 ± 0,0001 | 0,008 ± 0,0003 | ND | ND | ND | ND | ND | ND | ND |
| Fe | 0,6 ± 0,009 | 0,4 ± 0,007 | 0,12 ± 0,012 | ND | ND | ND | ND | ND | ND |
| Cu | 0,73 ± 0,01 | 1,5 ± 0,02 | 3,9 ± 0,02 | 7,9 ± 0,08 | 16,3 ± 0,09 | 32,6 ± 0,28 | 65,5 ± 0,49 | 81,5 ± 0,6 | 161,7 ± 1,33 |
| Zn | 0,49 ± 0,008 | 0,87 ± 0,01 | 2 ± 0,02 | 4 ± 0,06 | 8,3 ± 0,06 | 16,2 ± 0,21 | 32 ± 0,22 | 39,5 ± 0,48 | 79,1 ± 1,22 |
| Rb | 0,05 ± 0,001 | 0,5 ± 0,0005 | 0,05 ± 0,001 | 0,05 ± 0,001 | 0,06 ± 0,001 | 0,07 ± 0,004 | 0,08 ± 0,009 | 0,09 ± 0,009 | 0,13 ± 0,85 |
| Sr | 0,003 ± 0,0002 | 0,007 ± 0,0002 | 0,019 ± 0,0004 | 0,037 ± 0,001 | 0,07 ± 0,002 | 0,15 ± 0,002 | 0,29 ± 0,023 | 0,034 ±6x10−4 | 0,68 ± 0,034 |
| Cs | 0,0008 ± 5x10−5 | 0,001 ± 9x10−5 | 0,003 ± 0,0001 | 0,006 ± 0,0005 | 0,012± 7x10−3 | 0,15 ± 0,002 | 0,05 ± 0,004 | 0,006 ± 0,002 | 0,12 ± 0,007 |
| Ba | 0,0008 ± 0,00007 | ND | ND | ND | ND | ND | ND | ND | ND |
| Pb | 0,039 ± 0,0004 | 0,08 ± 0,0008 | 0,2 ± 0,003 | 0,4 ± 0,005 | 0,8 ± 0,009 | 1,7 ± 0,02 | 3,4 ± 0,02 | 4,2 ± 0,03 | 8,3 ± 0,09 |
| U | 0,00008±7X10−6 | ND | ND | ND | ND | ND | ND | ND | ND |
| SUPRAPUR® Grade | |||||||||
| Na | 6,5 ± 0,09 | 6,1 ± 0,09 | 4 ± 0,07 | 1,8 ± 0,08 | ND | ND | ND | ND | ND |
| Mg | 1,5 ± 0,01 | 1,5 ± 0,02 | 1,5 ± 0,01 | 1,5 ± 0,04 | 1,3 ± 0,06 | 0,8 ± 0,09 | 0,8 ± 0,1 | ND | ND |
| K | 26,2 ± 0,3 | 26,4 ± 0,2 | 24,8 ± 0,2 | 24,6 ± 0,2 | 11,9 ± 0,19 | 21,8 ± 0,48 | 15,6 ± 0,2 | 14,6 ± 1 | 3,5 ± 2,1 |
| Ca | 0,2 ± 0,007 | 0,1 ± 0,015 | ND | ND | ND | ND | ND | ND | ND |
| Mn | 0,01 ± 0,0001 | 0,01 ± 0,0005 | 0,01 ± 0,001 | 0,004 ± 0,0009 | ND | ND | ND | ND | ND |
| Fe | 0,7 ± 0,004 | 0,8 ± 0,007 | ND | ND | ND | ND | ND | ND | ND |
| Cu | 0,03 ± 0,0003 | 0,03 ± 0,0003 | 0,03 ± 0,0009 | 0,03 ± 0,001 | 0,02 ± 0,002 | 0,03 ± 0,002 | 0,02 ± 0,01 | 0,04 ± 0,02 | ND |
| Rb | 0,06 ± 0,0006 | 0,06 ± 0,001 | 0,06 ± 0,001 | 0,06 ± 0,001 | 0,06 ± 0,001 | 0,06 ± 0,005 | 0,06 ± 0,008 | 0,07 ± 0,008 | 0,09 ± 0,01 |
| Sr | 0,01 ± 0,00009 | 0,002 ± 0,0002 | 0,004 ± 0,0003 | 0,008 ± 0,0009 | 0,01 ± 0,002 | 0,02 ± 0,004 | 0,05 ± 0,005 | 0,06 ± 0,009 | 0,12 ± 0,02 |
| Al | 0,8 ± 0,01 | 0,7 ± 0,009 | 0,49 ± 0,01 | 0,18 ± 0,01 | ND | ND | ND | ND | ND |
| Cr | 0,07 ± 0,0001 | 0,06 ± 0,0002 | ND | ND | ND | ND | ND | ND | ND |
Table 4.
Mineral and trace element concentrations in rat brain samples.
| Dilution Rates | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Element (mg/L) | 1:10 | 1:20 | 1:50 | 1:100 | 1:200 | 1:400 | 1:800 | 1:1000 | 1:2000 |
| EMSURE® Grade | |||||||||
| Li | 0,03 ± 0,002 | 0,1 ± 0,04 | 0,16 ± 0,04 | 0,18 ± 0,02 | 0,25 ± 0,08 | 0,62 ± 0,14 | 1,2 ± 0,3 | 1,2 ± 0,4 | 2,8 ± 1 |
| Na | 24,6 ± 0,32 | 26,1 ± 0,36 | 29,6 ± 0,17 | 30,6 ± 0,36 | 33,4 ± 2,17 | 42,3 ± 0,3 | 53,7 ± 0,74 | 325 ± 5,25 | 108 ± 2,9 |
| K | 73,4 ± 0,98 | 75,3 ± 0,55 | 77,9 ± 0,36 | 79,8 ± 0,72 | 82,7 ± 1,1 | 84,9 ± 0,62 | 90,9 ± 0,62 | 99,5 ± 0,38 | 112 ± 1,7 |
| Ca | 0,48 ± 0,012 | 0,79 ± 0,044 | 1,5 ± 0,03 | 1,8 ± 0,07 | 3,2 ± 0,15 | 5,15 ± 0,21 | 6,9 ± 0,58 | 19 ± 0,2 | 16 ± 0,93 |
| Mn | 0,09 ± 0,0003 | 0,12 ± 0,031 | ND | ND | ND | ND | ND | ND | ND |
| Fe | 0,57 ± 0,008 | 0,55 ± 0,021 | 0,26 ± 0,022 | ND | ND | ND | ND | ND | ND |
| Cu | 0,7 ± 0,007 | 1,6 ± 0,03 | 4 ± 0,03 | 8 ± 0,1 | 16 ± 0,13 | 32,4 ± 0,28 | 64,7 ± 0,4 | 81,2 ± 0,73 | 161,7 ± 1,61 |
| Zn | 0,53 ± 0,007 | 1 ± 0,027 | 2,2 ± 0,03 | 4,1 ± 0,06 | 8,1 ± 0,07 | 16,5 ± 0,26 | 32 ± 0,22 | 45,1 ± 0,59 | 39,5 ± 0,28 |
| As | 0,02 ± 0,0004 | 0,5 ± 0,0005 | ND | ND | ND | ND | ND | ND | ND |
| Rb | 0,06 ± 0,0006 | 0,18 ± 0,03 | 0,12 ± 0,04 | 0,08 ± 0,003 | 0,09 ± 0,004 | 0,12 ± 0,01 | 0,3 ± 0,17 | 0,2 ± 0,014 | 0,27 ± 0,01 |
| Sr | 0,004 ± 0,0001 | 0,12 ± 0,029 | 0,07 ± 0,04 | 0,04 ± 0,0001 | 0,07 ± 0,0007 | 0,15 ± 0,004 | 0,41 ± 0,15 | 0,45 ± 0,011 | 0,69 ± 0,011 |
| Cs | 0,004 ± 0,0003 | 0,11 ± 0,03 | 0,064 ± 0,04 | 0,014 ± 0,0003 | 0,023 ± 0,001 | 0,045 ± 0,002 | 0,21 ± 0,16 | 0,09 ± 0,002 | 0,17 ± 0,015 |
| Ba | 0,0016 ± 0,0001 | ND | ND | ND | ND | ND | ND | ND | ND |
| Ti | ND | ND | ND | 0,009 ± 0,0009 | 0,011 ± 0,001 | 0,014 ± 0,002 | ND | ND | ND |
| SUPRAPUR® Grade | |||||||||
| Pb | 0,04 ± 0,0003 | 0,21 ± 0,03 | 0,29 ± 0,04 | 0,46 ± 0,002 | 0,93 ± 0,004 | 1,8 ± 0,01 | 3,17 ± 0,17 | 4,5 ± 0,05 | 8,9 ± 0,06 |
| U | 0,007 ± 0,0008 | 6,1 ± 0,09 | 4 ± 0,07 | 1,8 ± 0,08 | ND | ND | ND | ND | ND |
| Li | 0,03 ± 0,005 | 0,03 ± 0,007 | 0,06 ± 0,01 | 0,08 ± 0,06 | ND | ND | ND | ND | ND |
| Na | 9,9 ± 0,13 | 9,9 ± 0,09 | 8,6 ± 0,06 | 9,8 ± 0,08 | 6,7 ± 0,12 | 28,9 ± 0,49 | 15,3 ± 0,52 | ND | ND |
| Mg | 1,21 ± 0,02 | 1,22 ± 0,004 | 1,24 ± 0,02 | 1,2 ± 0,04 | 1,2 ± 0,04 | 1,5 ± 0,04 | 1,1 ± 0,13 | 0,67 ± 0,12 | 0,37 ± 0,13 |
| K | 33,1 ± 0,37 | 33,6 ± 0,46 | 34,5 ± 0,23 | 32,5 ± 0,19 | 32,4 ± 0,21 | 31,4 ± 0,33 | 29,1 ± 0,52 | 26,8 ± 0,65 | 9,44 ± 0,56 |
| Ca | 0,61 ± 0,019 | 0,68 ± 0,03 | 1,14 ± 0,04 | 0,97 ± 0,036 | 1,4 ± 0,11 | 7,3 ± 0,29 | 6,98 ± 0,59 | 3,7 ± 0,51 | 6,29 ± 0,63 |
| Mn | 0,02 ± 0,00009 | ND | ND | ND | ND | ND | ND | ND | ND |
| Cu | 0,02 ± 0,00008 | 0,02 ± 0,0005 | 0,03 ± 0,002 | 0,03 ± 0,003 | 0,05 ± 0,004 | 0,11 ± 0,01 | 0,22 ± 0,01 | 0,09 ± 0,02 | 0,12 ± 0,02 |
| Zn | 0,14 ± 0,001 | 0,37 ± 0,005 | 0,97 ± 0,014 | 1,44 ± 0,016 | 3,19 ± 0,02 | 3,28 ± 0,073 | 3,24 ± 0,035 | 4,5 ± 0,14 | 5,4 ± 0,24 |
| Rb | 0,02 ± 0,0006 | 0,02 ± 0,0009 | 0,03 ± 0,0007 | 0,03 ± 0,0003 | 0,05 ± 0,003 | 0,08 ± 0,0005 | 0,11 ± 0,007 | 0,12 ± 0,013 | 0,19 ± 0,013 |
| Sr | 0,001 ± 0,00008 | 0,002 ± 0,0001 | 0,006 ± 0,0003 | 0,009 ± 0,0006 | 0,01 ± 0,001 | 0,07 ± 0,007 | 0,1 ± 0,009 | 0,08 ± 0,01 | 0,16 ± 0,036 |
| Ag | 0,022 ± 0,0007 | ND | ND | ND | ND | ND | ND | ND | ND |
| Cs | 0,002 ± 0,00007 | 0,002 ± 0,0001 | 0,005 ± 0,0003 | 0,008 ± 0,0002 | 0,01 ± 0,0006 | 0,02 ± 0,001 | 0,04 ± 0,005 | 0,05 ± 0,006 | 0,09 ± 0,01 |
| Ti | 0,005 ± 0,001 | 0,001 ± 0,00007 | 0,002 ± 0,0001 | 0,003 ± 0,0001 | 0,004 ± 0,0003 | 0,006±3x10−4 | 0,009 ± 0,001 | 0,01 ± 0,001 | 0,01 ± 0,001 |
| U | 0,002 ± 0,0001 | 0,0002 ± 2x10−5 | ND | ND | ND | ND | ND | ND | ND |
Table 5.
Mineral and trace element concentrations in rat testis samples.
| Dilution Rates | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Element (mg/L) | 1:10 | 2:10 | 1:50 | 1:100 | 1:200 | 1:400 | 1:800 | 1:1000 | 1:2000 |
| EMSURE® Grade | |||||||||
| Na | 26,84 ± 0,3 | 26,4 ± 0,3 | 28,25 ± 0,2 | 29,6 ± 0,2 | 30 ± 0,1 | 36,4 ± 0,5 | 45,6 ± 0,53 | 61,7 ± 1 | 99 ± 1,45 |
| Mg | 2,2 ± 0,03 | 2,2 ± 0,01 | 2,4 ± 0,03 | 2,5 ± 0,04 | 2,9 ± 0,02 | 3,6 ± 0,08 | 4,69 ± 0,1 | 6,18 ± 0,24 | 8,6 ± 0,22 |
| K | 52,4 ± 0,6 | 51 ± 0,6 | 52,8 ± 0,7 | 53,8 ± 0,3 | 52,2 ± 0,3 | 56,8 ± 0,8 | 63,1 ± 0,6 | 68,7 ± 0,5 | 89,3 ± 0,5 |
| Ca | 0,2 ± 0,007 | 0,5 ± 0,018 | 1,3 ± 0,03 | 1,5 ± 0,05 | 2,5 ± 0,13 | 3 ± 0,13 | 3,5 ± 0,2 | 9,9 ± 0,5 | 9,1 ± 0,5 |
| Mn | 0,003 ± 0,0002 | ND | ND | ND | ND | ND | ND | ND | ND |
| Fe | 0,6 ± 0,012 | 0,4 ± 0,009 | 0,2 ± 0,013 | ND | ND | ND | ND | ND | ND |
| Cu | 0,7 ± 0,008 | 1,5 ± 0,01 | 4 ± 0,05 | 8 ± 0,04 | 16 ± 0,1 | 32,6 ± 0,3 | 65,4 ± 0,5 | 82,3 ± 0,57 | 162,9 ± 1,16 |
| Zn | 0,7 ± 0,01 | 1,1 ± 0,01 | 2,3 ± 0,01 | 4,2 ± 0,06 | 8,2 ± 0,07 | 16,1 ± 0,2 | 32 ± 0,1 | 41,9 ± 0,6 | 79,6 ± 0,7 |
| As | 0,004 ± 0,0004 | 0,003 ± 0,0005 | ND | ND | ND | ND | ND | ND | ND |
| Se | 0,017 ± 0,0009 | 0,019 ± 0,0018 | ND | ND | ND | ND | ND | ND | ND |
| Rb | 0,08 ± 0,001 | 0,08 ± 0,001 | 0,08 ± 0,003 | 0,08 ± 0,001 | 0,09 ± 0,003 | 0,11 ± 0,005 | 0,13 ± 0,003 | 0,15 ± 0,01 | 0,21 ± 0,017 |
| Sr | 0,004 ± 0,0001 | 0,008 ± 0,0002 | 0,022 ± 0,0007 | 0,03 ± 0,0008 | 0,074 ± 0,004 | 0,145 ± 0,005 | 0,276 ± 0,008 | 0,36 ± 0,02 | 0,67 ± 0,017 |
| Cs | 0,001 ± 0,00005 | 0,002 ± 0,0002 | 0,004 ± 0,0002 | 0,008 ± 0,0004 | 0,016 ± 0,0002 | 0,029 ± 0,001 | 0,058 ± 0,005 | 0,07 ± 0,003 | 0,14 ± 0,01 |
| Pb | 0,04 ± 0,0003 | 0,08 ± 0,0007 | 0,22 ± 0,002 | 0,45 ± 0,005 | 0,9 ± 0,011 | 1,79 ± 0,01 | 3,5 ± 0,004 | 4,4 ± 0,03 | 8,7 ± 0,004 |
| SUPRAPUR® Grade | |||||||||
| Na | 10,1 ± 0,12 | 10,2 ± 0,03 | 8,4 ± 0,06 | 6,3 ± 0,05 | 3 ± 0,12 | ND | ND | ND | ND |
| Mg | 0,8 ± 0,01 | 0,8 ± 0,008 | 0,8 ± 0,015 | 0,7 ± 0,03 | 0,7 ± 0,03 | 0,4 ± 0,05 | ND | ND | ND |
| K | 20 ± 0,3 | 20 ± 0,2 | 19,8 ± 0,14 | 19,6 ± 0,12 | 19 ± 0,2 | 17 ± 0,14 | 14 ± 0,39 | 12 ± 0,9 | 3,8 ± 1,2 |
| Ca | 0,12 ± 0,008 | 0,28 ± 0,008 | 0,35 ± 0,04 | 0,39 ± 0,03 | 0,15 ± 0,07 | ND | ND | ND | ND |
| Cu | 0,01 ± 0,0002 | 0,013 ± 0,0003 | 0,013 ± 0,001 | 0,01 ± 0,001 | 0,009 ± 0,003 | ND | ND | ND | ND |
| Zn | 0,15 ± 0,0009 | 0,26 ± 0,005 | 0,29 ± 0,007 | 0,33 ± 0,007 | 0,27 ± 0,012 | 0,12 ± 0,02 | 0,31 ± 0,05 | 2,4 ± 0,09 | 14,5 ± 0,2 |
| As | 0,001 ± 0,0001 | 0,001 ± 0,0002 | ND | ND | ND | ND | ND | ND | ND |
| Rb | 0,031 ± 0,001 | 0,32 ± 0,03 | 0,034 ± 0,001 | 0,037 ± 0,0006 | 0,044 ± 0,002 | 0,05 ± 0,006 | 0,07 ± 0,007 | 0,07 ± 0,007 | 0,12 ± 0,009 |
Table 6.
Mineral and trace element concentrations in rat spleen samples.
| Dilution Rates | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Element (mg/L) | 1:10 | 1:20 | 1:50 | 1:100 | 1:200 | 1:400 | 1:800 | 1:1000 | 1:2000 |
| EMSURE® Grade | |||||||||
| Na | 7,7 ± 0,09 | 8,3 ± 0,12 | 10,7 ± 0,14 | 18,9 ± 0,17 | 15,2 ± 0,13 | 36,4 ± 0,31 | 36,1 ± 0,22 | 36,1 ± 0,73 | 61,7 ± 0,76 |
| Mg | 1,3 ± 0,5 | 1,4 ± 0,01 | 1,6 ± 0,028 | 2,3 ± 0,048 | 2,4 ± 0,02 | 3,15 ± 0,08 | 4,3 ± 0,12 | 4,9 ± 0,17 | 8,19 ± 0,24 |
| K | 31,5 ± 0,36 | 32,4 ± 0,35 | 34,5 ± 0,44 | 33,9 ± 0,28 | 35,8 ± 0,28 | 40,4 ± 0,31 | 47,7 ± 0,24 | 51,8 ± 0,35 | 71,3 ± 0,24 |
| Ca | 0,13 ± 0,005 | 0,25 ± 0,015 | 0,85 ± 0,029 | 2,6 ± 0,06 | 5 ± 0,12 | 5,48 ± 0,13 | 5,6 ± 0,36 | 9,7 ± 0,26 | 11,8 ± 0,65 |
| Fe | 9,1 ± 0,09 | 9,2 ± 0,12 | 9 ± 0,08 | 8,8 ± 0,06 | 7,8 ± 0,08 | 5,1 ± 0,12 | 1,6 ± 0,15 | ND | ND |
| Cu | 0,72 ± 0,01 | 1,5 ± 0,02 | 3,9 ± 0,03 | 7,8 ± 0,08 | 15,9 ± 0,12 | 32,3 ± 0,28 | 64,5 ± 0,73 | 82 ± 0,86 | 163,9 ± 1,3 |
| Zn | 0,54 ± 0,007 | 0,95 ± 0,013 | 2,4 ± 0,025 | 5,4 ± 0,046 | 8,9 ± 0,096 | 17 ± 0,17 | 32,5 ± 0,29 | 41,7 ± 0,49 | 80,6 ± 0,87 |
| As | 0,004 ± 0,0002 | ND | ND | ND | ND | ND | ND | ND | ND |
| Rb | 0,042 ± 0,0007 | 0,043 ± 0,0005 | 0,046 ± 0,0008 | 0,04 ± 0,001 | 0,05 ± 0,002 | 0,06 ± 0,004 | 0,06 ± 0,01 | 0,07 ± 0,01 | 0,09 ± 0,02 |
| Sr | 0,003 ± 0,0001 | 0,007 ± 0,0002 | 0,02 ± 0,0007 | 0,04 ± 0,001 | 0,08 ± 0,001 | 0,15 ± 0,008 | 0,29 ± 0,01 | 0,37 ± 0,01 | 0,7 ± 0,02 |
| Cs | 0,0007 ± 0,0002 | 0,001 ± 0,00006 | 0,002 ± 0,0002 | 0,004 ± 0,0004 | 0,008 ± 0,0009 | 0,01 ± 0,0008 | 0,03 ± 0,005 | 0,04 ± 0,003 | 0,07 ± 0,006 |
| Ba | 0,0009 ± 0,00006 | ND | ND | ND | ND | ND | ND | ND | ND |
| Pb | 0,03 ± 0,0002 | 0,08 ± 0,0005 | 0,2 ± 0,001 | 0,41 ± 0,005 | 0,8 ± 0,009 | 1,67 ± 0,015 | 3,3 ± 0,042 | 4,2 ± 0,05 | 8,4 ± 0,08 |
| SUPRAPUR® Grade | |||||||||
| Na | 6,8 ± 0,12 | 6,7 ± 0,1 | 4,8 ± 0,13 | 2,4 ± 0,06 | ND | ND | ND | ND | ND |
| Mg | 1,3 ± 0,01 | 1,3 ± 0,01 | 1,3 ± 0,02 | 1,2 ± 0,03 | 1,2 ± 0,04 | 1 ± 0,06 | 0,8 ± 0,1 | 0,8 ± 0,1 | ND |
| K | 30,7 ± 0,38 | 31,5 ± 0,36 | 32,1 ± 0,4 | 29,6 ± 0,39 | 29,3 ± 0,21 | 26,3 ± 0,3 | 23,6 ± 0,43 | 20,6 ± 0,97 | 10,2 ± 1,5 |
| Ca | 0,15 ± 0,01 | 0,34 ± 0,009 | 0,26 ± 0,007 | 0,22 ± 0,03 | ND | ND | ND | ND | ND |
| Fe | 11,5 ± 0,15 | 11,4 ± 0,08 | 10,5 ± 0,23 | 9 ± 0,04 | 6,9 ± 0,006 | ND | ND | ND | ND |
| Cu | 0,02 ± 0,0003 | 0,02 ± 0,0005 | 0,02 ± 0,0006 | 0,02 ± 0,002 | 0,03 ± 0,003 | 0,02 ± 0,008 | 0,18 ± 0,01 | 0,02 ± 0,01 | 0,014 ± 0,02 |
| Zn | 0,13 ± 0,001 | 0,19 ± 0,003 | 0,45 ± 0,005 | 0,45 ± 0,01 | 0,8 ± 0,03 | 0,6 ± 0,02 | 0,6 ± 0,06 | 0,8 ± 0,06 | ND |
| As | 0,005 ± 0,0003 | 0,005 ± 0,0003 | 0,004 ± 0,001 | 0,004 ± 0,001 | ND | ND | ND | ND | ND |
| Rb | 0,04 ± 0,0005 | 0,04 ± 0,0008 | 0,04 ± 0,0008 | 0,04 ± 0,001 | 0,04 ± 0,001 | 0,04 ± 0,003 | 0,03 ± 0,001 | 0,04 ± 0,01 | 0,04 ± 0,01 |
| Al | 0,1 ± 0,006 | 0,04 ± 0,007 | ND | ND | ND | ND | ND | ND | ND |
Table 7.
Mineral and trace element concentrations in rat lung samples.
| Dilution Rates | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Element (mg/L) | 1:10 | 1:20 | 1:50 | 1:100 | 1:200 | 1:400 | 1:800 | 1:1000 | 1:2000 |
| EMSURE® Grade | |||||||||
| Na | 18,1 ± 0,26 | 17,7 ± 0,16 | 19,1 ± 0,19 | 21,1 ± 0,23 | 22,7 ± 0,19 | 30,1 ± 0,39 | 38,6 ± 0,25 | 44,5 ± 0,34 | 70,9 ± 0,7 |
| Mg | 1,1 ± 0,02 | 1,1 ± 0,01 | 1,3 ± 0,01 | 1,4 ± 0,02 | 1,9 ± 0,07 | 2,7 ± 0,07 | 3,9 ± 0,09 | 4,6 ± 0,17 | 7,5 ± 0,14 |
| K | 25,1 ± 0,34 | 24,5 ± 0,25 | 25,8 ± 0,16 | 25,2 ± 0,05 | 27,9 ± 0,13 | 31,8 ± 0,15 | 39,3 ± 0,16 | 44,4 ± 0,56 | 62,7 ± 0,89 |
| Ca | 0,22 ± 0,004 | 0,33 ± 0,006 | 1,14 ± 0,02 | 1,5 ± 0,04 | 3,2 ± 0,11 | 4,8 ± 0,09 | 5,9 ± 0,5 | 6,89 ± 0,4 | 9,3 ± 1,4 |
| Fe | 1,1 ± 0,01 | 1 ± 0,01 | 0,6 ± 0,02 | 0,18 ± 0,01 | ND | ND | ND | ND | ND |
| Cu | 0,7 ± 0,009 | 1,5 ± 0,01 | 3,9 ± 0,03 | 8 ± 0,05 | 16,1 ± 0,11 | 32,8 ± 0,22 | 65,6 ± 0,37 | 81,3 ± 0,84 | 162,1 ± 1,8 |
| Zn | 0,52 ± 0,004 | 0,09 ± 0,01 | 2,1 ± 0,01 | 4 ± 0,04 | 8,1 ± 0,05 | 16,2 ± 0,12 | 32,1 ± 0,4 | 40,2 ± 0,34 | 79,1 ± 0,98 |
| As | 0,003 ± 0,0003 | ND | ND | ND | ND | ND | ND | ND | ND |
| Rb | 0,003 ± 0,0008 | 0,03 ± 0,0004 | 0,03 ± 0,001 | 0,04 ± 0,001 | 0,04 ± 0,001 | 0,05 ± 0,005 | 0,08 ± 0,005 | 0,09 ± 0,01 | 0,13 ± 0,01 |
| Sr | 0,03 ± 0,0008 | 0,03 ± 0,0004 | 0,03 ± 0,001 | 0,04 ± 0,001 | 0,04 ± 0,001 | 0,05 ± 0,005 | 0,08 ± 0,005 | 0,09 ± 0,01 | 0,13 ± 0,01 |
| Cs | 0,0009± 4x10-5 | 0,001 ± 0,0001 | 0,003 ± 0,0001 | 0,007 ± 0,0002 | 0,01 ± 0,001 | 0,02 ± 0,0007 | 0,05 ± 0,005 | 0,06 ± 0,01 | 0,12 ± 0,007 |
| Ba | 0,001 ± 0,0001 | ND | ND | ND | ND | ND | ND | ND | ND |
| Pb | 0,04 ± 0,0005 | 0,08 ± 0,0008 | 0,21 ± 0,0007 | 0,43 ± 0,004 | 0,88 ± 0,007 | 1,7 ± 0,012 | 3,5 ± 0,04 | 4,3 ± 0,06 | 8,5 ± 0,1 |
| SUPRAPUR® Grade | |||||||||
| Na | 9,8 ± 0,09 | 9,5 ± 0,07 | 7,7 ± 0,11 | 5,4 ± 0,08 | 1 ± 0,05 | ND | ND | ND | ND |
| Mg | 0,58 ± 0,004 | 0,57 ± 0,008 | 0,5 ± 0,007 | 0,5 ± 0,01 | 0,39 ± 0,04 | 0,18 ± 0,025 | ND | ND | ND |
| K | 14,9 ± 0,22 | 15,2 ± 0,11 | 14,3 ± 0,07 | 13,9 ± 0,2 | 13 ± 0,15 | 11,4 ± 0,23 | 7,3 ± 0,5 | 4,7 ± 0,5 | ND |
| Ca | 0,14 ± 0,008 | 0,15 ± 0,019 | 0,56 ± 0,03 | 0,4 ± 0,08 | 0,19 ± 0,07 | 0,3 ± 0,1 | 0,3 ± 0,13 | ND | ND |
| Fe | 0,59 ± 0,007 | 0,22 ± 0,01 | ND | ND | ND | ND | ND | ND | ND |
| Cu | 0,014 ± 0,0003 | 0,01 ± 0,0005 | 0,018 ± 0,0007 | 0,039 ± 0,002 | 0,03 ± 0,002 | 0,03 ± 0,008 | ND | ND | ND |
| Zn | 0,11 ± 0,002 | 0,23 ± 0,004 | 0,66 ± 0,009 | 1,3 ± 0,02 | 2,99 ± 0,04 | 2,6 ± 0,05 | 2,5 ± 0,15 | 12,6 ± 0,2 | ND |
| As | 0,004 ± 0,0003 | 0,004 ± 0,0005 | 0,01 ± 0,001 | 0,007 ± 0,002 | 0,005 ± 0,001 | ND | ND | ND | ND |
| Rb | 0,02 ± 0,0004 | 0,02 ± 0,0001 | 0,02 ± 0,001 | 0,02 ± 0,0007 | 0,02 ± 0,002 | 0,03 ± 0,003 | 0,04 ± 0,002 | 0,04 ± 0,005 | 0,06 ± 0,01 |
| Sr | 0,001 ± 0,00009 | 0,001 ± 0,0001 | ND | ND | ND | ND | ND | ND | ND |
Table 8.
Mineral and trace element concentrations in rat heart samples.
| Dilution Rates | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Element (mg/L) | 1:10 | 1:20 | 1:50 | 1:100 | 1:200 | 1:400 | 1:800 | 1:1000 | 1:2000 |
| EMSURE® Grade | |||||||||
| Na | 11,5 ± 0,17 | 12,5 ± 0,15 | 13,7 ± 0,13 | 15,5 ± 0,82 | 18,2 ± 0,17 | 22,4 ± 0,18 | 33,6 ± 0,77 | 43,5 ± 0,61 | 65,5 ± 0,84 |
| Mg | 2,29 ± 0,03 | 2,4 ± 0,02 | 2,5 ± 0,03 | 2,7 ± 0,04 | 3 ± 0,06 | 3,7 ± 0,11 | 4,9 ± 0,15 | 6 ± 0,16 | 9 ± 0,17 |
| K | 32,2 ± 0,56 | 33,8 ± 0,39 | 35,2 ± 0,22 | 34,2 ± 0,31 | 36,5 ± 0,37 | 40,6 ± 0,27 | 49 ± 0,42 | 54,4 ± 0,42 | 74,1 ± 0,48 |
| Ca | 0,13 ± 0,007 | 0,17 ± 0,009 | 0,31 ± 0,026 | 0,66 ± 0,029 | 1,32 ± 0,11 | 2,9 ± 0,17 | 3,1 ± 0,18 | 6,4 ± 0,08 | 6,4 ± 0,4 |
| Mn | 0,002 ± 0,0002 | ND | ND | ND | ND | ND | ND | ND | ND |
| Fe | 0,8 ± 0,01 | 0,8 ± 0,01 | 0,45 ± 0,01 | ND | ND | ND | ND | ND | ND |
| Cu | 0,77 ± 0,012 | 1,5 ± 0,01 | 4 ± 0,04 | 8 ± 0,1 | 16,3 ± 0,12 | 32,6 ± 0,3 | 65,6 ± 0,7 | 82,2 ± 0,77 | 162,5 ± 1 |
| Zn | 0,5 ± 0,006 | 0,89 ± 0,008 | 2 ± 0,022 | 4 ± 0,05 | 8,2 ± 0,06 | 16 ± 0,08 | 32 ± 0,44 | 41 ± 0,24 | 79,7 ± 0,44 |
| Rb | 0,04 ± 0,0003 | 0,04 ± 0,0007 | 0,04 ± 0,001 | 0,04 ± 0,002 | 0,04 ± 0,002 | 0,05 ± 0,005 | 0,06 ± 0,003 | 0,06 ± 0,005 | 0,09 ± 0,02 |
| Sr | 0,003 ± 0,0001 | 0,007 ± 0,0002 | 0,01 ± 0,0002 | 0,03 ± 0,001 | 0,07 ± 0,001 | 0,14 ± 0,005 | 0,28 ± 0,01 | 0,36 ± 0,008 | 0,71 ± 0,03 |
| Cd | 0,00005± 3x10-6 | ND | ND | ND | ND | ND | ND | ND | ND |
| Cs | 0,0005 ± 5x10-5 | 0,0008 ± 8x10-5 | 0,001 ± 0,0001 | 0,003 ± 0,0003 | 0,009 ± 0,0002 | 0,01 ± 0,0009 | 0,04 ± 0,006 | 0,05 ± 0,02 | 0,1 ± 0,006 |
| Ba | 0,001 ± 0,00007 | ND | ND | ND | ND | ND | ND | ND | ND |
| Pb | 0,03 ± 0,0003 | 0,08 ± 0,0008 | 0,2 ± 0,001 | 0,41 ± 0,006 | 0,84 ± 0,008 | 1,6 ± 0,01 | 3,3 ± 0,03 | 4,1 ± 0,002 | 8,1 ± 0,14 |
| SUPRAPUR® Grade | |||||||||
| Na | 7,8 ± 0,06 | 7,5 ± 0,06 | 5,3 ± 0,07 | 2,8 ± 0,08 | ND | ND | ND | ND | ND |
| Mg | 1,1 ± 0,01 | 1,1 ± 0,02 | 1 ± 0,01 | 1 ± 0,02 | 0,9 ± 0,03 | 0,77 ± 0,09 | 0,43 ± 0,17 | 0,17 ± 0,12 | ND |
| Ca | 0,1 ± 0,007 | 0,1 ± 0,01 | 0,08 ± 0,01 | ND | ND | ND | ND | ND | ND |
| K | 15,7 ± 0,18 | 16,1 ± 0,34 | 15 ± 0,17 | 14,5 ± 0,18 | 13,5 ± 0,23 | 11,4 ± 0,31 | 8 ± 0,31 | 4,9 ± 1 | ND |
| Fe | 0,06 ± 0,002 | ND | ND | ND | ND | ND | ND | ND | |
| Cu | 0,03 ± 0,0005 | 0,03 ± 0,0005 | 0,03 ± 0,001 | 0,02 ± 0,001 | 0,02 ± 0,003 | ND | ND | ND | ND |
| Zn | 0,12 ± 0,001 | 0,23 ± 0,002 | 0,25 ± 0,004 | 0,22 ± 0,009 | 0,38 ± 0,009 | 0,001 ± 0,042 | 1 ± 0,09 | 13,6 ± 0,14 | 11 ± 0,35 |
| Rb | 0,02 ± 0,0002 | 0,02 ± 0,0005 | 0,019 ± 0,001 | 0,019 ± 0,0007 | 0,019 ± 0,002 | ND | ND | ND | ND |
| Sr | 0,001 ± 0,00008 | 0,002 ± 0,0001 | 0,004 ± 0,005 | 0,007 ± 0,001 | 0,01 ± 0,002 | 0,02 ± 0,003 | 0,06 ± 0,006 | 0,06 ± 0,007 | 0,12 ± 0,018 |
2. Experimental design, materials and methods
2.1. Materials
65% nitric acid EMSURE® and SUPRAPUR® grades were supplied from MERCK (Germany). SUPRAPUR® grade is high-purity acid which is suitable for trace element analysis to avoid possible contaminations. The multi-element solution 2A of SPEX CertiPrep was used for the external calibration standard. And the internal standard, which was provided by Agilent, was used for accurate correction due to the non-spectral interferences. It contains 100 ppm 6Li, Sc, Y, In, Tb, and Bi in 5% HNO3. Trace element tubes were obtained from BD (USA).
2.2. Animal laboratory
24–28 weeks old Wistar albino rats (Rattus norvecigus), weighing 350–450 g were purchased from the experimental animals production center Koc University in Istanbul, Turkey. All rats were housed as described by Aydemir et al. [8,9]
2.3. Preparation of serum samples
Blood samples were drained into additive-free vacutainers for trace element analysis (BD vacutainer) allowed to clot and centrifuged at 400 g for 20 min at 4 °C. Serums were separated from blood samples and stored at −80 °C until analysis.
2.4. Microwave digestion
Tissue and serum samples were dissolved with the acidic treatment in the microwave digestion system (Milestone START D). 30–80 mg of tissue samples dissolved in 10 ml of 65% HNO3 of EMSURE® and SUPRAPUR® grades. 100–200 μl of the serum samples was used for digestion. The microwave digestion process occurs in three steps. Firstly, the temperature increases to 150 °C in 15 min, and then secondly, the target temperature is constant for 30 min. The method of microwave digestion was created after several trials. When a higher temperature was applied (more than 200 °C) for the acidic digestion of tissue and serum samples, the machine stopped to work. A medium range of temperature and power (500W) is sufficient to digest biological samples. After taking the samples from the machine, they were stored at −20 °C until ICP-MS measurement.
2.5. Preparation of standards
The multi-element solution 2A of SPEX CertiPrep was used as the external calibration standard. The matrix of the solution is 5% HNO3. The standard is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentrations. It contains 10 ppm of Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, U, V, and Zn. 2 ml of 2% HNO3 was used as the blank solution for drawing the abacus origin of the calibration curve.
2.6. Measurement of trace element and mineral levels via ICP-MS
After microwave digestion, tissue and serum samples were diluted in the ultrapure water (ddH2O) by serial dilution starting from 1/10 and diluted to 1/20, 1/50, 1/100, 1/200, 1/400, 1/800, 1/1000 and 1/2000. Trace and mineral elements in rat tissue and serum samples were measured by Agilent 7700x ICP-MS (Agilent Technologies Inc., Tokyo, Japan). Helium gas is used in the collision/reaction cell in order to remove potential polyatomic interferences. MassHunter Work Station software is used for creating the batch as well as the data analysis. FullQuant analysis method was used for the quantification of the data. The analysis mode was chosen as “spectrum” and for each sample, the peak pattern was drawn from 3 points and the measurements were replicated five times.
2.7. Measurement of trace element and mineral levels via inductively coupled plasma mass spectrometry (ICP-MS) with different isotopes of copper, zinc, and lead
The first measurements of acidic digestion were carried out with EMSURE® grade nitric acid. The data showed inconsistency for the trace elements of copper, zinc and lead in which the concentration did not change even the dilution rate decreased. Firstly, the batch was prepared for reading out of 63Cu, 66Zn, and 208Pb. Previous studies [10,11] showed that because of the biological matrix effect, spectroscopic interferences in ICP-MS can arise from the interaction of the sample matrix components and the plasma gas. Moreover, most biological fluids, which contain large amounts of organic compounds and inorganic salts (Ca, Na, K), can lead to spectral and non-spectral interferences. Collision/reaction cell technology can reduce the polyatomic interferences, especially in monitoring of trace elements in biological samples [12]. Hsiung and his colleagues determined that spectral interferences can be eliminated by a simple approach of selecting isotope with minimal interferences, in this case, 65Cu instead of 63Cu and 68Zn instead of 66Zn [10]. Therefore, the batch was re-run by adding 63Cu, 65Cu, 64Zn, 66Zn, 68Zn, and in addition 206Pb, 207Pb, 208Pb isotopes because lead concentration also showed an inconsistency during the acidic digestion with EMSURE® nitric acid. Any recovery in observed (supplementary data2).
2.8. Alkali dilution of the serum and the tissue samples
For the alkali dilution method, serum and tissue samples were diluted 1:25 with an alkali solution consisting of 2% (w/v) 1-butanol, 0.05% (w/v) EDTA, 0.05% (w/v) triton X-100, 1% (w/v) NH4OH as described by Lu et al. [13]. The mixture was sonicated and homogenized with IKA ULTRA-TURRAX for 5 min and centrifuged at 1000 rpm for 2 min before ICP-MS analysis. Samples were diluted with the same ratio as the acidic digested samples from 1/10 to 1/2000.
2.9. Statistical analysis
Statistical analyses were performed using R statistical software version 3.5.1 (https://www.r-project.org). For each tissue versus each trace element and mineral correlation, we calculated the sample mean and the sample deviation over three replicates of the nitric acid (65% EMSURE® and SUPRAPUR® grades) digested samples at each dilution rate. We reported these data as mean ± standard error (SE) in the corresponding figures and tables.
Acknowledgements
The authors gratefully acknowledge use of the services and facilities of the Koç University Research Center for Translational Medicine (KUTTAM), funded by the Presidency of Turkey, Presidency of Strategy and Budget. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Presidency of Strategy and Budget.
Footnotes
Supplementary data related to this article can be found at https://doi.org/10.1016/j.dib.2020.105218.
Conflict of Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Appendix A. Supplementary data
The following are the supplementary data related to this article:
References
- 1.Luk E., Jensen L.T., Culotta V.C. The many highways for intracellular trafficking of metals. J. Biol. Inorg. Chem. 2003;8:803–809. doi: 10.1007/s00775-003-0482-3. [DOI] [PubMed] [Google Scholar]
- 2.Fraga C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Aspect. Med. 2005;26:235–244. doi: 10.1016/j.mam.2005.07.013. [DOI] [PubMed] [Google Scholar]
- 3.Aydemir D., Sarayloo E., Ulusu N.N. Rosiglitazone-induced changes in the oxidative stress metabolism and fatty acid composition in relation with trace element status in the primary adipocytes. J. Med. Biochem. 2019 doi: 10.2478/jomb-2019-0041. (published online ahead of print) [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Zimmermann M.B., Kohrle J. The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thyroid. 2002;12:867–878. doi: 10.1089/105072502761016494. [DOI] [PubMed] [Google Scholar]
- 5.Hamilton I.M., Gilmore W.S., Strain J.J. Marginal copper deficiency and atherosclerosis. Biol. Trace Elem. Res. 2000;78:179–189. doi: 10.1385/BTER:78:1-3:179. [DOI] [PubMed] [Google Scholar]
- 6.Aschner M. Manganese: brain transport and emerging research needs. Environ. Health Perspect. 2000;108:429–432. doi: 10.1289/ehp.00108s3429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.E.G. McCurdy, G. Woods, D. Potter, Unmatched Removal of Spectral Interferences in ICP-MS Using the Agilent Octopole Reaction System With Helium Collision Mode, Application Note, March 23 (2006) (5989-4905EN), retrieved from: https://www.agilent.com/cs/library/applications/5989-4905EN.pdf.
- 8.Aydemir D., Karabulut G., Gok M., Barlas N., Ulusu N.N. Data the DEHP induced changes on the trace element and mineral levels in the brain and testis tissues of rats. Data in Brief. 2019;26:104526. doi: 10.1016/j.dib.2019.104526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Aydemir D., Karabulut G., Simsek G., Gok M., Barlas N., Ulusu N.N. Impact of the Di(2-Ethylhexyl) Phthalate administration on trace element and mineral levels in relation of kidney and liver damage in rats. Biol. Trace Elem. Res. 2018;186:474–488. doi: 10.1007/s12011-018-1331-0. [DOI] [PubMed] [Google Scholar]
- 10.Hsiung C.S., Andrade J.D., Costa R., Ash K.O. Minimizing interferences in the quantitative multielement analysis of trace elements in biological fluids by inductively coupled plasma mass spectrometry. Clin. Chem. 1997;43:2303–2311. [PubMed] [Google Scholar]
- 11.Technical note:40719, “Biomedical sample analysis using XSERIES 2 ICP-MS”, ThermoScientific. https://assets.thermofisher.com/TFS-Assets/CMD/Warranties/D00669∼.pdf retrieved from.
- 12.Gong Z.S., Jiang X.H., Sun C.Q., Tian Y.P., Guo G.H., Zhang Y.Z., Zhao X.H., Wang Y. Determination of 21 elements in human serum using ICP-MS with collision/reaction cell. Int. J. Mass Spectrom. 2017;423:20–26. [Google Scholar]
- 13.Lu Y., Kippler M., Harari F., Grandér M., Palm B., Nordqvist H., Vahter M. Alkali dilution of blood samples for high throughput ICP-MS analysis–comparison with acid digestion. Clin. Biochem. 2015;48:140–147. doi: 10.1016/j.clinbiochem.2014.12.003. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.








