Skip to main content
Data in Brief logoLink to Data in Brief
. 2020 Feb 4;29:105243. doi: 10.1016/j.dib.2020.105243

Data on molecular docking of naturally occurring flavonoids with biologically important targets

Anguraj Moulishankar 1,, Karthikeyan Lakshmanan 1
PMCID: PMC7016233  PMID: 32072001

Abstract

Flavonoids in nature are known to possess various activities such as anti-inflammatory, antimicrobial, anticancer, antioxidant, neuroprotective, anti-HIV activities etc., The molecular docking was performed by 26 naturally occurring flavonoids with selected targets COX-2, hydroxyacyl-ACP dehydratase, tyrosinase from Agaricus bisporus, isomaltase from Saccharomyces cerevisiae, Human IkB kinase beta, Human ABC transporter, topoisomerase II, topoisomerase IV, N-myristoyltransferase from Candida albicans, Peptide deformylase from Pseudomonas aeruginosa, polypeptide deformylase from Streptococcus pneumoniae. The analysis was based on docking score, glide energy, interactions type (bond type and distance) and interaction with amino acids. The top 5 flavonoids with best docking score was reported. The in-silico results provided for 26 naturally occurring flavonoid shows that they reduce the risk of inflammation, cancer and infectious disease if people have taken in diet continuously. The provided docking data of flavonoids may be useful to synthesis novel drug candidate for the mentioned targets.

Keywords: Molecular docking, Flavonoids, Antimicrobial, Anti-cancer, Anti-inflammatory, Glide, Schrodinger maestro

1. Introduction

Specifications Table

Subject Pharmaceutical Science
Specific subject area Interdisciplinary field includes organic chemistry, biochemistry, and biology. Drug design and discovery from plant sources.
Type of data Tables
Figures
How data were acquired Schrodinger Maestro release 2018-4
Data format Raw and Analysed
Parameters for data collection The docking score, glide energy and interactions of protein with the ligand.
Description of data collection The Proteins were collected from rcsb wwPDB. The flavonoids structures were obtained from Pubchem online database. The docking was done using glide software.
Data source location https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
Data accessibility PDB files of the chosen enzyme targets are publically available at https://www.rcsb.org/
Tables and Figures of the docking are accessible in the article.
Value of the Data
  • The screening procedure enable the researchers to rapidly identify active natural compounds which can modulate a particular biochemical pathway.

  • The screening results help to study the interaction/role of a bioactive flavonoid in a particular biochemical process at cellular level and provide preliminary ideas for drug design development

  • By using this in-silico docking data, novel synthetic analogues with improved bioactivity and minimized side effects can be developed against these targets and research time can be minimized considerably.

  • We select these 26 flavonoids because these are abundant in nature and well explored. Among these 26 flavonoids, the compounds which shows best affinity for various targets are shortlisted.

  • The data also useful for research scholars who does not have the sufficient software and hardware requirements which not affordable by them.

  • Research scholars, researchers in pharmaceutical chemistry can be benefit from the data.

Flavonoids are a group of bioactive compounds which are extensively found in foodstuffs of plant origin. These are plant pigments synthesized from phenylalanine and generally display marvelous colors to the flowering parts of plants. Flavonoids comprise a large group of poly phenolic compounds, characterized by a benzo-4-pyrone structure, which is ubiquitous in vegetables and fruits. More than 9000 flavonoids have been reported in the literature and are present in different types and parts of plants such as vegetables, fruits, grains, legumes, beans, herbs, roots, leaves, seeds etc. The core structure of flavonoids has a three-ring diphenyl-propane (C6–C3–C6) unit, a fifteen-carbon skeleton. The flavonoid contains two benzene rings (A ring and B ring) which are connected by a C3 moiety. The C3 moiety forms a six-membered heterocyclic ring (ring C) attached to ring A. Regular consumption of flavonoids reduces the risk of a number of chronic diseases, including cancer, cardiovascular disease, diabetes, arthrosclerosis, neurodegenerative disorders, anti-ageing, anti-inflammatory, antiallergic, antiviral, and free radical scavenging. Among dietary sources of flavonoids, there are fruits, vegetables, nuts, seeds and spices. So, the provided docking data of flavonoid may be useful to synthesis novel drug candidate for the mentioned targets.

Image 1

2. Data

In this article Table 1 provides the details about the targets and their description. Table 2 provide the structure of the naturally occurring flavonoids and plant sources. Table 3 gives docking score, glide energy, interaction type and bond length of the docking. The 3D and 2D interactions of the high scored flavonoids with the target enzymes are shown in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7.

Table 1.

List of Targets. Shows the PDB ID, resolution and description of the proteins selected for docking with the naturally occurring flavonoids.

S.No PDB ID Resolution (Å) Description

1 3LN0 2.20 Structure of compound 5c-S bound at the active site of COX-2 [1]
2 4KIK 2.83 Human IkB kinase beta [2]
3 2XCS 2.10 The crystal structure of Staphylococcus aureus Gyrase complex with GSK299423 and DNA [3]
4 4HZ5 2.70 Pyrrolopyrimidine inhibitors of DNA gyrase b and topoisomerase iv, part i: structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity [4]
5 4RLJ 1.75 Crystal Structure of (3R)-hydroxyacyl-ACP dehydratase HadAB hetero-dimer from Mycobacterium tuberculosis [5]
6 1IYL 3.20 Crystal Structure of Candida albicans N-myristoyltransferase with Non-peptidic Inhibitor [6]
7 1LRY 2.60 Crystal Structure of Pseudomonas aeruginosa Peptide Deformylase Complexed with Antibiotic Actinonin [7]
8 2AIE 1.70 Streptococcus pneumoniae polypeptide deformylase complexed with inhibitor [7]
9 2Y9X 2.78 Crystal structure of PPO3, a tyrosinase from Agaricus bisporus, in deoxy-form that contains additional unknown lectin-like subunit, with inhibitor tropolone [8]
10 3A4A 1.60 Crystal structure of isomaltase from Saccharomyces cerevisiae [9]
11 6FFC 3.56 Structure of an inhibitor-bound human ABC transporter [10]

Table 2.

List of Flavonoids. This table exemplifies the plant sources of the naturally occurring flavonoids, so that the compounds may be isolated and used for the research purposes.

S.No Name of the flavonoid Major plant source Structure
1 Dabinol Dalbergia latifolia Image 2
2 5HMF Citrus X sinensis Image 3
3 6a,12a-Dehydroamorphigenin Dalbergia sissoo Image 4
4 Afromosin Centrosema pubescens Image 5
5 Amorphigenin Dalbergia cochinchinensis Image 6
6 Biochanin- A fusarium javanicum Image 7
7 Catechin Camelia sinensis Image 8
8 Chrysin Scutellaria baicalensis Image 9
9 Demethylnobiletin Citrus depressa Image 10
10 Epicatechingallate (ECG) Vicia faba Image 11
11 Epigallocatechin Camellia sinensis Image 12
12 Epigallocatechingallate (EGCG) Camellia sinensis Image 13
13 Floretin (Phloretin) Manchurian apricot. Image 14
14 Formononetin Trifolium pratense Image 15
15 Hesperidin Citrus aurantium Image 16
16 Morin Antiaris toxicaria Image 17
17 Naringenin Citrus paradisi Image 18
18 Naringin Citrus paradisi Image 19
19 Neohesperidin citrus aurantium Image 20
20 Quercetin Malus domestica Image 21
21 Robinin Vinca erecta Image 22
22 Rotenone Pachyrhizus erosus Image 23
23 Sakuranetin Polymnia fruticosa Image 24
24 Silymarin Silybum marianum Image 25
25 Nobiletin Citrus Unshiu Image 26
26 Kaempferol Allium cepa Image 27

Table 3.

Docking score, Glide energy and Protein-Ligand Interactions. The docking score, Glide energy, interacting residues, type of interactions, bond length between residues and ligands are shown for each protein mentioned in Table 1.

Title Docking
Score
Glide
Energy
(Kcal/mol)
Interactions Type Bond length (Å)
Protein ID: 2XCS Antibacterial by gyrase inhibition
Robinin −8.03 −84.11 Asp A:1083
Asp A:1080
Glu A:1088
Arg A:1122
H-bond
Ar-H-bond
2 H-bond
2 H-bond
2.03
2.20
1.73, 1.93
2.17, 2.61
Naringin −7.85 −62.60 Lys 581
Asp 1083
H-bond
Ar-H-bond
2.43
2.63
Neohesperidin −7.72 −70.99 Asp 1083 H-bond 1.90
Silymorin −7.29 −44.08 Glu 1088
Ala 1120
Tyr 1087
H-bond
H-bond
Ar-H-bond
2.04
2.17
2.70
Hesperidin −7.25 −68.40 Arg 1122 H-bond 2.29
Protein ID: 4KIK Anticancer by IkB kinase inhibition
Sakuranetin −9.73 −44.98 Asp A:166
Glu A:97
Cys A:99
H-bond
H-bond
H-bond
1.45
2.40
2.04
Naringenin −9.53 −43.50 Glu A:97
Cys A:99
Asp A:166
H-bond
H-bond
H-bond
2.42
2.04
1.45
Kaempferol −9.33 −45.40 Lys A:44
Asp A:166
Cys A:99
H-bond
H-bond
H-bond
2.04
2.16
2.02
Naringin −9.07 −59.59 Asp A:145
Lys A:147
Asp A:166
Glu A:97
Glu A:97
Cys A:99
H-bond
H-bond
H-bond
H-bond
Ar-H-bond
H-bond
1.78
2.22
1.87
1.87
2.48
2.07
Morin −9.03 −46.84 Asp A:166
Lys A:44
Cys A:99
H-bond
H-bond
H-bond
2.09
2.02
2.01
Protein ID: 4HZ5 Antibacterial by DNA gyrase b and topoisomerase IV inhibition
Phloretin −7.06 −50.83 Asp 26
HOH 407
HOH 408
HOH 401
H-bond
H-bond
H-bond
H-bond
1.87
2.77
1.77
2.95
Catechin −6.93 −45.78 Gly 80
Asp 76
HOH 427
H-bond
H-bond
H-bond
2.38
1.78
1.64
Morin −6.92 −51.77 Asp 76
Asp 76
Gly 80
H-bond
Ar-H-bond
H-bond
1.59
2.36
2.45
Kaempferol −6.75 −47.93 Gly 80
Asp 76
Ar-H-bond
H-bond
2.40
1.60
Sakuranetin −6.49 −41.60 Asp 76
Gly 80
HOH 401
H-bond
H-bond
H-bond
1.81
2.69
2.12
Protein ID: 2Y9X Antifungal (Agaricus bisporus) by tyrosinase inhibition
Epigallocatechingallate −7.22 −51.13 Arg 268
Asn 260
Phe 264
Pi-cation
Ar-H-Bond
Ar-H-Bond
6.02
2.66
3.12
Chrysin −7.20 −34.87 His 259
Hid 85
Ar-H-Bond
Ar-H-Bond
3.63
3.25
Kaempferol −7.02 −35.15 Hie 244
Arg 268
Ar-H-Bond
Pi-cation
3.02
5.66
Quercetin −6.75 −34.47 Asn 260
Arg 268
Ar-H-Bond
Pi-cation
2.77
2.89
Catechin −6.67 −32.30 Arg 268 Pi-cation 6.19
Protein ID: 3LN0 Anti-inflammatory by cyclo-oxygenase inhibition
Sakuranetin −7.31 −31.36 Ser 516 H-Bond 2.67
Quercetin −7.00 −34.33 Try 371
Try 371
Gly 178
Ar-H-Bond
H-Bond
H-Bond
3.08
2.72
2.71
Naringenin −6.99 −30.27 Ser 516 H-Bond 2.62
Morin −6.98 −35.14 Try 371
His 75
Tyr 341
Arg 106
H-Bond
Ar-H-Bond
Ar-H-Bond
Pi-cation
2.38
3.00
2.51
7.60
Kaempferol −6.91 −33.28 Tyr 371
Tyr 371
Ar-H-Bond
H-Bond
3.50
2.24
Protein ID: 4RLJ Antituberculosis (Mycobacterium tuberculosis) by hydroxyacyl-ACP dehydratase inhibition
Catechin −7.47 −39.00 HOH 322
HOH 312
H-Bond
H-Bond
1.84
2.14
Biochanin A −6.95 −32.44 Gln 86
HOH 322
Ar-H-Bond
H-Bond
2.63
1.73
Quercetin −6.76 −39.63 HOH 322 H-Bond 1.88
Chrysin −6.60 −32.57 Gln 86
Gln 86
HOH 387
H-Bond
Ar-H-Bond
Ar-H-Bond
2.65
2.48
2.27
Formononetin −6.47 −31.39 Gln 86
HOH 322
Ar-H-Bond
Ar-H-Bond
2.84
2.61
Protein ID: 6FFC Inhibition capacity of human multidrug transporter ABCG2
Robinin −7.14 −53.99 Phe 439
Asn 436
Thr 402
Thr 435
Gln 368
H-Bond
Ar-H-Bond
Ar-H-Bond
H-Bond
H-Bond
1.85
2.22
2.57
2.11
2.40
Morin −6.64 −34.48 Thr 402
Phe 489
Asn 436
H-Bond
Ar-H-Bond
H-Bond
1.68
3.44
1.78
Phloretin −6.39 −34.84 Asn 436
Phe 489
Thr 402
H-Bond
Ar-H-Bond
Ar-H-Bond
1.86
3.64
2.56
Catechin −6.36 −32.35 Thr 402
Phe 489
Phe 489
Asn 436
Asn 436
H-Bond
Ar-H-Bond
H-Bond
Ar-H-Bond
H-Bond
1.85
3.23
1.38
2.22
2.20
Phloretin −6.36 −35.65 Thr 402
Phe 489
Asn 436
Ar-H-Bond
Ar-H-Bond
H-Bond
2.69
3.63
1.83
Protein ID: 3A4A Antifungal (Saccharomyces cerevisiae) by isomaltase inhibition
Epigallocatechin −6.98 −44.31 Glu 411
Tyr 158
Tyr 158
Phe 314
Phe 314
Asp 307
Asp 307
H-Bond
Ar-H-Bond
H-Bond
Ar-H-Bond
H-Bond H-Bond
Ar-H-Bond
1.76
2.95
2.92
3.12
3.51
1.46
2.60
Morin −6.50 −40.65 Asp 307
Gln 353
HOH 1207
H-Bond
HBond Ar-H-Bond
1.69
1.79
2.46
Chrysin −5.61 −34.69 Glu 411
Tyr 158
Gln 353
Asp 307
Ar-H-Bond
H-Bond
Ar-H-Bond
Ar-H-Bond
2.79
1.92
2.35
2.25
Morin −5.31 −38.38 Tyr 158
Tyr 158
Asp 307
Gln 353
Gln 353
Ar-H-Bond
H-Bond
Ar-H-Bond
Ar-H-Bond
H-Bond
2.78
1.73
2.50
2.56
1.80
Phloretin −4.64 −38.76 Glu 411
Asn 415
Gln 353
H-Bond
H-Bond
H-Bond
2.43
2.19
2.10
Protein ID: 1IYL Antifungal (Candida albicans) by N-myristoyltransferase inhibition
Epigallocatechingallate −8.59 −58.16 Glu 109
Phe 339
Phe 115
Asn 392
Tyr 225
Tyr 356
Leu 451
Tyr 107
Ar-H-bond
Ar-H-bond
Pi-Pi
H-bond
Pi-Pi
Ar- H-bond
2 H-bond
H-bond
3.09
3.18
4.39
2.07
4.16
3.69
2.07, 1.88
2.60
Neohesperidin −8.55 −54.56 Asn 392
Tyr 354
Tyr 335
Leu 45
H-bond
2 Ar- H-bond
H-bond
H-bond
1.96
3.44, 3.64
2.25
1.85
Biochanin A −8.24 −41.78 Asn 392
Hie 227
Tyr 354
Tyr 225
Ar-H-bond
H-bond
2 Pi-Pi
2 Pi-Pi
2.32
2.19
4.10, 4.13
4.11,4.86
Formononetin −8.13 −38.64 Tyr 354
Tyr 225
Hie 227
Asn 392
2 Pi-Pi
2 Pi-Pi
H-bond
Ar-H-bond
4.10, 4.13
4.11,4.86
2.24
2.33
Quercetin −7.91 −44.10 Tyr 354
Tyr 225
Hie 227
Hie 227
Glu 109
Leu 451
Leu 450
2 Pi-Pi
2 Pi-Pi
2 H-bond
Ar-H-bond
H-bond
H-bond
H-bond
4.10, 4.13
4.11,4.86
2.59, 2.17
3.19
2.33
1.87
1.87
Protein ID: 1LRY Antibacterial (Pseudomonas aeruginosa) by Peptide Deformylase inhibition
Silymarin −8.82 −63.36 Glu 134
Ile 144
Pro 42
Ar- H-bond
H-bond
H-bond
2.53
1.84
1.85
Epigallocatechin −7.90 −53.17 Glu 134
Leu 92
Ile 44
Gln 88
2 H-bond
H-bond
H-bond
H-bond
1.55, 1.67
2.15
2.36
1.78
Naringenin −7.38 −42.98 Glu 134
Glu 134
Gly 44
Gly 44
Tyr 87
H-bond
Ar-H-bond
H-bond
Ar-H-bond
Ar-H-bond
1.56
2.35
1.69
2.69
2.58
Quercetin −7.29 −48.76 Glu 134
Glu 134
Gln 88
H-bond
Ar-H-bond
H-bond
1.67
2.48
1.76
Neohesperidin −7.28 −60.23 Glu 134 H-bond 1.56
Protein ID: 2AIE Antibacterial (Streptococcus pneumoniae) by polypeptide deformylase inhibition
Epigallocatechin −6.40 −46.08 Gly 68
Leu 131
Glu 174
H-bond
H-bond
2 H-bond
1.70
2.21
1.64, 2.03
Catechin −6.21 −44.36 Gly 68
Leu 131
Glu 174
Glu 174
Ar- H-bond
H-bond
H-bond
Ar-H-bond
2.42
2.54
1.77
2.35
Robinin −6.12 −64.85 Glu 125
Arg 67
Glu 174
H-bond
H-bond
2 H-bond
1.68
2.07
1.50, 1.78
Hesperidin −5.93 −52.09 Glu 125
Arg 67
H-bond
Pi-cation
1.60
5.98
Epigallocatechingallate −5.88 −56.62 Gly 68
Glu 174
H-bond
2 H-bond
1.77
1.92, 1.65

Fig. 1.

Fig. 1

3D and 2D interactions of COX-2 (PDB ID: 3LN0) with flavonoid Sakuranetin. Figure shows Sakuranetin binding and interactions with human cyclo-oxygenase-2 with docking score of −7.31.

Fig. 2.

Fig. 2

3D and 2D interactions of Human Ikb Kinase Beta (PDB ID: 4KIK) with flavonoid Sakuranetin. Figure shows Sakuranetin binding and interactions with Human Ikb Kinase Beta with docking score of −9.73.

Fig. 3.

Fig. 3

3D and 2D interactions of DNA gyrase (PDB ID: 2XCS) with Flavonoid Robinin. Figure shows Robinin binding and interactions with DNA gyrase Staphylococcus aureus with docking score of −8.03.

Fig. 4.

Fig. 4

3D and 2D interactions of tyrosinase (PDB ID: 2Y9X) with flavonoid Epigallocatechingallate. Figure shows Epigallocatechingallate binding and interactions with Agaricus bisporus tyrosinase with docking score of −7.22.

Fig. 5.

Fig. 5

3D and 2D interactions of DNA gyrase (PDB ID: 4HZ5) with flavonoid Phloretin. Figure shows Phloretin binding and interactions with DNA gyrase with docking score of −7.06.

Fig. 6.

Fig. 6

3D and 2D interactions of Isomaltase (PDB ID: 34A4) with flavonoid Epigallocatechin. Figure shows Epigallocatechin binding and interactions with Isomaltase of Saccharomyces cerevisiae with docking score of −6.98.

Fig. 7.

Fig. 7

3D and 2D interactions of ABC transporter (PDB ID: 6FFC) with flavonoid Robinin. Figure shows Robinin binding and interactions with Human ABC transporter with docking score of −7.14.

3. Experimental design, materials, and methods

3.1. Protein selection and preparation

The crystal structures of the selected proteins were retrieved from protein data bank. (PDB database, www.rcsb.org). The downloaded protein structure was prepared prior to docking using Schrodinger Maestro release 2018-4. Protein preparation was done by preprocessing the structures by assignment of bonds and bond orders, addition of hydrogens, filling in missing loops or side chains, capping uncapped C and N termini, adjusting bonds and formal charges for metals, and correcting mislabeled elements, removing water molecules, removing unwanted chains and optimization of hydrogen bonded structures followed by minimization.

3.2. Ligand preparation and molecular docking

The structures of the selected 26 flavonoids were downloaded from Pubchem https://pubchem.ncbi.nlm.nih.gov/) and saved in mol format. The energy minimization was done using Ligprep. The minimized structures were docked on the prepared protein. The best flavonoid was identified based on the binding energy and interaction with amino acid residues for each protein.

Footnotes

Appendix A

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2020.105243.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

The following are the Supplementary data to this article:

Multimedia component 1
mmc1.docx (35.7KB, docx)
Multimedia component 2
mmc2.xml (403B, xml)

References

  • 1.Wang J.L., Limburg D., Graneto M.J., Springer J., Hamper J.R.B., Liao S., Pawlitz J.L., Kurumbail R.G., Maziasz T., Talley J.J., Kiefer J.R., Carter J. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: the second clinical candidate having a shorter and favorable human half-life. Bioorg. Med. Chem. Lett. 2010;20(23):7159–7163. doi: 10.1016/j.bmcl.2010.07.054. [DOI] [PubMed] [Google Scholar]
  • 2.Thomas N.S., George K., Selvam A.A.A. Anticancer mechanism of troxerutin via targeting Nrf2 and NF-κB signalling pathways in hepatocarcinoma cell line. Toxicol. Vitro. 2019;54:317–329. doi: 10.1016/j.tiv.2018.10.018. [DOI] [PubMed] [Google Scholar]
  • 3.Yao L., Wu L.-L., Li Q., Hu Q.-M., Zhang S.-Y., Liu K., Jiang J.-Q. Novel berberine derivatives: design, synthesis, antimicrobial effects, and molecular docking studies. Chin. J. Nat. Med. 2018;16(10):774–781. doi: 10.1016/S1875-5364(18)30117-1. [DOI] [PubMed] [Google Scholar]
  • 4.Szulczyk D., Dobrowolski M.A., Roszkowski P., Bielenica A., Stefańska J., Koliński M., Kmiecik S., Jóźwiak M., Wrzosek M., Olejarz W., Struga M. Design and synthesis of novel 1H-tetrazol-5-amine based potent antimicrobial agents: DNA topoisomerase IV and gyrase affinity evaluation supported by molecular docking studies. Eur. J. Med. Chem. 2018;156:631–640. doi: 10.1016/j.ejmech.2018.07.041. [DOI] [PubMed] [Google Scholar]
  • 5.Dong Y., Qiu X., Shaw N., Xu Y., Sun Y., Li X., Li J., Rao Z. Molecular basis for the inhibition of β-hydroxyacyl-ACP dehydratase HadAB complex from Mycobacterium tuberculosis by flavonoid inhibitors. Protein & Cell. 2015;6(7):504–517. doi: 10.1007/s13238-015-0181-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Guerrero-Perilla C., Bernal F.A., Coy-Barrera E.D. Molecular docking study of naturally occurring compounds as inhibitors of N-myristoyl transferase towards antifungal agents discovery. Rev. Colomb. Ciencias Quím. Farm. 2015;44(2):162–178. [Google Scholar]
  • 7.Fieulaine S., Alves de Sousa R., Maigre L., Hamiche K., Alimi M., Bolla J.-M., Taleb A., Denis A., Pagès J.-M., Artaud I., Meinnel T., Giglione C. A unique peptide deformylase platform to rationally design and challenge novel active compounds. Sci. Rep. 2016;6(1):35429. doi: 10.1038/srep35429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Liu H., Zhu Y., Wang T., Qi J., Liu X. Enzyme-site blocking combined with optimization of molecular docking for efficient discovery of potential tyrosinase specific inhibitors from Puerariae lobatae radix. Molecules. 2018;23(10):2612. doi: 10.3390/molecules23102612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Murugesu S., Ibrahim Z., Ahmed Q.-U., Nik Yusoff N.-I., Uzir B.-F., Perumal V., Abas F., Saari K., El-Seedi H., Khatib A. Characterization of α-glucosidase inhibitors from Clinacanthus nutans Lindau leaves by gas chromatography-mass spectrometry-based metabolomics and molecular docking simulation. Molecules. 2018;23(9):2402. doi: 10.3390/molecules23092402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Jackson S.M., Manolaridis I., Kowal J., Zechner M., Taylor N.M.I., Bause M., Bauer S., Bartholomaeus R., Bernhardt G., Koenig B., Buschauer A., Stahlberg H., Altmann K.-H., Locher K.P. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol. 2018;25(4):333–340. doi: 10.1038/s41594-018-0049-1. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Multimedia component 1
mmc1.docx (35.7KB, docx)
Multimedia component 2
mmc2.xml (403B, xml)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES