Skip to main content
Data in Brief logoLink to Data in Brief
. 2020 Jan 31;29:105219. doi: 10.1016/j.dib.2020.105219

Dataset of volatile compounds from flowers and secondary metabolites from the skin pulp, green beans, and peaberry green beans of robusta coffee

Hafsah Hafsah 1, Iriawati Iriawati 1, Tati Suryati Syamsudin 1,
PMCID: PMC7016368  PMID: 32083156

Abstract

We obtained data regarding the metabolites from flowers, the skin pulp, green beans and peaberry green beans of the robusta coffee plant (Coffea canephora). The beans were processed using a wet-hulled method. The volatile compounds from the flowers were extracted using a solid-phase microextraction. Secondary metabolites from the skin pulp, green beans, and peaberry green beans were extracted by a maceration method using methanol as a solvent. The separation and identification of metabolites were conducted using gas chromatography-mass spectrometry. The flower's volatile compounds were identified by matching the generated spectra with the NIST14 library as a reference, whereas the metabolites in the skin pulp, green beans, and peaberry green beans were identified using the WILLEY09TH library as a reference. The identified volatile compounds in flowers have been listed in Table 1, and the identified skin pulp, green bean, and peaberry green bean metabolite compounds have been listed in Table 2.

Keywords: Robusta coffee, Solid-phase microextraction, Gas chromatography-mass spectrometry, Metabolites, Wet-hulled


Specifications Table

Subject Agriculture and Biological Science
Specific subject area Biochemical diversity.
The data provide insights into the metabolic profiles of flowers and green beans from the robusta coffee plant, demonstrating a biochemical diversity
Type of data Table
How data were acquired The volatile compounds from the flowers of the robusta coffee plant were extracted by solid-phase microextraction (SPME) and analyzed using gas chromatography-mass spectrometry (GC-MS; GC: 7890A, MS: 5975C, Agilent Technologies, Inc., CA, USA). The skin pulp, green beans, and peaberry green beans were extracted using a maceration method with a methanol-based solvent and were analyzed using GC-MS (GC: 6890N, MS: 5973, Agilent Technologies, Inc.)
Data format Raw
Parameters for data collection The five parts of the robusta coffee plant, i.e., flowers, skin pulp of beans, skin pulp of peaberries, green beans, and peaberry green beans, were analyzed. All parts were collected from Coffea canephora cv. Tugusari.
Description of data collection All samples was collected from a low land robusta coffee orchard (at 680 m above sea level). Only fresh anthesis flowers and mature coffee fruits (cherries) were picked for analysis. The beans were processed using a wet-hulled method. Volatile compounds in the coffee flowers were analyzed, and the profiles of secondary metabolites were analyzed from the skin pulp and beans. Floral volatile compounds were extracted by SPME, whereas metabolites from the skin pulp and beans were extracted by maceration with methanol as a solvent. Identification of volatile compounds, determination of retention times, and measurement of peak areas were performed using GC-MS.
Data source location Jember District, East Java – Indonesia at South Latitude 08° 13′ and East Longitude 113° 55’.
Data accessibility With the article
Value of the Data
  • These data contributed to our understanding of volatile compounds in the flowers and secondary metabolites in the skin pulp and beans from the robusta coffee plant, respectively.

  • The data are important for coffee entrepreneurs or coffee merchants (torrefacteurs), researchers, academics, farmers, and policymakers involved in coffee plantation management.

  • Elucidation of the volatile compounds of the robusta coffee flowers is important for improving our understanding of the chemical/metabolic diversity and recognition of potential insects as pollinators that may contribute to the pollination of the robusta flowers.

  • Information on the secondary metabolites of the skin pulp may facilitate the development of insect attractants or repellents, which may contribute to pest control programs.

  • The data on the metabolites of robusta beans may be used to understand the effects of different postharvest treatments (such as wet-hulling) on the quality and flavors of the robusta coffee.

  • The data on metabolites from the skin pulp may also be important for other uses of the beans, such as in teas or infusions.

1. Data description

These raw data include information on the volatile compounds of the robusta coffee flowers and the profiles on the secondary metabolites of the skin pulp, green beans, and peaberry green beans of the robusta coffee. The raw data have been provided in a Microsoft Excel Worksheet (Table 1, Table 2) and have been presented with retention times, identified volatile compounds, and peak areas.

Table 1.

Retention times, identified compounds, and relative peak areas (%) from the GC chromatogram of Robusta coffee flower.

Retention Time (min.)(n = 3)
Compounds Relative Peak Area (%)
(n = 3)
1 2 3 1 2 3
1.794 1.794 Ethanol 3.62 n.d 3.3
4.309 Cyclobutylcarboxylic acid n.d 0.34 n.d
6.450 6.438 Butanoic acid, 3-methyl-, ethyl ester 0.17 n.d 0.27
6.515 1H-Indole, 5-methyl-2-phenyl- n.d 0.05 n.d
7.009 1-Butanol n.d 0.04 n.d
7.693 Carbamic acid, methyl-, ethyl ester n.d n.d 0.02
8.073 2-Heptanol n.d n.d 0.16
8.076 2-Pentadecanol 0.11 n.d n.d
8.079 4-Methyl-2-hexanol n.d 0.04 n.d
10.303 10.232 10.291 Benzaldehyde 0.23 0.13 0.10
11.308 11.314 11.290 β-Myrcene 0.67 0.73 0.54
12.574 12.574 12.568 d-Limonene 0.15 0.18 0.12
13.228 13.335 13.228 Benzyl alcohol 4.92 3.23 3.09
14.073 14.655 Ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-yl carbonate 0.69 0.53 n.d
14.085 14.090 trans-Linalool oxide (furanoid) n.d 0.60 0.48
14.810 14.822 14.804 Benzoic acid, methyl ester 2.70 1.15 1.62
15.440 15.541 15.458 Linalool 22.29 27.03 22.23
15.642 15.726 15.654 Phenylethyl Alcohol 0.20 0.17 0.20
15.993 16.035 15.999 2,4,6-Octatriene, 2,6-dimethyl-, (E,Z)- 0.13 0.15 0.10
16.754 16.962 Benzyl nitrile 14.56 0.04 n.d
16.944 3,6-Dimethyl-2,3,3a,4,5,7a-hexahyd robenzofuran n.d n.d 0.05
17.135 Benzene, (isocyanomethyl)- n.d n.d 1.37
17.135 17.141 Isoneral 0.04 0.04 n.d
17.343 17.349 17.343 Benzoic acid, ethyl ester 1.50 0.88 1.37
17.498 Deltacyclene 2.03 n.d n.d
17.509 17.491 5H-1-Pyrindine n.d 1.74 1.54
17.670 17.676 17.658 Indole 1.50 1.33 1.17
17.896 17.908 17.896 α-Terpineol 0.02 0.02 0.01
18.009 Methyl salicylate n.d 0.29 n.d
18.027 18.021 Dodecane 0.19 n.d 0.18
18.687 18.693 18.687 6-Octen-1-ol, 7-methyl-3-methylene 0.03 0.03 0.02
19.020 19.055 19.020 2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)- 1.96 2.62 1.84
19.127 19.406 19.127 3,6-Octadien-1-ol, 3,7-dimethyl-,(Z)- 0.20 0.10 0.19
19.317 19.341 19.317 2,6-Octadienal, 3,7-dimethyl-, (Z) Citral 0.15 0.22 0.12
19.418 19.424 Benzeneacetic acid, ethyl ester 0.24 n.d 0.38
19.781 19.816 19.781 Geraniol 1.76 2.07 1.59
20.155 20.155 2,6-Octadienal, 3,7-dimethyl-, (E) 0.29 n.d 0.31
20.173 2,6-Octadienal, 3,7-dimethyl- n.d 0.38 n.d
20.322 2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)- 0.02 n.d n.d
20.405 2,6-Octadienoic acid, 3,7-dimethyl -, methyl ester n.d n.d 0.01
20.548 5-Tridecene, (E)- 0.04 n.d n.d
20.554 20.548 6-Tridecene, (E)- n.d 0.04 0.03
21.018 21.018 21.023 Tridecane 5.50 5.01 5.46
21.291 21.434 21.291 Indole 0.02 0.01 0.02
21.582 21.582 trans-Geranic acid methyl ester 0.10 n.d 0.11
22.153 22.153 22.147 Methyl anthranilate 0.76 0.65 0.58
22.278 22.278 Benzenepropanoic acid, ethyl ester 0.14 n.d 0.11
23.087 5-Tetradecene, (E)- n.d 0.02 n.d
23.087 3-Tetradecene, (Z)- n.d n.d 0.01
23.081 23.206 7-Tetradecene, (Z)- 0.01 0.00 n.d
23.331 23.331 23.330 3-Tetradecene, (E)- 0.03 0.03 0.03
23.551 23.551 23.550 Tetradecane 0.41 0.38 0.43
23.872 23.872 23.872 Benzoic acid, 2-(methylamino)-, methyl ester 0.01 0.01 0.01
24.175 Caryophyllene n.d 0.00 n.d
25.754 25.751 25.750 1-Tridecene 4.56 4.36 4.60
25.858 n-Tridecan-1-ol 1.07 n.d n.d
25.858 25.857 Cyclopentadecane n.d 1.00 1.09
26.583 26.583 26.607 Pentadecane 18.68 17.12 19.24
28.064 Succinic acid, di(3-methylbut-3-enyl) ester 0.00 n.d n.d
28.069 Succinic acid, hex-4-yn-3-yl 3-methylbut-3-en-1-yl ester n.d n.d 0.00
28.064 Supraene n.d 0.00 n.d
28.301 Benzene, [(2,2-dimethylcyclopropyl)methyl]- 0.00 n.d n.d
28.593 28.593 (3E,7E)-4,8,12-Trimethyltrideca-1,3,7,11-tetraene 0.07 n.d 0.09
28.593 Squalene n.d 0.00 n.d
29.134 29.128 29.134 Hexadecane 0.07 0.05 0.06
29.532 Pentadecanal- 0.03 n.d n.d
29.532 29.532 Tetradecanal n.d 0.05 0.02
31.072 31.072 31.072 6,9-Heptadecadiene 0.27 0.05 0.28
31.209 31.209 1,4-Cyclooctadiene, (Z,Z)- 0.17 n.d 0.16
31.209 Tricyclo[4.2.1.1(2,5)]decan-3-ol n.d 0.18 n.d
31.411 31.399 31.411 8-Heptadecene 3.51 2.86 3.34
31.893 31.881 31.893 Heptadecene 1.21 0.95 1.22
32.089 Pentadecafluorooctanoic acid, dodecyl ester n.d 0.01 n.d
32.095 32.243 Cyclopentane, pentyl- 0.01 n.d 0.00
32.244 3,6-Octadienal, 3,7-dimethyl- 0.01 n.d n.d
32.244 Cyclohexene, 4-methyl- n.d 0.01 n.d
32.434 3,4-Octadiene, 7-methyl- n.d 0.01 n.d
32.440 Cyclododecene, (E)- 0.01 n.d n.d
32.440 E,E-10,12-Hexadecadienal n.d n.d 0.00
33.260 33.260 33.266 Z,Z-10,12-Hexadecadienal 0.00 0.00 0.00
34.241 34.247 Octadecane n.d 0.03 0.03
34.247 Dodecane, 2,6,11-trimethyl- 0.03 n.d n.d
34.396 34.396 cis-11-Hexadecenal 0.00 0.01 n.d
34.396 13-Octadecenal, (Z)- n.d n.d 0.00
34.669 34.670 Tetradecanal 0.16 0.18 n.d
34.669 Hexadecanal n.d n.d 0.17
34.872 Isopropyl myristate 0.00 n.d n.d
35.692 9-Tetradecen-1-ol, acetate, (Z)- n.d n.d 0.01
35.698 1,9-Tetradecadiene 0.01 n.d n.d
35.787 Z-1,6-Tridecadiene 0.01 n.d n.d
35.787 35.787 Cyclododecene n.d 0.01 0.01
35.924 9,12,15-Octadecatrienal 0.01 n.d n.d
35.924 35.924 9,12-Octadecadien-1-ol, (Z,Z) n.d 0.01 0.01
36.019 36.138 9-Nonadecene 0.02 0.00 n.d
36.019 36.019 Z-5-Nonadecene n.d 0.02 0.02
36.120 Cyclotetradecane n.d n.d 0.02
36.126 1-Nonadecene 0.02 n.d n.d
36.501 36.501 36.507 Nonadecane 0.47 0.46 0.55
38.546 38.540 38.540 Eicosane 0.01 0.01 0.01
40.479 40.479 40.479 Heneicosane 0.02 0.02 0.06
43.594 43.600 43.594 9-Tricosene, (Z)- 0.00 0.00 0.00

Table 2.

Retention times, identified compounds, and relative peak areas (%) in the GC chromatogram from skin-pulp, pea berry skin-pulp, green bean and pea berry green bean.

Retention Time (min.)(n = 2)
Compounds Relative Peak Area (%)
(n = 2)
Skin-Pulp
Pea berry skin-pulp
Green bean
Pea berry green bean
Skin-Pulp
Pea berry skin-pulp
Green bean
Pea berry green bean
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1.919 1.989 1.728 2.032 2.005 1.935 2.162 Acetic acid n.d 4.44 n.d 9.45 n.d 0.36 1.18 0.77
2.187 1,2,3,4-Butanetetrol, [S-(R*,R*)]- n.d n.d 0.57 n.d n.d n.d n.d n.d
2.330 3,4-Furandiol, tetrahydro-, trans- 0.46 n.d n.d n.d n.d n.d 0.39 n.d
2.345 3-Ethoxy-1,2-propanediol n.d n.d n.d n.d n.d n.d 0.39 n.d
2.379 Glycerin n.d 0.24 n.d n.d n.d n.d n.d n.d
2.387 Pentanal n.d n.d 0.3 n.d n.d n.d n.d n.d
2.542 2.530 2.473 2.630 Pyridine n.d n.d n.d n.d 0.66 0.28 1.35 0.57
2.531 1,2-Benzenediol, 4-(2-amino-1-hydroxyethyl)-, (R)- n.d 0.24 n.d n.d n.d n.d n.d n.d
2.787 Cyclobutanol n.d n.d n.d 0.42 n.d n.d n.d n.d
2.742 2.638 Butyric acid hydrazide 1.40 n.d 1.08 n.d n.d n.d n.d n.d
3.119 Pyridine, 1-oxide 0.51 n.d n.d n.d n.d n.d n.d n.d
3.120 Furfural n.d n.d n.d 0.46 n.d n.d n.d n.d
3.471 3.401 3.441 2-Furanmethanol 0.77 n.d 0.88 0.90 n.d n.d n.d n.d
4.771 7.282 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one 2.10 n.d n.d 4.16 n.d n.d n.d n.d
5.166 5.080 5.135 5.123 5.098 5.098 5.071 Phenol 1.59 1.46 1.15 1.47 0.39 n.d 1.31 0.52
5.414 2-Oxabicyclo[3.2.0]hepta-3,6-diene n.d n.d n.d n.d n.d n.d 0.6 n.d
6.215 6.194 6.141 6.216 Furaneol 0.80 0.29 0.81 1.05 n.d n.d n.d n.d
6.410 6.372 6.315 Phenol, 2-methoxy- 1.41 n.d n.d n.d n.d n.d 0.77 0.44
6.577 Pentanal n.d n.d n.d n.d n.d n.d 0.48 n.d
7.247 8.019 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- n.d n.d 4.85 0.63 n.d n.d n.d n.d
7.252 2,3-Dihydro-3,5-dihydroxy-6-methyl -4H-pyran-4-one n.d 3.2 n.d n.d n.d n.d n.d n.d
7.962 Benzoic acid 0.60 n.d n.d n.d n.d n.d n.d n.d
8.244 Ether, hexyl isopropyl n.d n.d 0.78 n.d n.d n.d n.d n.d
8.378 8.323 8.413 8.336 8.440 8.604 8.449 8.453 1,2-Benzenediol 9.18 7.71 5.36 6.62 1.07 0.6 2.59 1.23
8.587 6-methoxy-2,2-dimethylbenzo[h]chromene n.d 2.57 n.d 2.42 n.d n.d n.d n.d
9.004 8.988 8.917 Phenol, 4-ethyl-2-methoxy- n.d n.d n.d n.d 0.15 n.d 0.52 0.38
9.411 9.424 9.466 9.427 9.483 9.411 2-Methoxy-4-vinylphenol n.d 0.261 n.d 0.21 5.34 1.77 3.96 1.5
9.966 9.779 9.983 9.731 9.620 9.779 Hydroquinone n.d 1.3 6.52 1.25 n.d 1.41 5.03 2.86
9.726 9.684 1,2-Benzenediol, 4-methyl- 7.87 n.d n.d 6.93 n.d n.d n.d n.d
10.749 1,3-Dimethyl-5-(isopropyl)pyrazole n.d n.d n.d n.d n.d n.d 0.24 n.d
10.810 10.746 4-Ethylcatechol 0.43 n.d n.d n.d n.d n.d n.d 0.14
11.578 2,1,3-Benzothiadiazole n.d n.d n.d n.d n.d n.d 1.05 n.d
11.613 1-phenyl-2-(3,5,6-trimethylpyrazin-2-yl)ethanol n.d n.d n.d n.d n.d n.d n.d 0.32
14.618 Tetradecanoic acid n.d n.d n.d n.d n.d n.d n.d 0.76
15.540 15.285 14.292 15.047 14.501 15.297 Quinic acid 21.80 9.16 28.23 27.43 1.25 13.04 n.d n.d
15.575 Octyl thioglycolate n.d n.d n.d n.d n.d 0.71 n.d n.d
15.891 15.805 15.883 15.801 16.160 16.117 16.280 16.607 Caffeine 16.02 4.51 10.26 5.52 79 51.15 52.46 74.88
16.096 16.211 Hexadecanoic acid, methyl ester n.d n.d n.d 1.08 1.59 n.d n.d n.d
16.715 16.664 16.676 16.647 16.689 16.775 16.785 n-Hexadecanoic acid 15.14 6.04 3.41 8.05 n.d 5.4 2.20 2.63
17.730 12-Octadecenoic acid, methyl ester n.d n.d n.d 0.32 n.d n.d n.d n.d
18.250 17.852 17.695 17.818 17.713 9,12-Octadecadienoic acid (Z,Z)-, methyl ester n.d 4.61 n.d n.d 1.13 0.77 0.18 0.38
17.937 Methyl stearate n.d n.d n.d n.d n.d 0.16 n.d n.d
18.126 Methyl 16-methyl-heptadecanoate n.d n.d n.d n.d 0.15 n.d n.d n.d
18.263 18.468 18.285 9,12-Octadecadienoic acid (Z,Z)-, n.d n.d n.d n.d n.d 3.71 1.43 1.58
18.297 1,2-Epoxy-1-vinylcyclododecene n.d n.d 0.57 n.d n.d n.d n.d n.d
18.302 18.290 9,12,15-Octadecatrienoic acid, (Z,Z,Z)- n.d 2.02 n.d 1.58 n.d n.d n.d n.d
18.420 18.407 18.423 Octadecanoic acid n.d 2.88 n.d 2.39 n.d 1.73 n.d 0.09
20.041 20.044 20.054 Eicosanoic acid n.d 0.45 n.d n.d n.d 0.38 n.d 0.14
21.211 Palmitoyl chloride n.d 0.65 n.d n.d n.d n.d n.d n.d
21.319 21.337 21.216 Glycerol 1-palmitate 0.46 n.d 0.47 0.44 n.d n.d n.d n.d
21.666 Nonadecanoic acid n.d n.d 0.59 n.d n.d n.d n.d n.d
21.787 21.658 21.663 23.195 7,9-Dimethoxy-8-isopropyl-4-methyl -1H-phenalen-1-one 0.53 1.85 n.d 0.73 n.d n.d 4.92 n.d
22.571 21.219 22.563 21.216 Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester n.d n.d n.d 0.45 0.93 1.75 0.61 0.33
22.657 Benzene, (1-methyl-1-butenyl)- n.d n.d n.d n.d n.d n.d 0.28 n.d
22.672 (R)-(-)-14-Methyl-8-hexadecyn-1-ol 0.61 n.d n.d n.d n.d n.d n.d n.d
22.560 2-Methyl-Z,Z-3,13-octadecadienol n.d n.d n.d 0.59 n.d n.d n.d n.d
22.685 1,3,12-Nonadecatriene n.d n.d 0.64 n.d n.d n.d n.d n.d
23.370 5,9,13-Pentadecatrien-2-one, 6,10,14-trimethyl-, (E,E)- n.d n.d n.d n.d n.d 0.27 n.d n.d
24.785 9,12-Octadecadienoyl chloride, (Z, Z) n.d n.d n.d n.d n.d n.d 1.03 n.d
24.794 22.576 9,12-Octadecadienoic acid (Z,Z)-, 2-hydroxy-1-(hydroxymethyl)ethyl ester n.d n.d n.d n.d 0.99 4.24 n.d n.d
24.987 6-methyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-7-one n.d n.d n.d n.d n.d 0.15 n.d n.d
25.803 1H-Purin-2-amine, 6-methoxy- n.d n.d n.d 0.94 n.d n.d n.d n.d
25.975 25.789 Vitamin E 0.78 n.d n.d n.d n.d 0.51 n.d n.d
27.111 26.899 27.115 26.891 26.877 Ergost-5-en-3-ol, (3.β.)- 0.45 1.07 0.87 0.62 n.d 0.32 n.d n.d
27.233 2-[(4-tert-butylphenyl)methyl]propane-1,3-diol n.d n.d n.d 0.35 n.d n.d n.d n.d
27.242 27.242 (24S)-ergosta-5,22(E)-dien-3β-ol n.d 0.58 n.d n.d n.d n.d n.d 0.23
27.780 4,7-Methano-1H-indene, octahydro- n.d n.d n.d n.d n.d n.d n.d 0.13
28.186 27.953 28.186 27.917 32.445 β-Sitosterol 1.61 2.82 2.50 n.d 2.02 0.52 0.73 n.d
29.025 29.000 β-Tocopherol n.d n.d n.d n.d 0.20 n.d 0.22 n.d
30.154 30.111 dl-α-Tocopherol n.d n.d n.d n.d 0.33 n.d 0.34 n.d
31.274 Campesterol n.d n.d n.d n.d n.d n.d 0.23 n.d
31.718 31.676 Stigmasterol n.d n.d n.d n.d 0.73 n.d 0.54 n.d
32.496 γ-Sitosterol n.d n.d n.d n.d 0.69 n.d n.d n.d
34.488 9,19-Cyclolanostan-3-ol, 24-methylene-, (3β)- n.d n.d n.d n.d n.d n.d 0.13 n.d
32.770 Fucosterol n.d n.d n.d n.d 0.33 n.d n.d n.d

2. Experimental design, materials, and methods

  • a.

    Preparation and analysis of the flower samples

All samples were collected from a low land robusta coffee orchard (at 680 m above sea level). Only fresh anthesis flowers were picked for analysis. Three sets of samples (10 fresh anthesis of the robusta coffee flowers, approximately 1.5 g) were placed in 22-mL clear glass bottles for SPME with PTFE/Silicon septa (Supelco Co., Bellefonte, PA, USA). After 24 h, the flowers were extracted and identified by an SPME connected with a GC-MS (GC: 7890A, MS: 5975C, Agilent) following the procedure reported by Syamsudin et al. [1]. Coffee flowers in the SPME bottles were extracted at 40 °C for 45 min. The extract was injected into a gas chromatograph at 250 °C for 5 min using a spitless mode. The oven temperature was initially set to 50 °C and held for 5 min. Then, the temperature was increased to 150 °C (5 °C/min for 2 min) and then to 250 °C (5 °C/min for 5 min). An HP-5MS (30 m × 250 μm × 0.25 μm) column was used to separate the volatile compounds with helium as the carrier gas injected at 0.8 mL/min. The flower volatile compounds were identified by matching the generated spectra with the spectra in the NIST14 library as references.

  • b.

    Preparation and analysis of skin pulp and bean samples

Only red fruits of the coffee plants were included in this analysis. All fruits (‘normal’ beans and peaberries) were picked by hand from the orchard and processed using the wet-hulled method. Washed coffee fruits were then peeled to obtain the skin pulp. The seeds (beans) were fermented anaerobically for 12 h in a sealed plastic bag, and the mucilage was then washed away. The skin pulp and beans were dried in a screen house (temperature: 32.90 °C ± 5.87 °C; relative humidity: 46.14% ± 16.26%) for 3 weeks. According to standard agricultural practices, the skin pulp and beans were kept at room temperature (24–26 °C). Then, the skin pulp and beans were freeze dried for 24 h and crushed using a coffee grinder (Cyprus International 200W). Next, 100 mg powder of each sample (skin pulp beans, skin pulp peaberry beans, green beans, and peaberry green beans) was macerated for 4 × 24 h using methanol. All extracted samples were evaluated in duplicate. The extract was filtered (Whatman paper No. 91) then evaporated with a rotary evaporator. The macerated samples were redissolved in 1 mL methanol (chromatography-grade; Merck LiChrosolv Reag. Ph Eur). Before injecting into the GC-MS, the sample was filtered with a 0.22-μm/25 mm PTFE filter syringe (Axiva Sichem Biotech Pvt. Ltd. India).

Extraction of the skin pulp and beans was performed with the Sunarharum method [2] using GC-MS with some modifications. The extract was injected into the GC-MS (GC: 6890N, MS: 5973; Agilent Technologies Inc.) at 290 °C using a split mode. The initial oven temperature for green bean and peaberry green bean extracts was set to 50 °C. The temperature was increased to 220 °C (10 °C/min) and then to 290 °C (5 °C/min for 10 min). For ‘normal’ bean skin pulp and peaberry skin pulp extracts, the temperature was increased to 290 °C at 10 °C/min for 15 min. An HP-5MS (30 m × 250 μm × 0.25 μm) column was used to separate volatile compounds with helium as the carrier gas at 1.0 mL/min. The compounds were identified by matching the generated spectra with the spectra from the WILLEY09TH library database.

Acknowledgments

This research was funded by Program Penelitian, Pengabdian Kepada Masyarakat dan Inovasi Institut Teknologi Bandung (P3MIITB) - Indonesia to Tati Suryati Syamsudin, Grant No. 2010/I1.C02.2/KU/2019. We also acknowledge Desi Arofah from Flavour Laboratory of Indonesian Centre for Rice Research (ICCRI) who has operating the GC-MS.

Footnotes

Appendix A

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2020.105219.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

The following is the Supplementary data to this article:

Multimedia component 1
mmc1.xml (404B, xml)

References

  • 1.Syamsudin T.S., Hafsah H., Iriawati I. Data set on volatile compound of coffee flowers at different annual rainfall. Data In Brief. 2019;26:104418. doi: 10.1016/j.dib.2019.104418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Sunarharum W.B. The University of Queensland; Disertation: 2016. The Compositional Basis of Coffee Flavour. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Multimedia component 1
mmc1.xml (404B, xml)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES