Skip to main content
Plants logoLink to Plants
. 2020 Jan 19;9(1):126. doi: 10.3390/plants9010126

Volatile Compositions and Antifungal Activities of Native American Medicinal Plants: Focus on the Asteraceae

Sims K Lawson 1, Layla G Sharp 1, Chelsea N Powers 1, Robert L McFeeters 1, Prabodh Satyal 2, William N Setzer 1,2,*
PMCID: PMC7020142  PMID: 31963839

Abstract

In the past, Native Americans of North America had an abundant traditional herbal legacy for treating illnesses, disorders, and wounds. Unfortunately, much of the ethnopharmacological knowledge of North American Indians has been lost due to population destruction and displacement from their native lands by European-based settlers. However, there are some sources of Native American ethnobotany remaining. In this work, we have consulted the ethnobotanical literature for members of the Asteraceae used in Cherokee and other Native American traditional medicines that are native to the southeastern United States. The aerial parts of Eupatorium serotinum, Eurybia macrophylla, Eutrochium purpureum, Polymnia canadensis, Rudbeckia laciniata, Silphium integrifolium, Smallanthus uvedalia, Solidago altissima, and Xanthium strumarium were collected from wild-growing plants in north Alabama. The plants were hydrodistilled to obtain the essential oils and the chemical compositions of the essential oils were determined by gas chromatography–mass spectrometry. The essential oils were tested for in-vitro antifungal activity against Aspergillus niger, Candida albicans, and Cryptococcus neoformans. The essential oil of E. serotinum showed noteworthy activity against C. neoformans with a minimum inhibitory concentration (MIC) value of 78 μg/mL, which can be attributed to the high concentration of cyclocolorenone in the essential oil.

Keywords: ethnopharmacology, essential oil, chemical composition, Cryptococcus neoformans, cyclocolorenone

1. Introduction

Many aspects of modern medicine have relied on the traditional knowledge of native cultures, including, for example, traditional Indian medicine (Ayurveda) [1], traditional Chinese medicine (TCM) [2], and traditional Islamic medicine [3]. Unfortunately, many of the traditional uses of medicinal plants are being lost due to several reasons. Recent generations are less interested in traditional knowledge, and habitat destruction and forced migration have reduced access to medicinal plants. The Native Americans of North America also had rich traditions of medicinal plant use. However, much of this knowledge has been lost due to population declines and displacement from native lands. Nevertheless, there are still some existing references to the ethnobotanical uses of medicinal plants by Native Americans [4].

Eupatorium serotinum Michx., “late boneset”, is native to eastern North America and ranges from Texas, Oklahoma, and Kansas, to the Atlantic coast and from the Gulf of Mexico north to Wisconsin and Michigan [5]. The Houma people of Louisiana used a decoction of the flowers to treat typhoid fever [6]. Extracts of the aerial parts of E. serotinum have yielded germacranolide sesquiterpenoids [7,8].

Eurybia macrophylla (L.) Cass. (syn. Aster macrophyllus L.), “bigleaf aster”, is native to southeastern Canada and northeastern United States, as far south as north Alabama and north Georgia [9]. The Iroquois used a decoction of the roots as a blood medicine and to treat venereal disease; the Ojibwa people ate the leaves of E. macrophylla as a medicine and food [6].

Eutrochium purpureum (L.) E.E. Lamont (syn. Eupatorium purpureum L.), “purple Joe-Pye weed”, ranges from central to eastern North America, from the Great Lakes region south to the Gulf of Mexico [10]. The Cherokee used the roots as a treatment for rheumatism, for kidney problems, and for “female problems”; the Chippewa inhaled the vapors from an infusion of the plant for colds; the Navajo used the plant as an antidote for poison; and the Potawatomi people applied a poultice of the leaves on burns [6].

Polymnia canadensis L., “white flower leafcup”, is found in eastern North America from Alabama and Georgia north to Ontario, and from Kansas and Oklahoma east to the Appalachians and New York [11]. The Houma people applied a poultice of the crushed leaves to swellings; the Iroquois used the plant to relieve toothache [6]. Extracts of the aerial parts of P. canadensis have yielded diterpenoid carboxylic acids and germacranolides [12].

Rudbeckia laciniata L., “cutleaf coneflower”, is widespread in the United States and Canada [13]. There are eight varieties of R. laciniata, namely ampla, bipinnata, digitata, gaspereauensis, heterophylla, hortensia, humilis, and laciniata [14]; R. laciniata var. laciniata is the common variety found in eastern North America [15]. The Cherokee ate the cooked greens to “keep well”, while the Chippewa applied a poultice of the flowers to treat burns [6]. Several lignans, flavonoid glycosides, and quinic acid derivatives have been isolated from the aerial parts of R. laciniata, and sesquiterpenoids have been isolated from root extracts [4].

Silphium integrifolium Michx., “whole-leaf rosinweed”, ranges from Wisconsin and Michigan, south through Alabama and Mississippi, and west as far as New Mexico [16]. An infusion of the leaves of S. integrifolium was taken by the Meskwaki people for “bladder troubles” [6]. Flavonoids, oleanolic acid glycosides, and phenolic acids have been identified in the aerial parts of S. integrifolium [17].

Smallanthus uvedalia (L.) Mack. (syn. Polymnia uvedalia (L.) L.), “yellow flower leafcup”, is found in the southeastern United States from Virginia to Florida, west to eastern Texas and Oklahoma [18]. The Cherokee used the bruised roots on burns and cuts; the Iroquois took an infusion of the shoots and roots to treat back pain and vomiting [6]. The plant is the source of several germacranolide sesquiterpenoids and ent-kaurane diterpenoids [4].

Solidago altissima L. (syn. Solidago canadensis L.), “Canada goldenrod”, ranges across most of North America from Canada to northern Mexico [19]. The Okanagan-Colville and the Thompson tribes used an infusion of the roots and shoots of S. altissima to treat fevers [6], and the Cherokee took an infusion of Solidago spp. to treat fevers. The phytochemistry of S. canadensis has been extensively studied and found to contain saponins [20,21], flavonoids [22,23,24], polyacetylenes [25,26], diterpenoids [27], and triterpenoids [28].

Xanthium strumarium L., “rough cocklebur”, ranges throughout North America and is considered a noxious weed in the southeastern United States [29]. The White Mountain Apache tribe took a root decoction to treat fevers; the Mahuma people of Southern California used the plant to treat rheumatism, tuberculosis, and gonorrhea [6]. The aerial parts of X. strumarium contain alkaloids, sesquiterpene lactones (guaianolides, germacranolides, and elemanolides), phenolic compounds, and the toxic carboxylic acid atractyloside, a kaurene glycoside [30].

We have had an interest in the volatile chemistry and biological activity of Native American medicinal plants [31,32,33,34,35,36,37,38,39,40,41,42], including members of the Asteraceae [43,44,45]. As part of our continuing investigations, the purpose of this work was to seek out additional species of Asteraceae important in Native American traditional medicine growing wild in northern Alabama and to obtain the essential oils by hydrodistillation of the aerial parts. As a test for biological activity, the essential oils were then screened for antifungal activity against three potentially pathogenic fungal strains. Aspergillus niger, Candida albicans, and Cryptococcus neoformans are the causative agents of opportunistic Aspergillus lung disease, candidiasis, and cryptococcosis, respectively.

2. Results and Discussion

The essential oils from E. serotinum, E. macrophylla, E. purpureum, P. canadensis, R. laciniata, S. integrifolium, S. uvedalia, S. altissima, and X. strumarium were obtained from the fresh aerial parts of the plants by hydrodistillation, generally in low yield. The essential oils were analyzed by GC and GC–MS (Tables 1, 3–9, and 11).

2.1. Eupatorium serotinum Michx.

The essential oil from the aerial parts of E. serotinum was rich in sesquiterpenoids, with cyclocolorenone (23.38%), germacrene D (6.58%), and palustrol (5.32%), along with an unidentified sesquiterpenoid (5.72%) as the major components (Table 1).

Table 1.

Chemical composition of the essential oil of Eupatorium serotinum Michx.

RI a RI b Compound % ± SD RI a RI b Compound % ± SD
802 801 Hexanal 0.16 ± 0.02 1531 1533 trans-Cadina-1,4-diene 0.20 ± 0.07
810 796 2-Hexanol 0.92 ± 0.01 1540 --- Unidentified e 1.28 ± 0.05
850 846 (2E)-Hexenal 0.86 ± 0.11 1542 1539 α-Copaen-11-ol 7.89 ± 0.13
932 932 α-Pinene 0.17 ± 0.01 1548 --- Unidentified f 1.76 ± 0.04
949 946 Camphene 1.78 ± 0.02 1550 --- Unidentified g 0.75 ± 0.03
977 974 β-Pinene 0.18 ± 0.02 1558 1559 Germacrene B 0.44 ± 0.03
999 1001 δ-2-Carene 0.15 ± 0.01 1562 --- Eudesmenol h 0.32 ± 0.09
1029 1024 Limonene 0.26 ± 0.01 1569 1567 Palustrol 5.32 ± 0.12
1283 1287 Bornyl acetate 4.72 ± 0.07 1575 1574 Germacra-1(10),5-dien-4β-ol 0.91 ± 1.10
1326 --- Unidentified c 0.93 ± 0.03 1581 1577 Spathulenol 1.58 ± 0.83
1346 1345 α-Cubebene 0.59 ± 0.01 1588 1590 Globulol 0.58 ± 0.03
1375 1374 α-Copaene 0.11 ± 0.05 1593 1592 Viridiflorol 1.12 ± 0.09
1383 1387 β-Bourbonene 0.06 ± 0.01 1596 --- Unidentified i 1.20 ± 0.02
1397 1387 β-Cubebene 3.65 ± 0.09 1603 1602 Ledol 2.80 ± 0.03
1406 1409 α-Gurjunene 0.74 ± 0.02 1620 1611 Germacra-1(10),5-dien-4α-ol 1.44 ± 0.13
1417 1419 β-Ylangene 0.09 ± 0.03 1622 1624 Selina-6-en-4β-ol 0.31 ± 0.03
1418 1417 β-Caryophyllene 0.96 ± 0.01 1627 1627 1-epi-Cubenol 0.61 ± 0.10
1428 1434 γ-Elemene 0.28 ± 0.05 1638 1639 cis-Guaia-3,9-dien-11-ol 0.12 ± 0.01
1448 1448 cis-Muurola-3,5-diene 0.07 ± 0.03 1642 1638 τ-Cadinol 0.80 ± 0.03
1455 1452 α-Humulene 0.41 ± 0.04 1642 1640 τ-Muurolol 0.62 ± 0.08
1471 1475 trans-Cadina-1(6),4-diene 0.25 ± 0.03 1646 1644 α-Muurolol (=δ-Cadinol) 0.69 ± 0.07
1480 1484 Germacrene D 6.58 ± 0.09 1648 1646 Agarospirol II 1.10 ± 0.04
1486 1488 δ-Selinene 0.27 ± 0.02 1654 1652 α-Cadinol 2.31 ± 0.04
1488 1489 β-Selinene 0.17 ± 0.01 1668 --- Unidentifiedj 5.72 ± 0.14
1491 1493 trans-Muurola-4(14),5-diene 0.69 ± 0.03 1751 1759 Cyclocolorenone 23.38 ± 0.43
1494 1493 epi-Cubebol 1.81 ± 0.03 Green leaf volatiles 1.94
1497 1500 α-Muurolene 0.34 ± 0.02 Monoterpene hydrocarbons 2.53
1502 --- Unidentified d 1.30 ± 0.02 Oxygenated monoterpenoids 4.72
1512 1513 γ-Cadinene 0.21 ± 0.00 Sesquiterpene hydrocarbons 19.14
1514 1514 Cubebol 4.18 ± 0.11 Oxygenated sesquiterpenoids 57.90
1517 1522 δ-Cadinene 3.02 ± 0.25 Total Identified 86.23

a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases. c MS(EI) (mass spectrum (electron impact)): 162(84%), 147(96%), 133(20%), 120(32%), 119(41%), 108(35%), 105(100%), 91(63%), 79(29%), 77(22%), 55(11%), 53(12%), 41(14%). d MS(EI): 202(7%), 187(9%), 162(68%), 159(31%), 147(50%), 145(32%), 132(49%), 119(66%), 105(89%), 91(48%), 81(18%), 79(20%), 77(16%), 59(100%), 43(20%), 41(20%). e MS(EI): 202(4%), 187(13%), 162(56%), 159(59%), 147(39%), 145(40%), 132(73%), 131(39%), 119(73%), 106(48%), 105(88%), 91(47%), 81(16%), 79(25%), 77(19%), 59(100%), 55(18%), 43(19%), 41(20%). f MS(EI): 220(24%), 205(17%), 163(19%), 120(35%), 110(100%), 105(20%), 95(35%), 69(44%), 55(20%), 41(24%). g MS(EI): 220(47%), 163(25%), 161(32%), 121(100%), 108(42%), 93(42%), 81(59%), 69(17%), 55(15%), 41(18%). h Correct isomer not identified. i MS(EI): 220(49%), 205(7%), 163(33%), 161(28%), 121(100%), 108(40%), 93(35%), 81(80%), 69(20%), 55(17%), 41(19%). j MS(EI): 202(46%), 187(67%), 174(40%), 162(60%), 159(100%), 147(89%), 134(30%), 131(23%), 119(62%), 105(71%), 91(50%), 59(61%), 43(20%), 41(22%).

To our knowledge, there have been no previous reports on the essential oil composition of E. serotinum. The phytochemistry of the genus Eupatorium has been reviewed [46] and there have been numerous reports on the essential oil compositions from other species of the genus (Table 2). There is much variability in the essential oil compositions of Eupatorium species, both between species and within species. Nevertheless, sesquiterpenoids often dominate the essential oils of Eupatorium species.

Table 2.

Major components and biological activities of Eupatorium essential oils.

Eupatorium spp. Essential Oil Location Major Components Biological Activity Ref.
E. adenophorum (aerial parts) Nainital, India camphene (8.9%), p-cymene (16.6%), bornyl acetate (15.6%), amorph-4-en-7-ol (9.6%), α-cadinol (6.2%), amorpha-4,7(11)-dien-8-one (7.8%) none reported [47]
E. adenophorum (leaves) Palampur, India bornyl acetate (9.0%), germacrene D (5.7%), β-bisabolene (6.2%), 1-naphthalenol (17.5%), α-bisabolol (9.5%) Antibacterial (Rhodococcus rhodochrous, MBC 12.5 μL/mL) [48]
E. adenophorum (twigs) Uttar Pradesh, India camphene (12.1%), α-phellandrene (8.6%), α-terpinene (6.5%), p-cymene (11.6%), bornyl acetate (10.6%), acoradiene (10.1%), α-bisabolol (5.3%) Antibacterial (Erwinia herbicola, MIC 0.25 μL/mL; Pseudomonas putida, MIC 2.0 μL/mL) [49]
E. adenophorum (inflorescence) Palampur, India bornyl acetate (6.3%), β-caryophyllene (5.4%), γ-muurolene (11.7%), γ-curcumene (5.7%), γ-cadinene (18.4%), 3-acetoxyamorpha-4,7(11)-dien-8-one (7.4%) Antifungal (Macrophomina phaseolina, EC50 0.076 μL/mL; Rhizoctonia solani, EC50 0.094 μL/mL; Fusarium oxysporum, EC50 0.120 μL/mL) [50]
E. amygdalinum (aerial parts) Amapá, Brazil β-cubebene (5.7%), β-caryophyllene (12.3%), germacrene D (15.5%), δ-cadinene (5.8%), caryophyllene oxide (17.4%) none reported [51]
E. argentinum (leaves) Córdoba, Argentina α-pinene (17.0%), β-pinene (6.1%), p-cymene (12.5%), thymyl acetate (9.7%), β-caryophyllene (7.2%) none reported [52]
E. arnottianum (aerial parts) Córdoba, Argentina α-pinene (13.7%), p-cymene (30.0%), β-ocimene (5.3%), thymyl acetate (12.3%), β-caryophyllene (11.7%) none reported [53]
E. arnottianum (aerial parts) Córdoba, Argentina limonene (32.7%), piperitenone (21.2%), trans-dihydrocarvone (10.2%), camphor (6.8%), cis-dihydrocarvone (6.7%) Antiviral (HSV-1, IC50 52.1 μg/mL; DENV-2, IC50 38.2 μg/mL) [54]
E. arnottii (aerial parts) San Luis, Argentina β-caryophyllene (7.9%), γ-elemene (5.9%), germacrene D (9.8%), cadinene (5.8%), spathulenol (10.6%), phytol (8.1%) Insecticidal (Tribolium castaneum, ED50 0.15 mg/cm2) [55]
E. ballotaefolium (aerial parts) Ceará, Brazil α-pinene (6.2%), sabinene (6.5%), β-pinene (5.4%), myrcene (7.3%), limonene (15.3%), (E)-β-ocimene (10.5%), β-caryophyllene (7.5%) none reported [56]
E. betonicaeforme (leaves) Ceará, Brazil β-caryophyllene (36.1%), α-humulene (13.3%), γ-muurolene (20.3%), bicyclogermacrene (15.0%) Larvicidal (Aedes aegypti, LC50 129 μg/mL) [57]
E. buniifolium (aerial parts) Canelones, Uruguay α-pinene (14.7%), β-elemene (12.2%), germacrene D (11.5%), trans-β-guaiene (6.5%) none reported [58]
E. buniifolium (aerial parts) San Luis, Argentina α-pinene (51.0%), sabinene (7.5%), limonene (9.6%), β-caryophyllene (5.2%) Insecticidal (Tribolium castaneum, ED50 0.15 mg/cm2) [55]
E. buniifolium (leaves) Canelones, Uruguay α-pinene (8.2%), germacrene D (11.1%), trans-β-guaiene (7.4%) Varroacide (Varroa destructor, LD99 0.3 mg/mL) [59]
E. cannabinum ssp. cannabinum (aerial parts) Agerola, Italy δ-2-carene (6.5%), germacrene D (33.5%), α-farnesene (12.9%) Antibacterial (Staphylococcus aureus, Streptococcus fecalis, Bacillus subtilis, Bacillus cereus, MIC 1.25 mg/mL) [60]
E. cannabinum (leaves) Tuscany, Italy thymol methyl ether (7.8%), germacrene D (29.2%), spathulenol (7.3%) none reported [61]
E. cannabinum ssp. corsicum (aerial parts) Corsica, France α-phellandrene (19.0%), p-cymene (5.2%), germacrene D (28.5%) none reported [62]
E. cannabinum (aerial parts) Mazandaran, Iran α-terpinene (17.8%), thymol methyl ether (5.2%), germacrene D (9.1%) none reported [63]
E. cannabinum (leaves) Vilnius, Lithuania thymol methyl ether (5.7%), neryl acetate (9.4%), germacrene D (11.3%), β-bisabolene (6.7%) none reported [64]
E. capillifolium (aerial parts) Cuba p-cymene (23.7%), thymol methyl ether (8.9%), β-bisabolene (8.2%), selin-11-en-4α-ol (12.3%) none reported [65]
E. capillifolium (aerial parts) Mississippi, USA myrcene (15.7%), α-phellandrene (6.5%), thymol methyl ether (36.3%), 2,5-dimethoxy-p-cymene (20.8%) Insecticidal (Stephanitis pyrioides, LC50 5800 μg/mL) [66]
E. catarium (aerial parts) Córdoba, Argentina spathulenol (15.5%), β-caryophyllene (7.8%), germacrene D (5.5%), bicyclogermacrene (5.1%) Antiviral (HSV-1, IC50 47.9 μg/mL; DENV-2, IC50 57.3 μg/mL) [54]
E. conyzoides (aerial parts) Tocantins, Brazil β-caryophyllene (7.1%), α-humulene (6.6%), germacrene D (16.8%), bicyclogermacrene (7.2%), spathulenol (8.3%) none reported [51]
E. glabratum (leaves) Michoacán, México α-pinene (29.5%), β-pinene (6.3%), α-phellandrene (19.6%) Insecticidal (Sitophilus zeamais, LC50 18.0 μL/mL) [67]
E. hecatanthum (leaves) Córdoba, Argentina α-pinene (13.4%), β-pinene (7.8%), β-ocimene (6.2%), carvacrol (7.1%), thymyl acetate (10.6%), β-caryophyllene (8.1%) none reported [52]
E. inulaefolium (aerial parts) San Luis, Argentina limonene (9.7%), δ-elemene (10.6%), β-caryophyllene (27.7%), α-humulene (5.9%), patchoulene (9.2%), germacrene D (13.7%), viridiflorol (9.2%) Insecticidal (Tribolium castaneum, ED50 0.15 mg/cm2) [55]
E. laevigatum (aerial parts) Roraima, Brazil germacrene D (8.6%), selina-3,7(11)-diene (6.1%), spathulenol (5.4%), globulol (16.2%), laevigatin (23.6%) none reported [51]
E. laevigatum (leaves) Rio Grande do Sul, Brazil germacrene D (11.7%), bicyclogermacrene (9.3%), laevigatin (59.6%) none reported [68]
E. macrophyllum (aerial parts) Chapada dos Guimarães, Brazil sabinene (46.7%), limonene (23.3%) none reported [51]
E. marginatum (aerial parts Ananindeua, Pará, Brazil ar-curcumene (6.8%), α-zingiberene (57.5%), β-sesquiphellandrene (7.1%), (E)-γ-bisabolene (9.7%) none reported [51]
E. marginatum (aerial parts Roraima, Brazil α-gurjunene (19.5%), germacrene D (14.8%), α-selinene (9.0%), (E)-γ-bisabolene (5.0%) none reported [51]
E. odoratum (aerial parts) Thitsanulok, Thailand α-pinene (8.4%), β-pinene (5.6%), pregeijerene (17.6%), germacrene D (11.1%), β-caryophyllene (7.3%), vestitenone (6.5%) none reported [69]
E. odoratum (leaves) Lagos, Nigeria α-pinene (42.2%), β-pinene (10.6%), β-caryophyllene (5.4%), germacrene D (9.7%), β-copaen-4α-ol (9.4%) Antibacterial (Bacillus cereus, MIC 39 μg/mL), antifungal (Aspergillus niger, MIC 78 μg/mL) [70]
E. odoratum (aerial parts) Western Ghats, India cis-sabinene hydrate (5.7%), pregeijerene (14.2%), epi-cubebol (9.8%), cubebol (8.6%) none reported [71]
E. squalidum (aerial parts) Amapá, Brazil β-caryophyllene (6.2%), germacrene D (21.6%), bicyclogermacrene (6.0%), spathulenol (14.2%), globulol (25.1%) none reported [51]
E. squalidum (aerial parts) Tocantins, Brazil limonene (6.6%), β-caryophyllene (9.6%), germacrene D (10.4%), caryophyllene oxide (30.1%) none reported [51]
E. subhastatum (leaves) Córdoba, Argentina α-pinene (11.0%), β-pinene (5.9%), p-cymene (24.8%), α-copaene (5.1%), α-humulene (5.1%) none reported [52]
E. triplinerve (leaves) Lucknow, India δ-elemene (5.9%), β-caryophyllene (14.7%), selina-4(15),7(11)-dien-8-one none reported [72]
E. viscidum (aerial parts) San Luis, Argentina 6-methyl-5-hepten-2-one (18.2%), spathulenol (25.2%) Insecticidal (Tribolium castaneum, ED50 > 0.212 mg/cm2) [55]

2.2. Eurybia macrophylla (L.) Cass.

Monoterpene hydrocarbons, limonene (28.66%), β-pinene (8.57%), and terpinolene (5.35%), and germacrane sesquiterpenes, germacrene D (19.81%), and germacrene B (7.07%), were the major components in the essential oil of E. macrophylla (Table 3). To our knowledge, there are no reports on essential oil compositions of any Eurybia species.

Table 3.

Chemical composition of the essential oil of Eurybia macrophylla (L.) Cass.

RI a RI b Compound % ± SD RI a RI b Compound % ± SD
801 797 (3Z)-Hexenal 0.06 ± 0.01 1387 1389 β-Elemene 1.48 ± 0.04
802 801 Hexanal 0.31 ± 0.05 1418 1417 β-Caryophyllene 4.60 ± 0.07
850 846 (2E)-Hexenal 1.44 ± 0.06 1427 1434 γ-Elemene 3.16 ± 0.01
865 863 1-Hexanol 0.11 ± 0.02 1431 1432 trans-α-Bergamotene 0.05 ± 0.02
924 924 α-Thujene 0.16 ± 0.01 1454 1452 α-Humulene 0.64 ± 0.01
932 974 α-Pinene 3.12 ± 0.04 1473 1471 Massoia lactone 0.35 ± 0.04
948 946 Camphene 0.60 ± 0.00 1480 1484 Germacrene D 19.81 ± 0.20
971 969 Sabinene 0.15 ± 0.02 1487 1489 β-Selinene 0.31 ± 0.05
977 974 β-Pinene 8.57 ± 0.07 1494 1500 Bicyclogermacrene 1.95 ± 0.02
988 988 Myrcene 1.79 ± 0.02 1497 1500 α-Muurolene 0.16 ± 0.03
989 988 Dehydro-1,8-cineole 0.28 ± 0.01 1516 1522 δ-Cadinene 0.19 ± 0.02
1006 1002 α-Phellandrene 0.88 ± 0.01 1536 1537 α-Cadinene 0.10 ± 0.02
1016 1014 α-Terpinene 0.16 ± 0.02 1557 1559 Germacrene B 7.07 ± 0.07
1024 1020 p-Cymene 0.15 ± 0.01 1575 1577 Spathulenol 0.10 ± 0.01
1028 1024 Limonene 28.66 ± 0.33 1581 1582 Caryophyllene oxide 0.38 ± 0.01
1030 1025 β-Phellandrene 0.75 ± 0.03 1595 1592 Viridiflorol 0.23 ± 0.03
1034 1032 (Z)-β-Ocimene 0.18 ± 0.00 1627 1629 iso-Spathulenol 0.08 ± 0.01
1044 1044 (E)-β-Ocimene 2.14 ± 0.02 1641 1638 τ-Cadinol 0.09 ± 0.02
1057 1054 γ-Terpinene 0.37 ± 0.01 1643 1640 τ-Murrolol 0.12 ± 0.03
1084 1086 Terpinolene 5.35 ± 0.08 1646 1644 α-Muurolol (=δ-Cadinol) 0.10 ± 0.01
1112 1114 (E)-4,8-Dimethylnona-1,3,7-triene 0.35 ± 0.01 1654 1652 α-Cadinol 0.47 ± 0.02
1124 1118 cis-p-Menth-2-en-1-ol 0.72 ± 0.01 1832 1835 Neophytadiene 0.05 ± 0.02
1142 1136 trans-p-Menth-2-en-1-ol 0.44 ± 0.01 1838 1841 Phytone 0.05 ± 0.02
1187 1179 p-Cymen-8-ol 0.21 ± 0.03 Green leaf volatiles 1.91
1195 1186 α-Terpineol 0.06 ± 0.02 Monoterpene hydrocarbons 53.03
1197 1195 cis-Piperitol 0.15 ± 0.02 Oxygenated monoterpenoids 2.30
1209 1207 trans-Piperitol 0.17 ± 0.01 Sesquiterpene hydrocarbons 40.03
1283 1287 Bornyl acetate 0.27 ± 0.10 Oxygenated sesquiterpenoids 1.59
1292 1293 Undecan-2-one 0.05 ± 0.01 Diterpenoids 0.11
1333 1335 δ-Elemene 0.50 ± 0.00 Others 0.75
Total Identified 99.72

a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases.

2.3. Eutrochium purpureum (L.) E.E. Lamont (syn. Eupatorium purpureum L.)

The major components in the essential oil of E. purpureum were the green leaf volatiles (2E)-hexenal (60.59%) and hexanal (6.78%), along with the aromatic compounds eugenol (11.68%) and methyl salicylate (10.31%; Table 4). There have apparently been no previous reports on the essential oil composition of E. purpureum or any other Eutrochium species. There are numerous reports on Eupatorium essential oils, however (see above).

Table 4.

Chemical composition of the essential oil of Eutrochium purpureum (L.) E.E. Lamont.

RI a RI b Compound % ± SD RI a RI b Compound % ± SD
801 797 (3Z)-Hexenal 1.01 ± 0.11 1206 1201 Decanal 0.37 ± 0.05
802 801 Hexanal 6.78 ± 0.17 1351 1356 Eugenol 11.68 ± 0.14
850 946 (2E)-Hexenal 60.59 ± 1.00 1417 1417 β-Caryophyllene 0.24 ± 0.02
865 963 1-Hexanol 2.35 ± 0.41 1479 1484 Germacrene D 0.67 ± 0.10
931 932 α-Pinene 1.48 ± 0.09 1559 1561 (E)-Nerolidol 0.50 ± 0.01
943 --- Unidentified c 0.56 ± 0.07 Green leaf volatiles 71.47
1004 998 Octanal 0.33 ± 0.04 Monoterpene hydrocarbons 2.36
1005 1004 (3Z)-Hexenyl acetate 0.72 ± 0.12 Sesquiterpene hydrocarbons 0.91
1028 1024 Limonene 0.88 ± 0.07 Oxygenated sesquiterpenoids 0.50
1045 1036 Benzene acetaldehyde 0.60 ± 0.03 Benzenoids 22.59
1105 1100 Nonanal 0.91 ± 0.19 Fatty aldehydes 1.61
1192 1190 Methyl salicylate 10.31 ± 0.18 Total Identified 99.44

a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases. c MS(EI): 208(8%), 97(100%), 96(17%), 86(9%), 69(12%), 56(22%), 55(64%), 43(18%).

2.4. Polymnia canadensis L.

α-Phellandrene (28.30%), α-pinene (19.71%), and germacrene D (11.42%) were the major components in the essential oil from the aerial parts of P. canadensis (Table 5). The volatile chemical profile of P. canadensis in this current work is in marked contrast to our previous report on this species [45]. Previous samples were rich in the sesquiterpene hydrocarbons germacrene D (63.6% and 44.5%) and β-caryophyllene (15.9% and 14.8%). The differences in compositions are likely due to seasonal variation (the current sample was collected in July, 2018, while the previous samples were collected in September, 2015, and December, 2016, respectively). We cannot rule out, however, chemical profile differences attributable to environmental differences or biotic differences (e.g., genetics, herbivory, or pathogen stress).

Table 5.

Chemical composition of the essential oil of Polymnia canadensis L.

RI a RI b Compound % ± SD RI a RI b Compound % ± SD
802 801 Hexanal 0.28 ± 0.04 1417 1417 β-Caryophyllene 3.05 ± 0.02
811 796 2-Hexanol 0.17 ± 0.01 1428 1430 β-Copaene 0.09 ± 0.02
850 850 (3Z)-Hexenol 4.31 ± 0.16 1446 1453 Geranyl acetone 0.17 ± 0.01
861 854 (2E)-Hexenol 0.08 ± 0.01 1454 1452 α-Humulene 1.14 ± 0.00
864 863 1-Hexanol 0.30 ± 0.02 1458 1458 allo-Aromadendrene 0.17 ± 0.02
921 921 Tricyclene 0.07 ± 0.01 1479 1484 Germacrene D 11.42 ± 0.01
924 924 α-Thujene 0.06 ± 0.01 1484 1486 Phenylethyl 2-methylbutanoate 0.18 ± 0.04
932 932 α-Pinene 19.71 ± 0.11 1487 1489 β-Selinene 0.41 ± 0.03
948 946 Camphene 0.80 ± 0.01 1490 1490 Phenylethyl 3-methylbutanoate 0.09 ± 0.01
971 969 Sabinene 1.96 ± 0.00 1493 1500 Bicyclogermacrene 1.03 ± 0.00
976 974 β-Pinene 0.87 ± 0.01 1496 1500 α-Muurolene 0.12 ± 0.01
987 988 Myrcene 0.53 ± 0.01 1502 1509 Lavandulyl 3-methylbutanoate 0.76 ± 0.01
1006 1002 α-Phellandrene 28.30 ± 0.16 1511 1513 γ-Cadinene 0.21 ± 0.01
1016 1014 α-Terpinene 0.09 ± 0.01 1515 1518 Bornyl 3-methylbutanoate 0.39 ± 0.01
1024 1020 p-Cymene 4.42 ± 0.02 1516 1522 δ-Cadinene 0.36 ± 0.01
1028 1024 Limonene 0.38 ± 0.01 1527 1529 Kessane 0.59 ± 0.04
1030 1025 β-Phellandrene 0.06 ± 0.02 1535 1534 Liguloxide 0.84 ± 0.01
1034 1032 (Z)-β-Ocimene 0.17 ± 0.01 1559 1561 (E)-Nerolidol 1.71 ± 0.01
1044 1044 (E)-β-Ocimene 0.19 ± 0.01 1565 1565 Thymyl 2-methylbutanoate 0.69 ± 0.01
1057 1054 γ-Terpinene 0.09 ± 0.01 1568 1570 Neryl 2-methylbutanoate 0.76 ± 0.01
1069 1065 cis-Sabinene hydrate 0.08 ± 0.01 1575 1574 Germacrene D-4β-ol 0.18 ± 0.01
1084 1086 Terpinolene 0.07 ± 0.01 1581 1582 Caryophyllene oxide 0.21 ± 0.02
1099 1095 Linalool tr c 1608 1613 Copaborneol 0.18 ± 0.05
1101 1098 trans-Sabinene hydrate tr 1641 1638 τ-Cadinol 0.59 ± 0.02
1141 1135 trans-Pinocarveol 0.08 ± 0.02 1654 1652 α-Cadinol 0.81 ± 0.02
1145 1140 trans-Verbenol 0.14 ± 0.01 1657 1658 Selin-11-en-4α-ol 0.15 ± 0.01
1163 1165 Lavandulol 0.12 ± 0.01 1684 1685 Germacra-4(15),5,10(14)-trien-1α-ol 0.49 ± 0.03
1172 1165 Borneol 0.11 ± 0.01 1693 1695 6-epi-Shyobunol 0.20 ± 0.02
1180 1174 Terpinen-4-ol 0.26 ± 0.00 2227 d Kauran-16β-ol 3.48 ± 0.01
1208 1204 Verbenone 0.06 ± 0.01 2243 d Kauran-16α-ol 0.17 ± 0.02
1228 1232 Thymol methyl ether 2.89 ± 0.01 Green leaf volatiles 5.13
1342 1345 7-epi-Silphiperfol-5-ene 0.59 ± 0.02 Monoterpene hydrocarbons 57.78
1351 1356 Eugenol 0.18 ± 0.03 Oxygenated monoterpenoids 6.34
1367 1369 Cyclosativene 0.08 ± 0.01 Sesquiterpene hydrocarbons 18.92
1367 1371 Longicyclene tr Oxygenated sesquiterpenoids 5.96
1372 1377 Silphiperol-6-ene 0.06 ± 0.00 Diterpenoids 3.65
1374 1374 α-Copaene 0.12 ± 0.01 Benzenoids 0.45
1380 1382 Modheph-2-ene 0.11 ± 0.00 Others 0.17
1386 1387 β-Cubebene 0.06 ± 0.01 Total Identified 98.40
1387 1389 β-Elemene 0.50 ± 0.01

a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases. c tr = “trace” (<0.05%). d Assignment tentative; based on MS only.

2.5. Rudbeckia laciniata L.

Monoterpene hydrocarbons dominated the essential oil of R. laciniata (Table 6). The major components were limonene (58.07%), α-pinene (10.18%), β-pinene (9.21%), and myrcene (5.26%). While R. laciniata essential oil was rich in monoterpene hydrocarbons, the essential oils of R. fulgida and R. hirta were rich in sesquiterpene hydrocarbons [43]. The major components in R. fulgida essential oil were germacrene D (30.1%), δ-cadinene (17.8%), β-caryophyllene (10.0%), and γ-muurolene (8.9%), along with (E)-β-ocimene (6.2%) and (2E)-hexenal (6.0%). Similarly, the major components of R. hirta essential oil were germacrene D (23.6%), δ-cadinene (16.2%), β-caryophyllene (4.7%), γ-muurolene (8.1%), as well as (E)-β-ocimene (15.2%) and (2E)-hexenal (20.2%) [43]. The leaf essential oil of Rudbeckia triloba, collected in Bucharest, Romania, was rich in monoterpene hydrocarbons, α-pinene (46.0%), sabinene (9.6%), and β-phellandrene (24.6%), along with germacrene D (6.1%), but devoid of limonene [73]. Thus, there do not seem to be any consistent chemical markers for the Rudbeckia genus.

Table 6.

Chemical composition of the essential oil of Rudbeckia laciniata L.

RI a RI b Compound % ± SD RI a RI b Compound % ± SD
802 801 Hexanal 0.05 ± 0.00 1206 1204 Verbenone 0.10 ± 0.03
810 796 2-Hexanol 0.34 ± 0.01 1218 1215 trans-Carveol 0.25 ± 0.06
922 921 Tricyclene 0.10 ± 0.00 1232 1226 cis-Carveol 0.07 ± 0.02
924 924 α-Thujene 0.10 ± 0.01 1243 1239 Carvone 0.49 ± 0.02
932 932 α-Pinene 10.18 ± 0.06 1283 1287 Bornyl acetate 2.68 ± 0.02
948 946 Camphene 2.24 ± 0.02 1349 1350 α-Longipinene 0.08 ± 0.02
971 969 Sabinene 0.90 ± 0.01 1368 1369 Cyclosativene 0.06 ± 0.02
977 974 β-Pinene 9.21 ± 0.05 1375 1374 α-Copaene 0.16 ± 0.01
988 988 Myrcene 5.26 ± 0.02 1391 1390 Sativene 0.05 ± 0.01
1004 1003 p-Mentha-1(7),8-diene 0.07 ± 0.01 1417 1419 β-Ylangene tr
1024 1020 p-Cymene 0.11 ± 0.01 1418 1417 β-Caryophyllene 0.43 ± 0.03
1029 1024 Limonene 58.07 ± 0.47 1428 1434 γ-Elemene 0.07 ± 0.00
1030 1025 β-Phellandrene 0.74 ± 0.08 1431 1432 trans-α-Bergamotene 0.19 ± 0.02
1034 1032 (Z)-β-Ocimene 0.09 ± 0.01 1454 1452 α-Humulene 0.12 ± 0.01
1044 1044 (E)-β-Ocimene 1.07 ± 0.03 1473 1478 γ-Muurolene 0.05 ± 0.01
1069 1067 cis-Linalool oxide (furanoid) 0.19 ± 0.00 1480 1484 Germacrene D 2.52 ± 0.02
1085 1084 trans-Linalool oxide (furanoid) 0.05 ± 0.01 1482 1484 (Z,Z)-α-Farnesene 0.05 ± 0.01
1121 1119 trans-p-Mentha-2,8-dien-1-ol 0.37 ± 0.01 1494 1500 Bicyclogermacrene 0.06 ± 0.01
1130 1131 Limona ketone 0.06 ± 0.01 1497 1500 α-Muurolene 0.07 ± 0.01
1132 1132 cis-Limonene oxide 0.20 ± 0.00 1514 1514 Cubebol 0.12 ± 0.01
1136 1133 cis-p-Mentha-2,8-dien-1-ol 0.26 ± 0.01 1517 1522 δ-Cadinene 0.15 ± 0.01
1136 1137 trans-Limonene oxide 0.27 ± 0.01 1575 1574 Germacra-1(10),5-dien-4β-ol 0.20 ± 0.02
1138 1135 Nopinone 0.06 ± 0.01 1581 1582 Caryophyllene oxide 0.19 ± 0.03
1140 1135 trans-Pinocarveol 0.19 ± 0.03 1591 1594 Salvial-4(14)-en-1-one tr
1145 1140 trans-Verbenol 0.07 ± 0.01 1601 1594 Carotol 0.18 ± 0.01
1162 1160 Pinocarvone 0.12 ± 0.00 1620 1611 Germacra-1(10),5-dien-4α-ol 0.20 ± 0.01
1171 1165 Borneol 0.11 ± 0.02 Green leaf volatiles 0.39
1178 1179 2-Isopropenyl-5-methyl-4-hexenal 0.08 ± 0.01 Monoterpene hydrocarbons 88.15
1180 1174 Terpinen-4-ol 0.11 ± 0.02 Oxygenated monoterpenoids 6.18
1187 1183 Cryptone 0.10 ± 0.01 Sesquiterpene hydrocarbons 4.06
1195 1195 Myrtenal 0.23 ± 0.02 Oxygenated sesquiterpenoids 0.89
1197 1200 trans-Dihydrocarvone tr c Total Identified 99.67
1199 1195 cis-Piperitol 0.11 ± 0.07

a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases. c tr = “trace” (<0.05%).

2.6. Silphium integrifolium Michx.

The major components in the essential oil from the aerial parts of S. integrifolium were α-pinene (58.59%) and β-pinene (14.69%), followed by myrcene (9.70%; Table 7). Kowalski has extensively examined the essential oils of S. integrifolium as well as S. trifoliatum cultivated in Poland [74,75,76,77,78]. The leaf essential oil of S. integrifolium from Poland had α-pinene (7.3–9.8%), germacrene D (4.0–28.4%), allo-aromadendrene (3.7–8.5%), caryophyllene oxide (6.1–12.4%), and silphiperfol-6-en-5-one (3.7–5.1%) [74,75]; while the floral essential oil was made up of α-pinene (13.4–14.0%), camphene (5.3–5.7%), trans-verbenol (5.2–6.3%), bornyl acetate (6.5–7.0%), and allo-aromadendrene (5.6–6.1%) [74,77]. Thus, there are major qualitative and quantitative differences between the samples from Alabama and from Poland.

Table 7.

Chemical composition of the essential oil of Silphium integrifolium Michx.

RI a RI b Compound % ± SD RI a RI b Compound % ± SD
800 797 (3Z)-Hexenal tr c 1387 1387 β-Cubebene tr
801 801 Hexanal 0.07 ± 0.02 1388 1389 β-Elemene 0.06 ± 0.01
810 796 2-Hexanol tr 1417 1419 β-Ylangene tr
849 846 (2E)-Hexenal 0.33 ± 0.02 1418 1417 β-Caryophyllene 2.50 ± 0.02
850 844 (3E)-Hexenol 0.27 ± 0.04 1429 1430 β-Copaene tr
922 921 Tricyclene 0.12 ± 0.00 1432 1432 trans-α-Bergamotene 0.13 ± 0.02
925 924 α-Thujene 0.19 ± 0.00 1454 1452 α-Humulene 1.07 ± 0.02
933 932 α-Pinene 58.59 ± 0.21 1469 1471 4,5-di-epi-Aristolochene 0.05 ± 0.00
947 945 α-Fenchene tr 1473 1478 γ-Muurolene 0.06 ± 0.01
949 946 Camphene 2.44 ± 0.02 1480 1484 Germacrene D 2.95 ± 0.01
971 969 Sabinene 1.78 ± 0.00 1482 1484 (Z,Z)-α-Farnesene 0.10 ± 0.01
977 974 β-Pinene 14.69 ± 0.07 1488 1489 β-Selinene 0.15 ± 0.01
988 988 Myrcene 9.70 ± 0.02 1491 1493 trans-Muurola-4(14),5-diene tr
1004 1003 p-Mentha-1(7),8-diene tr 1494 1500 Bicyclogermacrene 0.08 ± 0.00
1024 1020 p-Cymene tr 1497 1500 α-Muurolene tr
1028 1024 Limonene 1.76 ± 0.01 1512 1513 γ-Cadinene tr
1030 1025 β-Phellandrene 0.31 ± 0.03 1517 1522 δ-Cadinene 0.10 ± 0.02
1034 1032 (Z)-β-Ocimene 0.05 ± 0.01 1575 1574 Germacra-1(10),5-dien-4β-ol 0.27 ± 0.02
1044 1044 (E)-β-Ocimene 0.44 ± 0.03 1581 1582 Caryophyllene oxide 0.47 ± 0.01
1057 1054 γ-Terpinene tr 1609 1608 Humulene epoxide II 0.13 ± 0.01
1085 1086 Terpinolene tr 2019 2026 (E,E)-Geranyl linalool 0.06 ± 0.01
1099 1099 α-Pinene oxide 0.10 ± 0.01 2228 2237 7α-Hydroxymanool 0.16 ± 0.02
1112 1113 (E)-4,8-Dimethylnona-1,3,7-triene tr 2300 2300 Tricosane tr
1126 1122 α-Campholenal tr 2500 2500 Pentacosane 0.16 ± 0.01
1140 1135 trans-Pinocarveol tr 2700 2700 Heptacosane 0.16 ± 0.02
1145 1140 trans-Verbenol 0.11 ± 0.02 Green leaf volatiles 0.66
1162 1160 Pinocarvone tr Monoterpene hydrocarbons 90.09
1180 1174 Terpinen-4-ol tr Oxygenated monoterpenoids 0.38
1195 1195 Myrtenal 0.06 ± 0.01 Sesquiterpene hydrocarbons 7.37
1206 1204 Verbenone 0.10 ± 0.02 Oxygenated sesquiterpenoids 1.09
1368 1369 Cyclosativene 0.06 ± 0.00 Others 0.32
1375 1374 α-Copaene 0.08 ± 0.01 Total Identified 99.90
1383 1387 β-Bourbonene tr

a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases. c tr = “trace” (<0.05%).

2.7. Smallanthus uvedalia (L.) Mack.

Monoterpene hydrocarbons dominated the essential oil of S. uvedalia (Table 8). α-Pinene (62.56%) was the major component, followed by limonene (11.43%) and β-pinene (6.00%). The chemical composition of this monoterpene-rich essential oil is very different from the compositions collected previously by us [45]. The previous samples, collected in February 2016, were dominated by β-caryophyllene (24.5% and 16.5%) and caryophyllene oxide (19.8% and 14.2%). The sample of S. uvedalia in this present work was collected in September 2018. The differences in composition may be due to seasonal variation, genetic differences, or environmental stresses. Nevertheless, α-pinene has dominated the essential oil compositions of other Smallanthus species. For example, α-pinene was the major component in the essential oil of S. maculatus from Costa Rica (32.9% α-pinene), which was also rich in camphene (5.4%), β-pinene (7.1%), β-caryophyllene (10.7%), germacrene D (13.7%), and bicyclogermacrene (6.6%) [79]. Likewise, the essential oil of S. quichensis from Costa Rica was also dominated by α-pinene (35.5–64.5%) with lesser concentrations of α-phellandrene (0.1–9.0%), p-cymene (0.1–11.5%), limonene (2.1–5.8%), β-phellandrene (up to 9.2%), and 1,8-cineole (up to 9.7%) [80]. In contrast, S. sonchifolia essential oil, grown in Sichuan, China, was made up of β-phellandrene (26.3%), β-bourbonene (10.2%), β-caryophyllene (14.0%), and β-cubebene (17.6%) [81].

Table 8.

Chemical composition of the essential oil of Smallanthus uvedalia (L.) Mack.

RI a RI b Compound % ± SD RI a RI b Compound % ± SD
795 801 2-Methylhept-2-ene 0.10 ± 0.00 1207 1204 Verbenone 0.09 ± 0.01
801 801 Hexanal 0.86 ± 0.16 1346 1345 α-Cubebene 0.15 ± 0.04
850 846 (2E)-Hexenal 1.40 ± 0.09 1382 1387 β-Bourbonene 0.15 ± 0.02
865 863 1-Hexanol 0.22 ± 0.01 1418 1417 β-Caryophyllene 3.80 ± 0.07
922 921 Tricyclene 0.08 ± 0.00 1454 1452 α-Humulene 0.36 ± 0.02
924 924 α-Thujene 1.28 ± 0.02 1473 1478 γ-Muurolene 0.56 ± 0.12
932 932 α-Pinene 62.56 ± 0.79 1512 1513 γ-Cadinene 0.29 ± 0.09
948 946 Camphene 1.35 ± 0.01 1517 1522 δ-Cadinene 0.63 ± 0.03
971 969 Sabinene 0.16 ± 0.03 1536 1537 α-Cadinene 0.22 ± 0.04
977 974 β-Pinene 6.00 ± 0.09 1576 1577 Spathulenol 0.58 ± 0.11
988 988 Myrcene 2.43 ± 0.07 1581 1582 Caryophyllene oxide 1.37 ± 0.02
1024 1020 p-Cymene 0.15 ± 0.01 Green leaf volatiles 2.48
1028 1024 Limonene 11.43 ± 0.11 Monoterpene hydrocarbons 88.28
1030 1025 β-Phellandrene 0.70 ± 0.10 Oxygenated monoterpenoids 0.74
1044 1044 (E)-β-Ocimene 1.87 ± 0.09 Sesquiterpene hydrocarbons 6.16
1057 1054 γ-Terpinene 0.26 ± 0.01 Oxygenated sesquiterpenoids 1.95
1126 1122 α-Campholenal 0.29 ± 0.01 Others 0.10
1140 1135 trans-Pinocarveol 0.23 ± 0.04 Total Identified 99.71
1145 1140 trans-Verbenol 0.14 ± 0.05

a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases.

2.8. Solidago altissima L. (syn. Solidago canadensis L.)

The major components in the essential oil from the aerial parts of S. altissima (syn. S. canadensis) from Alabama were α-pinene (13.91%), sabinene (14.25%), myrcene (20.29%), bornyl acetate (14.44%), and germacrene D (10.67%; Table 9). Previous examinations of S. canadensis essential oils have shown germacrene D to be one of the most abundant components (Table 10). However, Weyerstahl and co-workers [82] found curlone (23.5%) to be a major component of S. canadensis from Poland, Schmidt and co-workers [83] found cyclocolorenone (38%) to be a major component in S. canadensis from northern Germany, and Kasali and co-workers [84] found 6-epi-β-cubebene to be a major component (20.5%) in S. canadensis essential oil from Poland. Interestingly, none of these compounds was detected in the sample of S. altissima essential oil from Alabama.

Table 9.

Chemical composition of the essential oil of Solidago altissima L.

RI a RI b Compound % ± SD RI a RI b Compound % ± SD
802 801 Hexanal 0.17 ± 0.01 1382 1387 β-Bourbonene tr
850 846 (2E)-Hexenal 1.21 ± 0.03 1386 1387 β-Cubebene 0.10 ± 0.01
921 921 Tricyclene 0.06 ± 0.00 1387 1389 β-Elemene 0.18 ± 0.00
924 924 α-Thujene 1.30 ± 0.00 1416 1419 β-Ylangene 0.14 ± 0.01
931 932 α-Pinene 13.91 ± 0.04 1418 1417 β-Caryophyllene 0.50 ± 0.03
948 946 Camphene 2.41 ± 0.01 1428 1430 β-Copaene 0.14 ± 0.01
971 969 Sabinene 14.25 ± 0.03 1454 1452 α-Humulene 0.17 ± 0.00
976 974 β-Pinene 4.62 ± 0.02 1473 1478 γ-Muurolene 0.59 ± 0.03
988 988 Myrcene 20.29 ± 0.04 1477 1483 α-Amorphene 0.12 ± 0.02
1005 1004 (3Z)-Hexenyl acetate tr c 1479 1484 Germacrene D 10.67 ± 0.03
1006 1002 α-Phellandrene 2.84 ± 0.02 1487 1489 β-Selinene tr
1016 1014 α-Terpinene 0.10 ± 0.00 1490 1495 γ-Amorphene 0.59 ± 0.01
1024 1020 p-Cymene 2.26 ± 0.00 1494 1500 Bicyclogermacrene 0.18 ± 0.00
1028 1024 Limonene 1.27 ± 0.01 1496 1500 α-Muurolene 0.14 ± 0.01
1030 1025 β-Phellandrene 0.35 ± 0.01 1511 1513 γ-Cadinene 0.30 ± 0.01
1044 1044 (E)-β-Ocimene 0.08 ± 0.01 1513 1514 Cubebol 0.06 ± 0.02
1057 1054 γ-Terpinene 0.38 ± 0.00 1516 1522 δ-Cadinene 0.68 ± 0.02
1069 1065 cis-Sabinene hydrate 0.24 ± 0.00 1535 1537 α-Cadinene 0.09 ± 0.01
1084 1086 Terpinolene 0.15 ± 0.01 1547 1548 Elemol 0.06 ± 0.01
1090 1090 6,7-Epoxymyrcene 0.05 ± 0.00 1575 1574 Germacra-1(10),5-dien-4β-ol 0.14 ± 0.01
1099 1099 α-Pinene oxide tr 1581 1582 Caryophyllene oxide 0.06 ± 0.01
1101 1098 trans-Sabinene hydrate 0.15 ± 0.00 1591 1594 Salvial-4(14)-en-1-one 0.06 ± 0.01
1105 1100 Nonanal tr 1619 1611 Germacra-1(10),5-dien-4α-ol 0.12 ± 0.01
1112 1113 (E)-4,8-Dimethylnona-1,3,7-triene 0.11 ± 0.03 1627 1629 iso-Spathulenol 0.20 ± 0.01
1124 1124 cis-p-Menth-2-en-1-ol 0.05 ± 0.00 1641 1638 τ-Cadinol 0.09 ± 0.02
1180 1174 Terpinen-4-ol 0.73 ± 0.01 1643 1640 τ-Murrolol 0.14 ± 0.01
1195 1186 α-Terpineol 0.06 ± 0.01 1645 1644 α-Muurolol (=δ-Cadinol) 0.10 ± 0.01
1203 1202 cis-Sabinol 0.50 ± 0.01 1654 1652 α-Cadinol 0.41 ± 0.03
1219 1219 cis-Sabinene hydrate acetate 0.15 ± 0.01 Green leaf volatiles 1.38
1283 1287 Bornyl acetate 14.44 ± 0.02 Monoterpene hydrocarbons 64.26
1333 1335 δ-Elemene 0.05 ± 0.00 Oxygenated monoterpenoids 16.37
1345 1345 α-Cubebene 0.12 ± 0.00 Sesquiterpene hydrocarbons 14.90
1367 1373 α-Ylangene tr Oxygenated sesquiterpenoids 1.44
1368 1373 Linalyl isobutyrate tr Others 0.11
1374 1374 α-Copaene 0.05 ± 0.00 Total Identified 98.45

a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases. c tr = “trace” (<0.05%).

Table 10.

Comparison of the major components in Solidago altissima (syn. S. canadensis) essential oils.

Component Source of S. altissima (S. canadensis)
Commercial (Young Living)
[85]
Bimtal, India
[86]
Bimtal, India
[87]
Slovakia
[88]
Moscow, Russia
[89]
Slovakia
[90]
Hungary
[91]
Giza, Egypt
[92]
Poland
[82]
Alabama (This Work)
α-Pinene 13.3 5.0 0.4 1.8–36.3 28.1 11.6 4.6 29.2 14.7 13.9
Sabinene 8.0 2.4 0.3 --- 0.5 3.9 0.1 --- 0.2 14.2
β-Pinene --- 1.2 0.2 0.5–6.5 2.8 3.1 1.2 4.8 1.5 4.6
Myrcene 6.3 2.8 --- --- 7.3 --- tr 13.7 4.2 20.2
Limonene 11.0 12.5 4.2 4.3-9.0 7.0 12.5 1.0 9.6 9.3 1.3
Bornyl acetate 4.3 2.1 3.4 --- 7.3 6.3 13.4 6.2 1.3 14.4
Germacrene D 34.4 56.7 64.1 0.0–11.1 39.2 34.9 11.0 10.3 19.8 10.6

2.9. Xanthium strumarium L.

The major volatile components from the aerial parts of X. strumarium were limonene (48.23%), myrcene (14.31%), germacrene D (13.92%), (2E)-hexenal (5.79%), and sabinene (4.89%; Table 11). The compositions of Xanthium strumarium essential oils from the Middle East have been reported, including Iran [93,94] and Pakistan [95]. The leaf essential oil from Khoramabad, Iran, was composed largely of limonene (24.7%), borneol (10.6%), bornyl acetate (5.9%), and β-cubebene (6.3%) [93]. The leaf essential oil from Zabol, Iran, was qualitatively similar, limonene (20.3%), borneol (11.6%), bornyl acetate (4.5%), and β-cubebene (3.8%), but also contained a large concentration of cis-β-guaiene (34.2%), which was not observed in any other X. strumarium essential oils [94]. The leaf essential oil of X. strumarium from Lahore, Pakistan, contained limonene (5.7%), β-caryophyllene (17.5%), spathulenol (6.1%), and α-cadinol (6.7%) as major components [95]. The differences in chemical compositions may be related to different genetic factors as well as geographical location; Tropicos® currently lists 13 subordinate taxa for X. strumarium [14].

Table 11.

Chemical composition of the essential oil of Xanthium strumarium L.

RI a RI b Compound % ± SD RI a RI b Compound % ± SD
793 788 1-Octene 0.09 ± 0.01 1417 1417 β-Caryophyllene 0.93 ± 0.04
801 797 (3Z)-Hexenal 0.11 ± 0.01 1428 1430 β-Copaene 0.06 ± 0.01
802 801 Hexanal 0.75 ± 0.07 1454 1452 α-Humulene 0.49 ± 0.03
859 846 (2E)-Hexenal 5.79 ± 0.03 1479 1484 Germacrene D 13.92 ± 0.05
865 863 1-Hexanol 0.12 ± 0.01 1487 1489 β-Selinene 0.11 ± 0.01
921 921 Tricyclene 0.05 ± 0.01 1493 1500 Bicyclogermacrene 0.29 ± 0.01
924 924 α-Thujene 0.08 ± 0.03 1496 1500 α-Muurolene 0.13 ± 0.01
931 932 α-Pinene 0.80 ± 0.01 1511 1513 γ-Cadinene 0.19 ± 0.01
948 946 Camphene 0.95 ± 0.02 1516 1522 δ-Cadinene 0.27 ± 0.03
971 969 Sabinene 4.89 ± 0.02 1575 1547 Germacra-1(10),5-dien-4β-ol 0.21 ± 0.01
976 974 β-Pinene 0.30 ± 0.01 1581 1582 Caryophyllene oxide 0.23 ± 0.01
978 974 1-Octen-3-ol 0.20 ± 0.02 1641 1638 τ-Cadinol 0.31 ± 0.02
987 988 Myrcene 14.31 ± 0.04 1643 1640 τ-Muurolol 0.23 ± 0.02
1004 1003 p-Mentha-1(7),8-diene 0.05 ± 0.01 1654 1652 α-Cadinol 0.59 ± 0.05
1016 1014 α-Terpinene 0.06 ± 0.01 1663 1668 ar-Turmerone 0.10 ± 0.01
1028 1024 Limonene 48.23 ± 0.22 1693 1688 Shyobunol 0.27 ± 0.03
1030 1025 β-Phellandrene 0.90 ± 0.03 1932 1931 Beyerene 0.64 ± 0.02
1044 1044 (E)-β-Ocimene 0.10 ± 0.02 2105 2106 (E)-Phytol 0.25 ± 0.03
1057 1054 γ-Terpinene 0.16 ± 0.01 Green leaf volatiles 6.77
1069 1067 cis-Linalool oxide (furanoid) 0.06 ± 0.01 Monoterpene hydrocarbons 70.87
1099 1095 Linalool 1.16 ± 0.01 Oxygenated monoterpenoids 2.22
1180 1174 Terpinen-4-ol 0.39 ± 0.01 Sesquiterpene hydrocarbons 16.58
1219 1217 β-Cyclocitral 0.11 ± 0.02 Oxygenated sesquiterpenoids 1.95
1283 1287 Bornyl acetate 0.56 ± 0.01 Diterpenoids 0.89
1351 1356 Eugenol 0.28 ± 0.03 Benzenoids 0.28
1386 1387 β-Cubebene 0.10 ± 0.02 Others 0.29
1416 1419 β-Ylangene 0.08 ± 0.03 Total Identified 99.85

a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases.

2.10. Antifungal Screening

Depending on material available, the essential oils were screened for antifungal activity against the opportunistic fungal pathogens Aspergillus niger, Candida albicans, and Cryptococcus neoformans using the microbroth dilution technique (Table 12). The essential oil of E. serotinum showed promising antifungal activity against C. neoformans with a minimum inhibitory concentration (MIC) value of 78 μg/mL. The high concentration of cyclocolorenone in E. serotinum is likely responsible for the observed antifungal activity of this essential oil. Cyclocolorenone had been previously reported to show antifungal activity against Curvularia lunata, Chaetomium cochliodes, and Chaetomium spinusum [96]. Germacrene D may also contribute to the antifungal activity of E. serotinum essential oil as well as essential oils of E. macrophylla, P. canadensis, and R. laciniata. Germacrene D has shown antifungal activity against Aspergillus niger with MIC of 39 μg/mL [97].

Table 12.

Major components and antifungal activities of Asteraceae essential oils.

Plant Species Major Components (>5%) in the Essential Oil Antifungal Activity, MIC, μg/mL a
Aspergillus niger Candida albicans Cryptococcus neoformans
Eupatorium serotinum Michx. germacrene D (6.6%), palustrol (5.4%), cyclocolorenone (23.5%) 313 625 78
Eurybia macrophylla (L.) Cass. β-pinene (8.5%), limonene (28.6%), terpinolene (5.3%), germacrene D (19.7%), germacrene B (7.0%) 625 625 156
Eutrochium purpureum (L.) E.E. Lamont hexanal (6.8%), (2E)-hexenal (59.7%), methyl salicylate (10.4%), eugenol (11.8%) 625 625 625
Polymnia canadensis L. α-pinene (19.6%), α-phellandrene (28.2%), germacrene D (11.4%) 625 625 156
Rudbeckia laciniata L. α-pinene (10.2%), β-pinene (9.2%), myrcene (5.3%), limonene (58.9%) 625 1250 156
Silphium integrifolium Michx. α-pinene (58.5%), β-pinene (14.7%), myrcene (9.7%) n.t. b n.t. n.t.
Smallanthus uvedalia (L.) Mack. α-pinene (62.3%), β-pinene (6.0%), limonene (11.3%) n.t. n.t. n.t.
Solidago altissima L. α-pinene (13.9%), sabinene (14.2%), myrcene (20.2%), bornyl acetate (14.4%), germacrene D (10.6%) 625 1250 313
Xanthium strumarium L. (2E)-hexenal (5.8%), myrcene (14.3%), limonene (48.0%), germacrene D (13.9%) 625 1250 n.t.

a Each minimum inhibitory concentration (MIC) determination was carried out in triplicate. b n.t. = not tested due to limited availability of the essential oil.

The modest antifungal activity of E. purpureum is somewhat surprising. The major components were hexanal, (2E)-hexenal, methyl salicylate, and eugenol. Hexanal [98] and (2E)-hexenal [99,100] are both known to be antifungal to plant pathogenic fungi. Methyl salicylate is only weakly antifungal against A. niger, C. albicans, or C. neoformans, but eugenol is somewhat active (see Table 13). Monoterpene hydrocarbons such as α-pinene, β-pinene, limonene, or myrcene show only weak antifungal activity (Table 13) and are not expected to contribute to the antifungal activities of the essential oils unless there are synergistic effects of these components (see, for example [101,102]). The mechanisms of antifungal activity of essential oils are poorly understood. However, it has been suggested that essential oils and their components, being lipophilic, can disrupt the membranes of fungi causing membrane permeability [103].

Table 13.

Antifungal activities (MIC, μg/mL) of essential oil components.

Compound Aspergillus niger Candida albicans Cryptococcus neoformans
α-Pinene 1250 625 313
β-Pinene 625 1250 625
Limonene 625 1250 625
Myrcene 625 625 625
Methyl salicylate 625 625 625
Eugenol 78 313 156
Bornyl acetate 625 625 625

3. Materials and Methods

3.1. Plant Material

Aerial parts of each plant were collected from various sites in north Alabama (Table 14). Plants were identified by S.K. Lawson and voucher specimens were deposited in the University of Alabama in Huntsville herbarium (HALA). The fresh plant material (aerial parts) were chopped and hydrodistilled using a Likens–Nickerson apparatus with continuous extraction with CH2Cl2 for three hours. The solvent was evaporated to give pale yellow essential oils (Table 14).

Table 14.

Plant collection sites and essential oil yields of Asteraceae from north Alabama.

Plant Collection Site, Date Voucher Number Mass of Aerial Parts (g) Yield of Essential Oil (mg)
Eupatorium serotinum Michx. 34°38′29″ N, 86°24′39″ W,
elev. 199 m
13 September 2018
233754 49.09 6.4 (0.013%)
Eurybia macrophylla (L.) Cass. 34°39′25″ N, 86°24′45″ W,
elev. 241 m
15 September 2018
233117 56.56 10.6 (0.019%)
Eutrochium purpureum (L.) E.E. Lamont 34°38′40″ N, 86°27′22″ W,
elev. 180 m
12 August 2018
091843 63.44 12.3 (0.019%)
Polymnia canadensis L. 34°38′29″ N, 86°24′39″ W,
elev. 199 m
21 July 2018
184700 52.89 39.1 (0.074%)
Rudbeckia laciniata L. 34°42′42″ N, 86°32′38″ W,
elev. 345 m
13 September 2018
004426 54.53 6.0 (0.011%)
Silphium integrifolium Michx. 34°42′42″ N, 86°32′38″ W,
elev. 345 m
15 September 2018
004152 15.02 6.4 (0.043%)
Smallanthus uvedalia (L.) Mack. 34°42′42″ N, 86°32′38″ W,
elev. 345 m
15 September 2018
000714 56.21 5.9 (0.010%)
Solidago altissima L. 34°38′40″ N, 86°27′22″ W,
elev. 180 m
12 August 2018
001425 54.41 44.9 (0.083%)
Xanthium strumarium L. 34°38′49″ N, 86°24′38″ W,
elev. 200 m
15 September 2018
224724 69.69 7.0 (0.010%)

3.2. Gas Chromatography–Mass Spectrometry

The Asteraceae essential oils were analyzed by GC–MS using a Shimadzu GC–MS-QP2010 Ultra fitted with a Phenomenex ZB-5ms column as previously described [104]. Identification of the essential oil components was determined by comparison of their retention indices, determined with respect to a homologous series of n-alkanes and their mass spectral fragmentation patters with those from available databases (Adams [105], NIST17 [106], and FFNSC 3 [107]) or in our in-house library [108].

3.3. Gas Chromatography–Flame Ionization Detection

Quantification of the essential oils was determined by GC–FID using a Shimadzu GC 2010 instrument fitted with a ZB-5 column [104], using the same parameters that were used for the GC–MS. The concentrations (average of three measurements ± standard deviations) are based on peak integration without standardization.

3.4. Antifungal Screening

The essential oils were screened for antifungal activity against Aspergillus niger (ATCC 16888), Candida albicans (ATCC 18804), and Cryptococcus neoformans (ATCC 24607) using the microbroth dilution method as previously described [109]. Amphotericin B was used as the positive control and RPMI medium was used as the negative control. The antifungal assays were carried out in triplicate.

4. Conclusions

There is much intraspecific variation in essential oil compositions of these members of the Asteraceae. Much of the variation can be attributed to geographical location or seasonal variation. Eupatorium serotinum essential oil showed notable antifungal activity against Cryptococcus neoformans. However, the yield of this essential oil (0.013%) is too low to be considered as pharmacologically useful. If suitable sources of the major component cyclocolorenone can be identified, then this compound may serve as important antifungal template for further elaboration.

Acknowledgments

P.S. and W.N.S. participated in the project as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/).

Author Contributions

Conceptualization, S.K.L. and W.N.S.; methodology, W.N.S., R.L.M., and P.S.; software, P.S.; validation, W.N.S.; formal analysis, W.N.S.; investigation, S.K.L., L.G.S., C.N.P., and P.S.; resources, R.L.M., P.S., and W.N.S.; data curation, W.N.S.; writing—original draft preparation, W.N.S.; writing—review and editing, S.K.L., L.G.S., C.N.P., R.L.M., P.S., and W.N.S.; supervision, W.N.S. and R.L.M.; project administration, W.N.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  • 1.NCCIH Ayurvedic Medicine: In Depth. [(accessed on 17 July 2019)]; Available online: https://nccih.nih.gov/health/ayurveda/introduction.htm.
  • 2.Shang A., Huwiler K., Nartey L., Jüni P., Egger M. Placebo-controlled trials of Chinese herbal medicine and conventional medicine—Comparative study. Int. J. Epidemiol. 2007;36:1086–1092. doi: 10.1093/ije/dym119. [DOI] [PubMed] [Google Scholar]
  • 3.Avicenna . Canon of Medicine. Kazi Publications; Chicago, IL, USA: 2015. [Google Scholar]
  • 4.Setzer W.N. The phytochemistry of Cherokee aromatic medicinal plants. Medicines. 2018;5:121. doi: 10.3390/medicines5040121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Kartesz J.T. BONAP’s North American Plant Atlas. [(accessed on 7 August 2019)]; Available online: http://bonap.net/MapGallery/County/Conoclinium coelestinum.png.
  • 6.Moerman D.E. Native American Ethnobotany. Timber Press, Inc.; Portland, OR, USA: 1998. [Google Scholar]
  • 7.Herz W., de Groote R., Murari R., Kumar N., Blount J.F. Sesquiterpene lactones of Eupatorium serotinum. J. Org. Chem. 1979;44:2784–2788. doi: 10.1021/jo01329a039. [DOI] [Google Scholar]
  • 8.Bohlmann F., Zdero C., King R.M., Robinson H. Further germacranolides from Eupatorium serotinum. Planta Med. 1985;51:76–77. doi: 10.1055/s-2007-969404. [DOI] [PubMed] [Google Scholar]
  • 9.Kartesz J.T. BONAP’s North American Plant Atlas. [(accessed on 17 July 2019)]; Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Eurybia.
  • 10.Kartesz J.T. BONAP’s North American Plant Atlas. [(accessed on 17 July 2019)]; Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Eutrochium.
  • 11.Kartesz J.T. BONAP’s North American Plant Atlas. [(accessed on 17 July 2019)]; Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Polymnia.
  • 12.Bohlmann F., Zdero C., King R.M., Robinson H. Ein neues germacran-8.12-olid und neue diterpene aus Polymnia canadensis. Phytochemistry. 1980;19:115–118. doi: 10.1016/0031-9422(80)85025-4. [DOI] [Google Scholar]
  • 13.Kartesz J.T. BONAP’s North American Plant Atlas. [(accessed on 17 July 2019)]; Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Rudbeckia.
  • 14.Missouri Botanical Garden Tropicos.org. [(accessed on 21 December 2019)]; Available online: www.tropicos.org.
  • 15.Weakley A.S. Flora of the Southern and Mid-Atlantic States. [(accessed on 17 July 2019)]; Available online: http://www.herbarium.unc.edu/flora.htm.
  • 16.Kartesz J.T. BONAP’s North American Plant Atlas. [(accessed on 17 July 2019)]; Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Silphium.
  • 17.Kowalski R. Secondary metabolites in Silphium integrifolium in the first 2 years of cultivation. N. Z. J. Crop Hortic. Sci. 2004;32:397–406. doi: 10.1080/01140671.2004.9514321. [DOI] [Google Scholar]
  • 18.Kartesz J.T. BONAP’s North American Plant Atlas. [(accessed on 17 July 2019)]; Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Smallanthus.
  • 19.Kartesz J.T. BONAP’s North American Plant Atlas. [(accessed on 17 July 2019)]; Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Solidago.
  • 20.Reznicek G., Jurenitsch J., Plasun M., Korhammer S., Haslinger E., Hiller K., Kubelka W. Four major saponins from Solidago canadensis. Phytochemistry. 1991;30:1629–1633. doi: 10.1016/0031-9422(91)84222-E. [DOI] [PubMed] [Google Scholar]
  • 21.Reznicek G., Jurenitsch J., Freiler M., Korhammer S., Haslinger E., Hiller K., Kubelka W. Isolation and structure elucidation of further new saponins from Solidago canadensis. Planta Med. 1992;58:94–98. doi: 10.1055/s-2006-961398. [DOI] [PubMed] [Google Scholar]
  • 22.Apáti P., Szentmihályi K., Balázs A., Baumann D., Hamburger M., Kristó T.S., Szőke É., Kéry Á. HPLC Analysis of the flavonoids in pharmaceutical preparations from Canadian goldenrod (Solidago canadensis) Chromatographia. 2002;56:S65–S68. doi: 10.1007/BF02494115. [DOI] [Google Scholar]
  • 23.Wu B., Takahashi T., Kashiwagi T., Tebayashi S., Kim C.-S. New flavonoid glycosides from the leaves of Solidago altissima. Chem. Pharm. Bull. 2007;55:815–816. doi: 10.1248/cpb.55.815. [DOI] [PubMed] [Google Scholar]
  • 24.Radusiene J., Marska M., Ivanauskas L., Jakstas V., Karpaviciene B. Assessment of phenolic compound accumulation in two widespread goldenrods. Ind. Crops Prod. 2015;63:158–166. doi: 10.1016/j.indcrop.2014.10.015. [DOI] [Google Scholar]
  • 25.Ichihara K.I., Kawar T., Kaji M., Noda M. A new polyacetylene from Solidago altissima L. Agric. Biol. Chem. 1976;40:353–358. doi: 10.1080/00021369.1976.10862050. [DOI] [Google Scholar]
  • 26.Ichihara K.I., Kawai T., Noda M. Polyacetylenes of Solidago altissima L. Agric. Biol. Chem. 1978;42:427–431. doi: 10.1271/bbb1961.42.427. [DOI] [Google Scholar]
  • 27.Tori M., Katto A., Sono M. Nine new clerodane diterpenoids from rhizomes of Solidago altissima. Phytochemistry. 1999;52:487–493. doi: 10.1016/S0031-9422(99)00273-3. [DOI] [Google Scholar]
  • 28.Chaturvedula V.S.P., Zhou B.N., Gao Z., Thomas S.J., Hecht S.M., Kingston D.G.I. New lupane triterpenoids from Solidago canadensis that inhibit the lyase activity of DNA polymerase β. Bioorg. Med. Chem. 2004;12:6271–6275. doi: 10.1016/j.bmc.2004.08.048. [DOI] [PubMed] [Google Scholar]
  • 29.Kartesz J.T. BONAP’s North American Plant Atlas. [(accessed on 17 July 2019)]; Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Xanthium.
  • 30.Kamboj A., Saluja A.K. Phytopharmacological review of Xanthium strumarium L. (Cocklebur) Int. J. Green Pharm. 2010;4:129–139. doi: 10.4103/0973-8258.69154. [DOI] [Google Scholar]
  • 31.Satyal P., Craft J.D., Dosoky N.S., Setzer W.N. The chemical compositions of the volatile oils of garlic (Allium sativum) and wild garlic (Allium vineale) Foods. 2017;6:63. doi: 10.3390/foods6080063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Davé P.C., Vogler B., Setzer W.N. Chemical compositions of the leaf essential oils of Aralia spinosa from three habitats in Northern Alabama. Am. J. Plant Sci. 2011;2:507–510. doi: 10.4236/ajps.2011.23059. [DOI] [Google Scholar]
  • 33.Eiter L.C., Fadamiro H., Setzer W.N. Seasonal variation in the leaf essential oil composition of Zanthoxylum clava-herculis growing in Huntsville, Alabama. Nat. Prod. Commun. 2010;5:457–460. doi: 10.1177/1934578X1000500323. [DOI] [PubMed] [Google Scholar]
  • 34.Steinberg K.M., Satyal P., Setzer W.N. Bark essential oils of Zanthoxylum clava-herculis and Ptelea trifoliata: Enantiomeric distribution of monoterpenoids. Nat. Prod. Commun. 2017;12:961–963. doi: 10.1177/1934578X1701200632. [DOI] [Google Scholar]
  • 35.Woods K.E., Chhetri B.K., Jones C.D., Goel N., Setzer W.N. Bioactivities and compositions of Betula nigra essential oils. J. Med. Act. Plants. 2013;2:1–9. [Google Scholar]
  • 36.Stewart C.D., Jones C.D., Setzer W.N. Essential oil compositions of Juniperus virginiana and Pinus virginiana, two important trees in Cherokee traditional medicine. Am. J. Essent. Oils Nat. Prod. 2014;2:17–24. [Google Scholar]
  • 37.Setzer W.N. Chemical composition of the leaf essential oil of Lindera benzoin growing in North Alabama. Am. J. Essent. Oils Nat. Prod. 2016;4:1–3. [Google Scholar]
  • 38.Mekala A.B., Satyal P., Setzer W.N. Phytochemicals from the bark of Rhamnus caroliniana. Nat. Prod. Commun. 2017;12:403–406. doi: 10.1177/1934578X1701200324. [DOI] [PubMed] [Google Scholar]
  • 39.Kaler K.M., Setzer W.N. Seasonal variation in the leaf essential oil composition of Sassafras albidum. Nat. Prod. Commun. 2008;3:829–832. doi: 10.1177/1934578X0800300529. [DOI] [PubMed] [Google Scholar]
  • 40.Kennedy J.E., Davé P.C., Harbin L.N., Setzer W.N. Allelopathic potential of Sassafras albidum and Pinus taeda essential oils. Allelopath. J. 2011;27:111–122. [Google Scholar]
  • 41.Craft J.D., Setzer W.N. Leaf essential oil composition of Tsuga canadensis growing wild in North Alabama and Northwest Georgia. Am. J. Essent. Oils Nat. Prod. 2017;5:26–29. [Google Scholar]
  • 42.Lopez E.M., Craft J.D., Setzer W.N. Volatile composition of Vicia caroliniana growing in Huntsville, Alabama. Am. J. Essent. Oils Nat. Prod. 2017;5:8–10. [Google Scholar]
  • 43.Stewart C.D., Jones C.D., Setzer W.N. Leaf essential oil compositions of Rudbeckia fulgida Aiton, Rudbeckia hirta L., and Symphyotrichum novae-angliae (L.) G.L. Nesom (Asteraceae) Am. J. Essent. Oils Nat. Prod. 2014;2:36–38. [Google Scholar]
  • 44.Lawson S.K., Sharp L.G., Powers C.N., McFeeters R.L., Satyal P., Setzer W.N. Essential oil compositions and antifungal activity of sunflower (Helianthus) species growing in north Alabama. Appl. Sci. 2019;9:3179. doi: 10.3390/app9153179. [DOI] [Google Scholar]
  • 45.Craft J.D., Lawson S.K., Setzer W.N. Leaf essential oil compositions of bear’s foot, Smallanthus uvedalia and Polymnia canadensis. Am. J. Essent. Oils Nat. Prod. 2019;7:31–35. [Google Scholar]
  • 46.Liu P.-Y., Liu D., Li W.-H., Zhao T., Sauriol F., Gu Y.-C., Shi Q.-W., Zhang M.-L. Chemical constituents of plants from the genus Eupatorium (1904–2014) Chem. Biodivers. 2015;12:1481–1515. doi: 10.1002/cbdv.201400227. [DOI] [PubMed] [Google Scholar]
  • 47.Padalia R.C., Bisht D.S., Joshi S.C., Mathela C.S. Chemical composition of the essential oil from Eupatorium adenophorum Spreng. J. Essent. Oil Res. 2009;21:522–524. doi: 10.1080/10412905.2009.9700234. [DOI] [Google Scholar]
  • 48.Kurade N.P., Jaitak V., Kaul V.K., Sharma O.P. Chemical composition and antibacterial activity of essential oils of Lantana camara, Ageratum houstonianum and Eupatorium adenophorum. Pharm. Biol. 2010;48:539–544. doi: 10.3109/13880200903193336. [DOI] [PubMed] [Google Scholar]
  • 49.Pandey A.K., Mohan M., Singh P., Palni U.T., Tripathi N.N. Chemical composition, antibacterial and antioxidant activity of essential oil of Eupatorium adenophorum Spreng. from Eastern Uttar Pradesh, India. Food Biosci. 2014;7:80–87. doi: 10.1016/j.fbio.2014.06.001. [DOI] [Google Scholar]
  • 50.Ahluwalia V., Sisodia R., Walia S., Sati O.P., Kumar J., Kundu A. Chemical analysis of essential oils of Eupatorium adenophorum and their antimicrobial, antioxidant and phytotoxic properties. J. Pest Sci. 2014;87:341–349. doi: 10.1007/s10340-013-0542-6. [DOI] [Google Scholar]
  • 51.Maia J.G.S., Zoghbi M.D.G.B., Andrade E.H.A., Da Silva M.H.L., Luz A.I.R., Da Silva J.D. Essential oils composition of Eupatorium species growing wild in the Amazon. Biochem. Syst. Ecol. 2002;30:1071–1077. doi: 10.1016/S0305-1978(02)00059-5. [DOI] [Google Scholar]
  • 52.Zygadlo J.A., Maestri D.M., Guzmán C.A. Comparative study of the essential oils from three species of Eupatorium. Flavour Fragr. J. 1996;11:153–155. doi: 10.1002/(SICI)1099-1026(199605)11:3&#x0003c;153::AID-FFJ558&#x0003e;3.0.CO;2-L. [DOI] [Google Scholar]
  • 53.Zygadlo J.A., Lamarque A.L., Grosso N.R., Ariza Espinar L. Analysis of the essential oil of the leaves of Eupatorium arnottianum Griseb. J. Essent. Oil Res. 1995;7:677–678. doi: 10.1080/10412905.1995.9700528. [DOI] [Google Scholar]
  • 54.García C.C., Acosta E.G., Carro A.C., Belmonte M.C.F., Bomben R., Duschatzky C.B., Perotti M., Schuff C., Damonte E.B. Virucidal activity and chemical composition of essential oils from aromatic plants of central west Argentina. Nat. Prod. Commun. 2010;5:1307–1310. doi: 10.1177/1934578X1000500834. [DOI] [PubMed] [Google Scholar]
  • 55.Lancelle H.G., Giordano O.S., Sosa M.E., Tonn C.E. Chemical composition of four essential oils from Eupatorium spp. Biological activities toward Tribolium castaneum (Coleoptera: Tenebrionidae) Rev. Soc. Entomol. Argent. 2009;68:329–338. [Google Scholar]
  • 56.Albuquerque M.R.J.R., Souza E.B.D., Mesquita E.F., Nunes E.P., Cunha A.N., Silveira E.R. Volatile constituents from leaves of Vernonia chalybaea Mart. and Eupatorium ballotaefolium H.B.K. J. Essent. Oil Res. 2001;13:376–377. doi: 10.1080/10412905.2001.9712238. [DOI] [Google Scholar]
  • 57.Albuquerque M.R., Silveira E.R., De AUchôa D.E., Lemos T.L., Souza E.B., Santiago G.M., Pessoa O.D. Chemical composition and larvicidal activity of the essential oils from Eupatorium betonicaeforme (D.C.) Baker (Asteraceae) J. Agric. Food Chem. 2004;52:6708–6711. doi: 10.1021/jf0352881. [DOI] [PubMed] [Google Scholar]
  • 58.Lorenzo D., Paz D., Davies P., Villamil J., Vila R., Cañigueral S., Dellacassa E. Application of multidimensional gas chromatography to the enantioselective characterisation of the essential oil of Eupatorium buniifolium Hooker et Arnott. Phytochem. Anal. 2005;16:39–44. doi: 10.1002/pca.808. [DOI] [PubMed] [Google Scholar]
  • 59.Umpiérrez M.L., Santos E., Mendoza Y., Altesor P., Rossini C. Essential oil from Eupatorium buniifolium leaves as potential varroacide. Parasitol. Res. 2013;112:3389–3400. doi: 10.1007/s00436-013-3517-x. [DOI] [PubMed] [Google Scholar]
  • 60.Senatore F., De Fusco R., Napolitano F. Eupatorium cannabinum L. ssp. cannabinum (Asteraceae) essential oil: Chemical composition and antibacterial activity. J. Essent. Oil Res. 2001;13:463–466. doi: 10.1080/10412905.2001.9699730. [DOI] [Google Scholar]
  • 61.Flamini G., Cioni P.L., Morelli I. Analysis of the essential oil of the leaves and flowers/fruits of Eupatorium cannabinum L. from south Tuscany (central Italy) J. Essent. Oil Res. 2003;15:127–129. doi: 10.1080/10412905.2003.9712088. [DOI] [Google Scholar]
  • 62.Paolini J., Costa J., Bernardini A.-F. Analysis of the essential oil from aerial parts of Eupatorium cannabinum subsp. corsicum (L.) by gas chromatography with electron impact and chemical ionization mass spectrometry. J. Chromatogr. A. 2005;1076:170–178. doi: 10.1016/j.chroma.2005.03.131. [DOI] [PubMed] [Google Scholar]
  • 63.Morteza-Semnani K., Akbarzadeh M., Moshiri K. The essential oil composition of Eupatorium cannabinum L. from Iran. Flavour Fragr. J. 2006;21:521–523. doi: 10.1002/ffj.1687. [DOI] [Google Scholar]
  • 64.Judzentiene A. Chemical composition of leaf and inflorescence essential oils of Eupatorium cannabinum L. from eastern Lithuania. J. Essent. Oil Res. 2007;19:403–406. doi: 10.1080/10412905.2007.9699936. [DOI] [Google Scholar]
  • 65.Pino J.A., Rosado A., Fuentes V. Essential oil of Eupatorium capillifolum (Lam.) Small from Cuba. J. Essent. Oil Res. 1998;10:79–80. doi: 10.1080/10412905.1998.9700844. [DOI] [Google Scholar]
  • 66.Tabanca N., Bernier U.R., Tsikolia M., Becnel J.J., Sampson B., Werle C., Demirci B., Baser K.H.C., Blythe E.K., Pounders C., et al. Eupatorium capillifolium essential oil: Chemical composition, antifungal activity, and insecticidal activity. Nat. Prod. Commun. 2010;5:1409–1415. doi: 10.1177/1934578X1000500913. [DOI] [PubMed] [Google Scholar]
  • 67.Pimienta-Ramírez L., García-Rodríguez Y.M., Ríos-Ramírez E.M., Lindig-Cisneros R., Espinosa-García F.J. Chemical composition and evaluation of the essential oil from Eupatorium glabratum as biopesticide against Sitophilus zeamais and several stored maize fungi. J. Essent. Oil Res. 2016;28:113–120. doi: 10.1080/10412905.2015.1093969. [DOI] [Google Scholar]
  • 68.Schossler P., Schneider G.L., Wunsch D., Soares G.L.G., Zini C.A. Volatile compounds of Baccharis punctulata, Baccharis dracunculifolia and Eupatorium laevigatum obtained using solid phase microextraction and hydrodistillation. J. Braz. Chem. Soc. 2009;20:277–287. doi: 10.1590/S0103-50532009000200012. [DOI] [Google Scholar]
  • 69.Pisutthanan N., Liawruangrath B., Liawruangrath S., Baramee A., Apisariyakul A., Korth J., Bremner J.B. Constituents of the essential oil from aerial parts of Chromolaena odorata from Thailand. Nat. Prod. Res. 2006;20:636–640. doi: 10.1080/14786410500462678. [DOI] [PubMed] [Google Scholar]
  • 70.Owolabi M.S., Ogundajo A., Yusuf K.O., Lajide L., Villanueva H.E., Tuten J.A., Setzer W.N. Chemical composition and bioactivity of the essential oil of Chromolaena odorata from Nigeria. Rec. Nat. Prod. 2010;4:72–78. [Google Scholar]
  • 71.Joshi R.K. Chemical composition of the essential oils of aerial parts and flowers of Chromolaena odorata (L.) R. M. King & H. Rob. from Western Ghats region of north west Karnataka, India. J. Essent. Oil-Bear. Plants. 2013;16:71–75. [Google Scholar]
  • 72.Gupta D., Charles R., Garg S.N. Chemical examination of the essential oil from the leaves of Eupatorium triplinerve Vahl. J. Essent. oil Res. 2004;16:473–475. doi: 10.1080/10412905.2004.9698774. [DOI] [Google Scholar]
  • 73.Moldovan Z., Buleandrǎ M., Oprea E., Mînea Z. Studies on chemical composition and antioxidant activity of Rudbeckia triloba. J. Anal. Methods Chem. 2017;2017:3407312. doi: 10.1155/2017/3407312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Kowalski R., Wierciński J., Mardarowicz M. Essential oil in leaves and inflorescences of Silphium integrifolium Michx. J. Essent. Oil Res. 2005;17:220–222. doi: 10.1080/10412905.2005.9698881. [DOI] [Google Scholar]
  • 75.Kowalski R. The chemical composition of essential oils and lipophilic extracts of Silphium integrifolium Michx. and S. trifoliatum L. leaves. Flavour Fragr. J. 2008;23:164–171. doi: 10.1002/ffj.1868. [DOI] [Google Scholar]
  • 76.Kowalski R. Antimicrobial activity of essential oils and extracts of rosinweed (Silphium trifoliatum and Silphium integrifolium) plants used by the American Indians. Flavour Fragr. J. 2008;23:426–433. doi: 10.1002/ffj.1901. [DOI] [Google Scholar]
  • 77.Kowalski R. Chemical composition of essential oils and lipophilic extracts of Silphium integrifolium and S. trifoliatum inflorescences. Chem. Nat. Compd. 2008;44:241–244. doi: 10.1007/s10600-008-9027-x. [DOI] [Google Scholar]
  • 78.Kowalski R. The chemical composition of essential oils and lipophilic extracts of Silphium integrifolium Michx. and Silphium trifoliatum L. rhizomes. J. Essent. Oil Res. 2008;20:255–259. doi: 10.1080/10412905.2008.9700005. [DOI] [Google Scholar]
  • 79.Cicció J.F. Composition of the essential oil from leaves of Smallanthus maculatus (Cav.) H. Rob. (Asteraceae) J. Essent. Oil Res. 2004;16:353–355. doi: 10.1080/10412905.2004.9698740. [DOI] [Google Scholar]
  • 80.Chaverri C., Cicció J.F. Composition of the essential oil from leaves of Smallanthus quichensis (Asteraceae) from Costa Rica. Bol. Latinoam. Caribe Plantas Med. Aromat. 2015;14:355–363. [Google Scholar]
  • 81.Li J., Liu J., Lan H., Zheng M., Rong T. GC-MS analysis of the chemical constituents of the essential oil from the leaves of yacon (Smallanthus sonchifolia) Front. Agric. China. 2009;3:40–42. doi: 10.1007/s11703-009-0008-z. [DOI] [Google Scholar]
  • 82.Weyerstahl P., Marschall H., Christiansen C., Kalemba D., Góra J. Constituents of the essential oil of Solidago canadensis (“goldenrod”) from Poland—A correction. Planta Med. 1993;59:281–282. doi: 10.1055/s-2006-959673. [DOI] [PubMed] [Google Scholar]
  • 83.Schmidt C.O., Bouwmeester H.J., Bülow N., König W.A. Isolation, characterization, and mechanistic studies of (-)-α-gurjunene synthase from Solidago canadensis. Arch. Biochem. Biophys. 1999;364:167–177. doi: 10.1006/abbi.1999.1122. [DOI] [PubMed] [Google Scholar]
  • 84.Kasali A.A., Ekundayo O., Paul C., König W.A. epi-Cubebanes from Solidago canadensis. Phytochemistry. 2002;59:805–810. doi: 10.1016/S0031-9422(02)00006-7. [DOI] [PubMed] [Google Scholar]
  • 85.Vogler B., Setzer W.N. Characterization of Natural Products. In: Cseke L.J., Kirakosyan A., Kaufman P.B., Warber S.L., Duke J.A., Brielmann H., editors. Natural Products from Plants. CRC Press; Boca Raton, FL, USA: 2006. pp. 319–387. [Google Scholar]
  • 86.Chanotiya C.S., Yadav A. Natural variability in enantiomeric composition of bioactive chiral terpenoids in the essential oil of Solidago canadensis L. from Uttarakhand, India. Nat. Prod. Commun. 2008;3:263–266. doi: 10.1177/1934578X0800300232. [DOI] [Google Scholar]
  • 87.Mishra D., Joshi S., Sah S.P., Bischt G. Chemical composition, analgesic and antimicrobial activity of Solidago canadensis essential oil from India. J. Pharm. Res. 2011;44:63–66. [Google Scholar]
  • 88.Grul’ova D., Baranova B., Ivanova V., de Martino L., Mancini E., de Feo V. Composition and bio activity of essential oils of Solidago spp. and their impact on radish and garden cress. Allelopath. J. 2016;39:129–142. [Google Scholar]
  • 89.Shelepova O., Vinogradova Y., Zaitchik B., Ruzhitsky A., Grygorieva O., Brindza J. Constituents of the essential oil in Solidago canadensis L. from Eurasia. Slovak J. Food Sci. 2018;12:20–25. doi: 10.5219/847. [DOI] [Google Scholar]
  • 90.Elshafie H.S., Grul’ová D., Baranová B., Caputo L., De Martino L., Sedlák V., Camele I., De Feo V. Antimicrobial activity and chemical composition of essential oil extracted from Solidago canadensis L. growing wild in Slovakia. Molecules. 2019;24:1206. doi: 10.3390/molecules24071206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Benelli G., Pavela R., Cianfaglione K., Nagy D.U., Canale A., Maggi F. Evaluation of two invasive plant invaders in Europe (Solidago canadensis and Solidago gigantea) as possible sources of botanical insecticides. J. Pest Sci. 2019;92:805–821. doi: 10.1007/s10340-018-1034-5. [DOI] [Google Scholar]
  • 92.El-Sherei M., Khaleel A., Motaal A.A., Abd-Elbaki P. Effect of seasonal variation on the composition of the essential oil of Solidago canadensis cultivated in Egypt. J. Essent. Oil-Bear. Plants. 2014;17:891–898. doi: 10.1080/0972060X.2014.901612. [DOI] [Google Scholar]
  • 93.Esmaeili A., Rustaiyan A., Akbari M.T., Moazami N., Masoudi S., Amiri H. Composition of the essential oils of Xanthium strumarium L. and Cetaurea solstitialis L. from Iran. J. Essent. Oil Res. 2006;18:427–429. doi: 10.1080/10412905.2006.9699131. [DOI] [Google Scholar]
  • 94.Sharifi-Rad J., Hoseini-Alfatemi S.M., Sharifi-Rad M., Sharifi-Rad M., Iriti M., Sharifi-Rad M., Sharifi-Rad R., Raeisi S. Phytochemical compositions and biological activities of essential oil from Xanthium strumarium L. Molecules. 2015;20:7034–7047. doi: 10.3390/molecules20047034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Parveen Z., Mazhar S., Siddique S., Manzoor A., Ali Z. Chemical composition and antifungal activity of essential oil from Xanthium strumarium L. leaves. Indian J. Pharm. Sci. 2017;79:316–321. doi: 10.4172/pharmaceutical-sciences.1000232. [DOI] [Google Scholar]
  • 96.Jacyno J.M., Montemurro N., Bates A.D., Cutler H.G. Phytotoxic and antimicrobial properties of cyclocolorenone from Magnolia grandiflora L. J. Agric. Food Chem. 1991;39:1166–1168. doi: 10.1021/jf00006a036. [DOI] [Google Scholar]
  • 97.Schmidt J.M., Noletto J.A., Vogler B., Setzer W.N. Abaco bush medicine: Chemical composition of the essential oils of four aromatic medicinal plants from Abaco Island, Bahamas. J. Herbs Spices Med. Plants. 2006;12:43–65. doi: 10.1300/J044v12n03_04. [DOI] [Google Scholar]
  • 98.Gardini F., Lanciotti R., Caccioni D.R.L., Guerzoni M.E. Antifungal activity of hexanal as dependent on its vapor pressure. J. Agric. Food Chem. 1997;45:4297–4302. doi: 10.1021/jf970347u. [DOI] [Google Scholar]
  • 99.Gardini F., Lanciotti R., Guerzoni M.E. Effect of trans-2-hexenal on the growth of Aspergillus flavus in relation to its concentration, temperature and water activity. Lett. Appl. Microbiol. 2001;33:50–55. doi: 10.1046/j.1472-765X.2001.00956.x. [DOI] [PubMed] [Google Scholar]
  • 100.Neri F., Mari M., Menniti A.M., Brigati S. Activity of trans-2-hexenal against Penicillium expansum in “Conference” pears. J. Appl. Microbiol. 2006;100:1186–1193. doi: 10.1111/j.1365-2672.2006.02873.x. [DOI] [PubMed] [Google Scholar]
  • 101.Van Vuuren S.F., Viljoen A.M. Antimicrobial activity of limonene enantiomers and 1,8-cineole alone and in combination. Flavour Fragr. J. 2007;22:540–544. doi: 10.1002/ffj.1843. [DOI] [Google Scholar]
  • 102.Ma B., Ban X., Huang B., He J., Tian J., Zeng H., Chen Y., Wang Y. Interference and mechanism of dill seed essential oil and contribution of carvone and limonene in preventing Sclerotinia rot of rapeseed. PLoS ONE. 2015;10:e0131733. doi: 10.1371/journal.pone.0131733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Jing L., Lei Z., Li L., Xie R., Xi W., Guan Y., Sumner L.W., Zhou Z. Antifungal activity of Citrus essential oils. J. Agric. Food Chem. 2014;62:3011–3033. doi: 10.1021/jf5006148. [DOI] [PubMed] [Google Scholar]
  • 104.DeCarlo A., Johnson S., Okeke-Agulu K.I., Dosoky N.S., Wax S.J., Owolabi M.S., Setzer W.N. Compositional analysis of the essential oil of Boswellia dalzielii frankincense from West Africa reveals two major chemotypes. Phytochemistry. 2019;164:24–32. doi: 10.1016/j.phytochem.2019.04.015. [DOI] [PubMed] [Google Scholar]
  • 105.Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Publishing; Carol Stream, IL, USA: 2007. [Google Scholar]
  • 106.NIST17 . NIST17. National Institute of Standards and Technology; Gaithersburg, MD, USA: 2017. [Google Scholar]
  • 107.Mondello L. FFNSC 3. Shimadzu Scientific Instruments; Columbia, MD, USA: 2016. [Google Scholar]
  • 108.Satyal P. Ph.D. Thesis. University of Alabama in Huntsville; Huntsville, AL, USA: 2015. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. [Google Scholar]
  • 109.Powers C.N., Osier J.L., McFeeters R.L., Brazell C.B., Olsen E.L., Moriarity D.M., Satyal P., Setzer W.N. Antifungal and cytotoxic activities of sixty commercially-available essential oils. Molecules. 2018;23:1549. doi: 10.3390/molecules23071549. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plants are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES