Skip to main content
Journal of Food Science and Technology logoLink to Journal of Food Science and Technology
. 2019 Nov 12;57(3):1167–1182. doi: 10.1007/s13197-019-04163-0

Stability of volatile compounds of honey during prolonged storage

Priscila Missio da Silva 1, Luciano Valdemiro Gonzaga 1, Mônia Stremel de Azevedo 1, Fabíola Carina Biluca 1,, Mayara Schulz 1, Ana Carolina Oliveira Costa 1, Roseane Fett 1,
PMCID: PMC7026316  PMID: 32123438

Abstract

The aim of the study was to identify, via headspace solid phase microextraction and gas chromatography–mass spectrometry, volatile compounds in eight no processing Apis mellifera L. honey samples produced in the state of Santa Catarina, Brazil, and monitor their stability over 540 days of storage at 20 ± 4 °C, searching for possible degradation indicators compounds. The result of the initial analysis showed the presence of 32 volatile compounds and 24 were selected for the evaluation of the behavior over the storage. The volatiles cis- and trans-linalool oxide and hotrienol showed increased over 540 days, except for one sample, which showed a decrease in the cis- and trans- linalool oxide contents. Other compounds (ethyl acetate, 1-hexanol. 2-ethyl, benzoic acid. ethyl ester, butanoic acid. 3-methyl, butanoic acid. 2-methyl, and salicylic acid. tert.-butyl ester) were detected in at least one sample from 360 days of storage. Considering the storage system applied, the compounds cis- and trans-linalool oxide and hotrienol, which were found in all samples and times evaluated, can be considered possible indicators compounds of degradation of honey.

Keywords: Honey, Volatile compounds, Aroma compounds, Degradation, Storage

Introduction

Honey is a food that contains about 200 compounds, belonging to different chemical groups derived from various biosynthetic metabolic pathways, such as hydrocarbons, aldehydes, alcohols, acids, ketones, esters, and terpenes (Da Silva et al. 2016; Tahir et al. 2016). However, some compounds are not limited to the direct transfer of the floral source and can be changed or formed by processing conditions and storage (Alissandrakis et al. 2011; Jerković and Kuś 2014).

During storage, the physical, chemical and microbiological parameters can promote reactions that result in the deterioration of the products and therefore, should be the main targets for control of the storage process (Da Silva et al. 2016). These changes, which reflect on sensory characteristics such as color, odor, and taste, include increased acidity and 5-hydroxymethylfurfural (5-HMF), decreased pH and naturally occurring enzymes in fresh honey, as well as degradation of phenolic compounds (Da Silva et al. 2016; Seraglio et al. 2019). Long periods of storage also influence the profile of volatile compounds, which are considered as chemical markers or flavor/aroma fingerprints in honey (da Silva et al. 2017).

The formation of volatile compounds during storage can occur through different metabolic pathways leading to secondary or tertiary compounds of the degradation process of chemical compounds present in the honey. Some hydrocarbons are converted into smaller molecules such as alcohols (Moreira et al. 2010) and hotrienol (3,7-dimethyl-1,5,7-octadien-3-ol), which can be generated from (E)-2,6-dimethyl-6-acetoxy-2,7-octadienal (Cuevas-Glory et al. 2007; Barra et al. 2010). Other compounds such as terpendiol I and 8-hidroxilinalol (Kuś et al. 2013), some aldehydes and ketones can be formed by the oxidation of linoleic and linolenic acids (Kaškonienė et al. 2008), lilac aldehydes may be formed by the isomerization of lilac alcohols (Kuś et al. 2013), hexadecanoic acid can be formed by the oxidation of aldehyde and hexadecanal (Moreira et al. 2010).

The majority of the studies on volatile compounds in honey aim to evaluate the relationship of these compounds with the botanical and geographic origin (Castro-Vázquez et al. 2008; Barra et al. 2010; Kuś et al. 2013). Studies on the stability of volatile compounds during storage are still scarce and evaluate short periods (≤ 1 year) (Castro-Vázquez et al. 2008, 2012; Moreira et al. 2010; Patrignani et al. 2018), and long storage periods, to the best of our knowledge, have not yet been studied.

Considering the commercial importance of the honey aroma and the possibilities of degradation and formation of volatile compounds during storage, this study aimed to identify the profile of these compounds during 540 days in no processing samples from the honey bee Apis mellifera L., produced in the state of Santa Catarina, Brazil.

Experimental

Reagents and solutions

The patterns of n-alkanes C8–C40 were obtained from Analytical Supelco (Bellefonte, PA, USA). The reagent sodium chloride and the solvent hexane were obtained from Vetec (Duque de Caxias, RJ, Brazil). Deionized water was obtained from a Milli-Q Plus system (Millipore, Bedford, USA).

Samples

Honey samples were acquired raw in 2013/2014 (December–May) directly from professional beekeepers in eight cities of the state of Santa Catarina, Brazil (Table 1). The beekeepers were oriented to the present study, considering that no processing should be applied to the honey samples. Samples were collected, transported to the laboratory at room temperature, and analyzed for quality assurance according to the parameters required by the Codex Alimentarius (2001) (data not shown). For the analysis of the volatile compounds, 63 g of each sample were put in three proper polyethylene bottles for commercial honey filling, sealed properly, and kept in a B.O.D. oven equipped with digital controller (Quimis, model 0315M25, Sao Paulo, SP, Brazil) at 20 ± 4 °C monitored by a calibrated data logger (Highmed, model HM-160, Sao Paulo, SP, Brazil), protected from light during 540 days. The analysis were performed at time zero (when the samples arrived at the laboratory) and in 6 time intervals of 90 days.

Table 1.

Geographical description of the Apis mellifera L. honey samples

Sample City Latitude Longitude Altitude (m) Flowering predominant
A Itaiópolis 26° 20′ 11″ S 49° 54′ 23″ W 925 Clethra scabra Pers
B Florianópolis 27° 35′ 48″ S 48° 32′ 57″ W 3 Multifloral
C São Joaquim 28° 17′ 38″ S 49° 55′ 54″ W 1353 Baccharis leucocephala Dusén
D Orleans 28° 18, 14.17″ S 49° 15, 44.55″ O 220 Hovenia dulcis
E Vidal Ramos 27° 22′ 36.194″ 49° 19′ 1.481″ 570 Multifloral
F São Miguel do Oeste 26° 43′ 31″ S 53° 31′ 05″ W 645 Multifloral
G Videira 27° 00′ 30″ S 51° 09′ 06″ W 750 Multifloral
H Vitor Meireles 27° 49′ 32, 93″ S 49° 55′ 28, 21″ O 370 Multifloral

Determination of volatile compounds

Extraction procedure

The extraction of volatile compounds was performed according to Bianchin et al. (2014), with adaptations. For the adsorption of volatile compounds, a fiber Divinylbenzene/Carboxen/Polydimethylsiloxane (CAR/DVB/PDMS) (50/30 μm) was exposed to the headspace of the sample, in 15 mL vials for solid phase microextraction (SPME), continuous magnetic stirring under the following extraction conditions: 1:1 ratio honey/saturated NaCl solution (1 g/1 mL), packing: 5 min, fiber exposure time: 45 min at 45 °C.

Isolation and gas chromatography–mass spectrometry analysis of headspace volatile honey compounds

An Agilent gas chromatograph (7890A) coupled with a mass spectrometer (5975C) equipped with an HP-5MS capillary column (30 m × 0.25 mm × 0.25 µm, Agilent Technologies, Santa Clara, CA, USA) was used during the study. Ultrapure helium at 1 mL min−1 was used as the carrier. The programmed oven temperature was: 40 °C (held for 10 min), 5 °C min−1 to 300 °C (held for 20 min). The injector temperature was set at 260 °C, limited by the temperature of desorption indicated by the SPME fibre manufacturer. The detector temperature was set at 260 °C, the interface temperature at 260 °C, the ionisation source at 200 °C and the ionisation mode had an electron impact with an electron energy of 70 eV. The time of analyte desorption from the SPME fibre was fixed at 10 min. The injection was performed in the splitless mode for 10 min. After this time, the split ratio was set at 1:20 until the end of the chromatographic run. A water bath (Prufgerate-Werk Medingen, Dresden, Germany) was used to control the sample temperature.

Mass spectral data processing

The identification of compounds was performed by comparing the spectra to the spectra in the 2011 NIST Mass Spectral Library.

The retention index (RI) of each compound in the sample was calculated from a n-alkane standard (C8–C40, Supelco Analytical, Bellefonte, PA, USA), with 1 μL of the diluted standard (10 mg L−1) injected into the GC/MS system operating under the conditions described above, and their retention times were used as an external reference standard for calculating the RI, along with the retention times of each compound of interest. The RI of each component was calculated according to Eq. 1:

RI=100×tc-tntn+1-tn+n 1

where RI: retention index; tc: retention time of the compound of interest; tn + 1: hydrocarbon posterior retention time; n: number of carbons of the hydrocarbon previous (Viegas and Bassoli 2007).

To assist in the identification and characterization of volatile compounds, the calculated linear retention index values were compared to the 2011 NIST Mass Spectral Library.

Statistical analysis

All analyses were performed in triplicate and data presented as mean ± standard deviation. The results were subjected to analysis of variance (ANOVA) and Tukey’s test to assess differences between the means. The data was considered to be statistically significant if p < 0.05. Statistica 13.0 software (Statsoft Inc., Tulsa, OK, USA) was used for statistical analysis.

Results and discussion

After analysis of the mass spectra, 32 volatile compounds were identified in honey samples of Apis mellifera L. of the state of Santa Catarina. Table 2 shows the retention time, experimental retention index, and retention index obtained in the 2011 NIST library for these compounds. Considering that moisture and 5-HMF data are of great relevance during honey storage, these parameters were controlled during the study. The moisture showed an average of 17.14 ± 0.38%, while 5-HMF was < LOQ (0.31 mg L−1) over the 540 days of storage.

Table 2.

Retention time, experimental retention index, and retention index of volatile compounds found in Apis mellifera L. honey samples

Volatile compound Retention time (min) Experimental retention index Retention index NIST 2011
3-Pentanol 1.770 528 681
Ethyl acetate 2.267 545 586
1,3-Dioxolane, 2,4,5-trimethyl- 3.755 596 761
1-Butanol, 3-methyl 3.961 603 697
1-pentanol 4.013 604 761
Butanoic acid, 3-methyl 8.642 764 811
Butanoic acid, 2-methyl 9.626 795 811
Benzaldehyde 15.525 996 982
1-Hexanol, 2-ethyl- 18.672 1103 995
Benzeneacetaldehyde 19.571 1134 1081
Acetophenone 20.336 1160 1029
Cis-linalool oxide 20.606 1169 1164
Trans-linalool oxide 21.253 1191 1164
Linalool (1,6-Octadien-3-ol, 3,7-dimethyl-) 21.173 1188 1082
Hotrienol (1,5,7-octatrien-3-ol-3,7-dimethyl) 21.739 1202 1072
Phenylethyl alcohol 21.785 1209 1136
Isophorone 21.180 1223 1097
Lilac aldehyde 22.935 1248 1197
2,6,6-Trimethyl-2-cyclohexene-1,4-dione 23.078 1253 1268
Benzoic acid, ethyl ester 23.587 1270 1160
2H-Pyran, 3,6-dihydro-4-methyl-2-(2-methyl-1-propenyl) 23.977 1284 1255
Butanedioic acid, diethyl ester 24.011 1285 1151
2,6-Dimethylbenzaldehyde 25.338 1330 1208
2,3,4,5-Tetrahydropyridazine 25.516 1336 969
Benzeneacetic acid, ethyl ester 26.100 1356 1259
Acetic acid, 2-phenylethyl ester 26.460 1368 1259
Phenol, 2,4,6-trimethyl- 28.228 1428 1241
2-Buten-1-one,1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)- 29.687 1478 1362
2,6-Bis(1,1-dimethylehtyl)-4-(1-oxopropyl)phenol 35.793 1686 2003
Salicylic acid, tert.-butyl ester 39.426 1809 1495
2-Ethylhexyl salicylate 39.781 1821 1913
Homosalate 41.417 1877 2037

Of the 32 volatile compounds identified in the eight honey samples, 24 showed higher abundances, which were selected for the evaluation of the behavior over the 540 days of storage (Table 3). Figure 1 shows the chromatograms of volatile compounds identified at 0 (T0) and 540 (T6) days of storage in one of the samples studied (sample G).

Table 3.

Behavior of the major volatile compounds identified in Apis mellifera L. honey samples of the state of Santa Catarina over 540 days of storage

Volatile compound Storage time
T0 T1 T2
Ethyl acetate
A n.d n.d n.d
B n.d n.d n.d
C n.d n.d n.d
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G n.d n.d n.d
H n.d n.d n.d
1-Hexanol. 2-ethyl
A n.d n.d n.d
B n.d n.d n.d
C n.d n.d n.d
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G n.d n.d n.d
H n.d n.d n.d
Benzeneacetaldehyde
A 3.53 × 105 ± 7.58 × 103b 1.31 × 105 ± 1.71 × 104c 4.86 × 105 ± 6.76 × 104a
B n.d n.d n.d
C 8.41 × 105 ± 3.76 × 104ab 3.63 × 105 ± 2.14 × 104c 7.08 × 105 ± 2.93 × 104b
D n.d n.d n.d
E 1.39 × 105 ± 1.55 × 104c 1.42 × 105 ± 1.66 × 104c 1.09 × 105 ± 1.14 × 104c
F 2.39 × 105 ± 9.20 × 103b 4.60 × 105 ± 1.13 × 104a 4.48 × 105 ± 3.92 × 104a
G 1.85 × 106 ± 5.20 × 104a 1.64 × 106 ± 9.87 × 104a 9.33 × 105 ± 1.56 × 103bc
H 1.19 × 106 ± 2.90 × 104a 8.91 × 105 ± 4.61 × 104b 4.45 × 105 ± 1.33 × 104c
Cis-linalool oxide
A 2.53 × 106 ± 1.27 × 105cd 1.80 × 106 ± 1.00 × 105d 3.31 × 106 ± 2.70 × 105bc
B 3.95 × 106 ± 5.36 × 105e 3.33 × 106 ± 2.31 × 105f 4.18 × 106 ± 1.08 × 105de
C 1.91 × 106 ± 7.87 × 104b 5.22 × 105 ± 1.50 × 105e 1.13 × 106 ± 1.23 × 105d
D 1.66 × 106 ± 5.66 × 104e 2.34 × 106 ± 5.08 × 105d 2.07 × 106 ± 2.19 × 105de
E 5.66 × 105 ± 3.74 × 104d 9.43 × 105 ± 4.15 × 104c 1.20 × 106 ± 2.08 × 104a
F 1.27 × 106 ± 2.63 × 104c 2.78 × 106 ± 3.78 × 105b 2.86 × 106 ± 2.39 × 104b
G 1.45 × 107 ± 4.94 × 105e 2.61 × 107 ± 3.97 × 105c 1.93 × 107 ± 1.36 × 105d
H 4.26 × 106 ± 5.68 × 105a 3.57 × 106 ± 1.29 × 105b 2.89 × 106 ± 8.81 × 104c
Trans-linalool oxide
A 6.83 × 105 ± 9.58 × 104de 3.39 × 105 ± 2.65 × 104f 6.59 × 105 ± 4,73 × 104e
B 9.24 × 105 ± 1.59 × 105d 6.88 × 105 ± 2.00 × 104e 1.01 × 106 ± 2.64 × 104cd
C 1.20 × 105 ± 6.22 × 103e 1.02 × 105 ± 3.69 × 103e 1.62 × 105 ± 8.88 × 103d
D 2.37 × 105 ± 4.15 × 103f 3.71 × 105 ± 1.62 × 104e 3.70 × 105 ± 4.19 × 104e
E 2.15 × 105 ± 1.29 × 103cd 1.26 × 105 ± 3.19 × 103d 3.22 × 105 ± 1.35 × 104ab
F 1.48 × 105 ± 3.04 × 103d 4.42 × 105 ± 2.85 × 104b 2.90 × 105 ± 1.58 × 104c
G 7.39 × 106 ± 1.39 × 105a 7.30 × 106 ± 4.20 × 105a 5.32 × 106 ± 4.88 × 105c
H 8.58 × 105 ± 1.05 × 105a 7.43 × 105 ± 5.70 × 104b 7.52 × 105 ± 6.19 × 103ab
Hotrienol
A 5.76 × 105 ± 3.09 × 104c 2.47 × 105 ± 1.42 × 104e 6.47 × 105 ± 2.22 × 103b
B 2.09 × 105 ± 2.03 × 104d 3.66 × 105 ± 1.76 × 104bc 3.91 × 105 ± 8.40 × 103a
C 2.48 × 105 ± 1.07 × 103ab 5.27 × 104 ± 1.33 × 103d 1.24 × 105 ± 8.79 × 103cd
D 4.01 × 105 ± 1.18 × 104e 6.38 × 105 ± 8.22 × 104de 8.39 × 105 ± 2.36 × 104cd
E 3.99 × 104 ± 2.09 × 102d 4.44 × 104 ± 1.29 × 103d 9.03 × 104 ± 6.66 × 103c
F 8.60 × 105 ± 2.62 × 104d 1.16 × 106 ± 5.16 × 104c 1.96 × 106 ± 1.36 × 105b
G 8.60 × 105 ± 2.62 × 104d 1.16 × 106 ± 5.16 × 104c 1.96 × 106 ± 1.36 × 105b
H 2.70 × 105 ± 7.64 × 103d 3.41 × 105 ± 5.79 × 102c 3.55 × 105 ± 6.13 × 103c
1-Butanol. 3-methyl
A n.d n.d n.d
B n.d n.d n.d
C n.d n.d n.d
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G n.d n.d n.d
H n.d n.d n.d
1-Butanol. 2-methyl-
A n.d n.d n.d
B n.d n.d n.d
C n.d n.d n.d
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G n.d n.d n.d
H n.d n.d n.d
Benzoic acid. ethyl ester
A n.d n.d n.d
B n.d n.d n.d
C n.d n.d n.d
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G n.d n.d n.d
H n.d n.d n.d
Benzeneacetic acid. ethyl ester
A n.d n.d n.d
B 0 0 8.36 × 104 ± 9.39 × 103de
C n.d n.d n.d
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G n.d n.d n.d
H n.d n.d n.d
Acetic acid. 2-phenylethyl ester
A n.d n.d n.d
B n.d n.d 1.55 × 105 ± 2.07 × 104b
C n.d n.d n.d
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G n.d n.d n.d
H n.d n.d n.d
Butanoic acid. 3-methyl
A n.d n.d n.d
B n.d n.d n.d
C n.d n.d n.d
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G n.d n.d n.d
H n.d n.d n.d
Butanoic acid. 2-methyl
A n.d n.d n.d
B n.d n.d n.d
C 0 0 0
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G n.d n.d n.d
H n.d n.d n.d
Benzaldehyde
A n.d n.d n.d
B n.d n.d n.d
C 3.68 × 106 ± 1.62 × 105a 1.23 × 106 ± 3.86 × 104e 4.09 × 105 ± 9.10 × 104f
D n.d n.d n.d
E n.d n.d n.d
F 5.44 × 104 ± 1.01 × 103d 7.10 × 104 ± 1.78 × 103cd 1.07 × 105 ± 3.57 × 104bc
G 1.20 × 106 ± 7.90 × 103a 5.51 × 105 ± 1.27 × 105b 4.22 × 105 ± 4.04 × 104b
H 3.80 × 105 ± 1.27 × 104b 3.77 × 105 ± 2.47 × 104b 1.47 × 105 ± 5.05 × 103c
Phenol. 2,4,6-trimethyl-
A n.d n.d n.d
B n.d n.d n.d
C 4.38 × 105 ± 5.92 × 102de 4.32 × 105 ± 5.65 × 103de 4.10 × 105 ± 2.61 × 104e
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G n.d n.d n.d
H n.d n.d n.d
Acetophenone
A n.d n.d n.d
B n.d n.d n.d
C 4.17 × 106 ± 2.08 × 105a 9.66 × 105 ± 6.92 × 104d 1.44 × 106 ± 2.48 × 105b
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G n.d n.d n.d
H n.d n.d n.d
Isophorone
A n.d n.d n.d
B n.d n.d n.d
C 1.04 × 106 ± 6.41 × 104a 9.05 × 105 ± 2.47 × 103b 8.58 × 105 ± 2.66 × 104b
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G n.d n.d n.d
H n.d n.d n.d
2,6,6-Trimethyl-2-cyclohexene-1,4-dione
A n.d n.d n.d
B n.d n.d n.d
C 1.28 × 106 ± 3.31 × 104a 9.61 × 105 ± 4.33 × 103b 4.29 × 105 ± 1.10 × 104e
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G n.d n.d n.d
H n.d n.d n.d
Salicylic acid. tert.-butyl ester
A n.d n.d n.d
B n.d n.d n.d
C n.d n.d n.d
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G n.d n.d n.d
H n.d n.d n.d
Linalool
A n.d n.d n.d
B n.d n.d n.d
C n.d n.d n.d
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G 6.05 × 104 ± 0.74 × 102e 2.89 × 105 ± 1.91 × 104c 2.09 × 105 ± 7.70 × 103d
H n.d n.d n.d
Lilac aldehyde isomer I
A n.d n.d n.d
B n.d n.d n.d
C n.d n.d n.d
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G 7.01 × 105 ± 1.00 × 104f 1.16 × 106 ± 7.54 × 104c 9.49 × 105 ± 6.35 × 104e
H n.d n.d n.d
Lilac aldehyde isomer II
A n.d n.d n.d
B n.d n.d n.d
C n.d n.d n.d
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G 1.23 × 106 ± 1.03 × 102f 2.10 × 106 ± 7.48 × 104d 1.78 × 106 ± 9.33 × 104e
H n.d n.d n.d
Lilac aldehyde isomer III
A n.d n.d n.d
B n.d n.d n.d
C n.d n.d n.d
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G 8.07 × 105 ± 6.65 × 103e 9.16 × 105 ± 3.34 × 104d 8.72 × 105 ± 4.21 × 104de
H n.d n.d n.d
2H-pyran-3-ol.6-ethenyltetrahydro-2,2,6-trimethyl-
A n.d n.d n.d
B n.d n.d n.d
C n.d n.d n.d
D n.d n.d n.d
E n.d n.d n.d
F n.d n.d n.d
G 1.04 × 106 ± 2.19 × 104c 1.17 × 106 ± 1.70 × 104a 1.05 × 106 ± 3.90 × 104bc
H n.d n.d n.d
Volatile compound Storage time
T3 T4 T5 T6
Ethyl acetate
A n.d n.d 2.67 × 105 ± 1.64 × 104b 3.10 × 105 ± 8.75 × 103a
B n.d 5.74 × 105 ± 1.25 × 103c 6.80 × 105 ± 2.74 × 104b 8.54 × 105 ± 7.49 × 103a
C n.d n.d n.d n.d
D n.d n.d n.d n.d
E n.d 8.98 × 104 ± 4.89 × 103c 1.30 × 105 ± 8.33 × 103b 1.43 × 105 ± 5.41 × 103a
F n.d n.d n.d n.d
G n.d n.d n.d n.d
H n.d n.d n.d n.d
1-Hexanol. 2-ethyl
A n.d n.d 4.60 × 105 ± 4.12 × 104b 5.70 × 105 ± 1.14 × 105a
B n.d n.d 2.96 × 105 ± 2.06 × 104a 1.58 × 105 ± 7.83 × 103b
C n.d n.d 2,97 × 105 ± 1.43 × 104a 9.28 × 104 ± 7.47 × 103b
D n.d n.d 1.31 × 105 ± 8.45 × 103a 6.80 × 104 ± 9.84 × 102b
E n.d n.d n.d n.d
F n.d n.d n.d n.d
G n.d n.d n.d n.d
H n.d 2.04 × 105 ± 2.43 × 104a 1.33 × 105 ± 1.49 × 104b n.d
Benzeneacetaldehyde
A 4.58 × 105 ± 2.54.104ab 4.47 × 105 ± 3.90.104ab 4.33 × 105 ± 4.66.105ab 4.46 × 105 ± 1.20.104ab
B n.d n.d n.d n.d
C 8.05 × 105 ± 9.14 × 103ab 1.09 × 106 ± 6.64 × 104a 8.96 × 105 ± 5.90 × 104ab 1.00 × 106 ± 2.14 × 104ab
D n.d n.d n.d n.d
E 2.45 × 105 ± 1.36 × 104b 3.93 × 105 ± 3.23 × 104a 1.15 × 105 ± 2.06 × 104c 1.14 × 105 ± 6.18 × 103c
F 4.51 × 105 ± 6.96 × 103a 4.06 × 105 ± 2.69 × 102a 1.95 × 105 ± 2.16 × 103b 1.95 × 105 ± 3.84 × 103b
G 9.40 × 105 ± 5.02 × 104bc 1.11 × 106 ± 5.34 × 104b 8.97 × 105 ± 1.01 × 105bc 6.13 × 105 ± 8.65 × 103c
H 3.82 × 105 ± 5.24 × 103c 5.45 × 105 ± 1.64 × 104c 4.64 × 105 ± 9.86 × 103c 3.40 × 105 ± 2.40 × 104c
Cis-linalool oxide
A 3.68 × 106 ± 1.15 × 105b 4.17 × 106 ± 3.47 × 105b 5.48 × 106 ± 1.98 × 105a 6.15 × 106 ± 1.06 × 105a
B 4.64 × 106 ± 7.27 × 104cd 5.15 × 106 ± 2.39 × 105bc 5.64 × 106 ± 3.26 × 104ab 6.16 × 106 ± 8.98 × 104a
C 1.30 × 106 ± 5.04 × 104cd 1.33 × 106 ± 1.52 × 103c 2.04 × 106 ± 6.29 × 104b 2.28 × 106 ± 5.28 × 104a
D 3.55 × 106 ± 6.81 × 104bc 4.50 × 106 ± 1.88 × 105a 3.35 × 106 ± 2.28 × 105c 4.03 × 106 ± 7.06 × 104ab
E 1.11 × 106 ± 1.84 × 104b 1.00 × 106 ± 3.36 × 104c 1.16 × 106 ± 3.88 × 104ab 1.15 × 106 ± 3.68 × 104ab
F 2.82 × 106 ± 6.13 × 104b 2.76 × 106 ± 1.48 × 105b 3.05 × 106 ± 1.51 × 105b 3.50 × 106 ± 7.20 × 104a
G 2.61 × 107 ± 5.36 × 105c 2.86 × 107 ± 2.62 × 105b 2.94 × 107 ± 6.18 × 105ab 3.12 × 107 ± 5.19 × 105a
H 3.13 × 106 ± 5.38 × 104bc 3.11 × 106 ± 4.08 × 105bc 3.15 × 106 ± 1.39 × 105bc 3.17 × 106 ± 5.97 × 104bc
Trans-linalool oxide
A 8.09 × 105 ± 4,51 × 103d 1.03 × 106 ± 2,48 × 104c 1.30 × 106 ± 8,28 × 104b 1.53 × 106 ± 5,74 × 104a
B 1.18 × 106 ± 5.41 × 104c 1.44 × 106 ± 1.43 × 105ab 1.41 × 106 ± 8.49 × 103b 1.61 × 106 ± 6.00 × 104a
C 2.54 × 105 ± 7.66 × 103c 3.59 × 105 ± 4.03 × 104a 3.01 × 105 ± 1.45 × 104b 3.40 × 105 ± 8.44 × 103a
D 5.22 × 105 ± 1.52 × 104d 1.01 × 106 ± 5.15 × 104a 6.65 × 105 ± 2.77 × 104c 8.36 × 105 ± 2.72 × 104b
E 2.84 × 105 ± 7.07 × 103abc 2.56 × 105 ± 1.32 × 104bc 3.39 × 105 ± 1.77 × 104ab 3.81 × 105 ± 6.99 × 103a
F 3.47 × 105 ± 7.50 × 103c 5.29 × 105 ± 8.42 × 103ab 5.10 × 105 ± 1.06 × 104ab 5.52 × 105 ± 5.53 × 103a
G 6.10 × 106 ± 6.83 × 104bc 7.66 × 106 ± 9.16 × 104a 5.88 × 106 ± 4.26 × 105bc 6.55 × 106 ± 6.39 × 104ab
H 6.52 × 105 ± 5.11 × 103bc 6.25 × 105 ± 6.03 × 104c 5.56 × 105 ± 3.42 × 104c 5.51 × 105 ± 4.26 × 103c
Hotrienol
A 5.02 × 105 ± 4.78 × 103d 5.01 × 105 ± 4.02 × 104d 8.61 × 105 ± 6.77 × 103a 9.00 × 105 ± 5.09 × 103a
B 3.85 × 105 ± 5.91 × 103ab 3.86 × 105 ± 9.96 × 103ab 3.54 × 105 ± 5.72 × 103c 3.89 × 105 ± 1.15 × 103ab
C 1.52 × 105 ± 6.00 × 103c 1.77 × 105 ± 1.14 × 104bc 2.31 × 105 ± 4.85 × 103ab 2.61 × 105 ± 3.48 × 103a
D 1.09 × 106 ± 4.51 × 104c 1.40 × 106 ± 1.07 × 105b 1.58 × 106 ± 3.17 × 105b 2.19 × 106 ± 9.78 × 104a
E 1.03 × 105 ± 5.02 × 103bc 1.02 × 105 ± 6.27 × 103bc 1.29 × 105 ± 4.44 × 103a 1.19 × 105 ± 3.24 × 103ab
F 1.18 × 106 ± 1.62 × 104c 1.05 × 106 ± 6.54 × 104cd 2.18 × 106 ± 6.14 × 104b 2.51 × 106 ± 8.79 × 104a
G 1.18 × 106 ± 1.62 × 104c 1.05 × 106 ± 6.54 × 104cd 2.18 × 106 ± 6.14 × 104b 2.51 × 106 ± 8.79 × 104a
H 3.62 × 105 ± 6.93 × 103c 3.50 × 105 ± 8.92 × 103c 5.65 × 105 ± 3.12 × 104b 6.51 × 105 ± 5.40 × 103a
1-Butanol. 3-methyl
A n.d n.d n.d n.d
B n.d 1.05 × 106 ± 9.31 × 103a 7.08 × 105 ± 2.27 × 104b n.d
C n.d n.d n.d n.d
D n.d n.d n.d n.d
E n.d n.d n.d n.d
F n.d n.d n.d n.d
G n.d n.d n.d n.d
H n.d n.d n.d n.d
1-Butanol. 2-methyl-
A n.d n.d n.d n.d
B n.d n.d n.d n.d
C n.d n.d n.d n.d
D n.d n.d n.d n.d
E n.d n.d 4.18 × 105 ± 1.73 × 104b 4.40 × 105 ± 1.22 × 104a
F n.d n.d n.d n.d
G n.d n.d n.d n.d
H n.d n.d n.d n.d
Benzoic acid. ethyl ester
A n.d n.d n.d n.d
B n.d n.d 1.60 × 105 ± 8.12 × 103b 2.08 × 105 ± 6.18 × 103a
C n.d n.d n.d n.d
D n.d n.d n.d n.d
E n.d n.d n.d n.d
F n.d n.d n.d n.d
G n.d n.d n.d n.d
H n.d n.d n.d n.d
Benzeneacetic acid. ethyl ester
A n.d n.d n.d n.d
B 1.51 × 105 ± 1.48 × 104d 6.07 × 105 ± 5.09 × 103c 1.35 × 106 ± 6.99 × 104b 2.25 × 106 ± 1.00 × 105a
C n.d n.d 5.23 × 105 ± 3.17 × 104b 6.14 × 105 ± 1.00 × 104a
D n.d n.d n.d n.d
E n.d n.d 2.19 × 105 ± 1.08 × 104b 3.69 × 105 ± 2.04 × 104a
F n.d n.d n.d n.d
G n.d n.d 1.64 × 105 ± 5.27 × 103b 2.11 × 105 ± 8.51 × 103a
H n.d n.d 3.43 × 104 ± 3.81 × 102b 5.04 × 104 ± 3.52 × 102a
Acetic acid. 2-phenylethyl ester
A n.d n.d n.d n.d
B 2.18 × 105 ± 9.77 × 103a n.d n.d n.d
C n.d n.d n.d n.d
D n.d n.d n.d n.d
E n.d n.d n.d n.d
F n.d n.d n.d n.d
G n.d n.d n.d n.d
H n.d n.d n.d n.d
Butanoic acid. 3-methyl
A n.d n.d n.d n.d
B n.d n.d n.d n.d
C n.d 2.62 × 105 ± 1.19 × 104a 1.29 × 105 ± 9.52 × 103b 8.01 × 104 ± 7.99 × 103c
D n.d n.d n.d n.d
E n.d n.d n.d n.d
F n.d n.d n.d n.d
G n.d n.d n.d n.d
H n.d n.d n.d n.d
Butanoic acid. 2-methyl
A n.d n.d n.d n.d
B n.d n.d n.d n.d
C 0 3.33 × 105 ± 4.08 × 104a 2.15 × 105 ± 2.34 × 104b 1.88 × 105 ± 1.15 × 104b
D n.d n.d n.d n.d
E n.d n.d n.d n.d
F n.d n.d n.d n.d
G n.d n.d n.d n.d
H n.d n.d n.d n.d
Benzaldehyde
A n.d n.d n.d n.d
B n.d n.d n.d n.d
C 4.44 × 105 ± 1.10 × 104f 2.54 × 106 ± 2.72 × 105b 1.66 × 106 ± 1.19 × 105d 2.14 × 106 ± 1.07 × 105c
D n.d n.d n.d n.d
E n.d n.d n.d n.d
F 1.51 × 105 ± 5.04 × 103b 2.51 × 105 ± 4.56 × 103a 5.41 × 104 ± 3.58 × 103d 5.46 × 104 ± 7.89 × 102d
G 4.37 × 105 ± 1.28 × 104b 4.99 × 105 ± 1.18 × 104b 2.48 × 105 ± 3.55 × 103b 1.96 × 105 ± 5.18 × 103b
H 2.01 × 105 ± 1.12 × 104c 4.89 × 105 ± 4.90 × 104a 1.60 × 105 ± 1.47 × 103c 1.42 × 105 ± 3.54 × 103c
Phenol. 2,4,6-trimethyl-
A n.d n.d n.d n.d
B n.d n.d n.d n.d
C 4.63 × 105 ± 7.07 × 103d 5.59 × 105 ± 3.23 × 103c 6.08 × 105 ± 2.37 × 104b 6.60 × 105 ± 1.20 × 103a
D n.d n.d n.d n.d
E n.d n.d n.d n.d
F n.d n.d n.d n.d
G n.d n.d n.d n.d
H n.d n.d n.d n.d
Acetophenone
A n.d n.d n.d n.d
B n.d n.d n.d n.d
C 1.33 × 106 ± 1.75 × 104bc 1.45 × 106 ± 2.02 × 104b 1.07 × 106 ± 5.45 × 104cd 1.61 × 106 ± 3.61 × 104b
D n.d n.d n.d n.d
E n.d n.d n.d n.d
F n.d n.d n.d n.d
G n.d n.d n.d n.d
H n.d n.d n.d n.d
Isophorone
A n.d n.d n.d n.d
B n.d n.d n.d n.d
C 5.92 × 105 ± 1.63 × 104c 4.50 × 105 ± 6.57 × 103d 3.24 × 105 ± 5.77 × 104e 2.51 × 105 ± 2.77 × 103f
D n.d n.d n.d n.d
E n.d n.d n.d n.d
F n.d n.d n.d n.d
G n.d n.d n.d n.d
H n.d n.d n.d n.d
2,6,6-Trimethyl-2-cyclohexene-1,4-dione
A n.d n.d n.d n.d
B n.d n.d n.d n.d
C 6.15 × 105 ± 1.50 × 104d 7.90 × 105 ± 1.76 × 104c 6.50 × 105 ± 4.24 × 104d 3.75 × 105 ± 2.89 × 104e
D n.d n.d n.d n.d
E n.d n.d n.d n.d
F n.d n.d n.d n.d
G n.d n.d n.d n.d
H n.d n.d n.d n.d
Salicylic acid. tert.-butyl ester
A n.d n.d n.d n.d
B n.d n.d n.d n.d
C n.d n.d n.d n.d
D n.d n.d n.d n.d
E n.d n.d 3.31 × 104 ± 1.52 × 102b 5.28 × 104 ± 4.73 × 102a
F n.d n.d n.d n.d
G n.d n.d n.d n.d
H n.d n.d 3.31 × 104 ± 1.52 × 102b 4.04 × 104 ± 1.41 × 102a
Linalool
A n.d n.d n.d n.d
B n.d n.d n.d n.d
C n.d n.d n.d n.d
D n.d n.d n.d n.d
E n.d n.d n.d n.d
F n.d n.d n.d n.d
G 2.73 × 105 ± 7.02 × 103c 2.18 × 105 ± 1.25 × 104d 3.32 × 105 ± 1.90 × 104b 3.60 × 105 ± 5.64 × 103a
H n.d n.d n.d n.d
Lilac aldehyde isomer I
A n.d n.d n.d n.d
B n.d n.d n.d n.d
C n.d n.d n.d n.d
D n.d n.d n.d n.d
E n.d n.d n.d n.d
F n.d n.d n.d n.d
G 1.04 × 106 ± 1.96 × 104de 1.36 × 106 ± 7.28 × 104b 1.14 × 105 ± 7.01 × 103cd 1.56 × 106 ± 1.78 × 104a
H n.d n.d n.d n.d
Lilac aldehyde isomer II
A n.d n.d n.d n.d
B n.d n.d n.d n.d
C n.d n.d n.d n.d
D n.d n.d n.d n.d
E n.d n.d n.d n.d
F n.d n.d n.d n.d
G 2.36 × 106 ± 6.96 × 103c 2.59 × 106 ± 1.28 × 105b 2.36 × 106 ± 7.09 × 104c 3.07 × 106 ± 4.60 × 104a
H n.d n.d n.d n.d
Lilac aldehyde isomer III
A n.d n.d n.d n.d
B n.d n.d n.d n.d
C n.d n.d n.d n.d
D n.d n.d n.d n.d
E n.d n.d n.d n.d
F n.d n.d n.d n.d
G 9.48 × 105 ± 3.77 × 103cd 1.02 × 106 ± 6.92 × 103bc 1.06 × 106 ± 8.07 × 104b 1.26 × 106 ± 3.06 × 104a
H n.d n.d n.d n.d
2H-pyran-3-ol.6-ethenyltetrahydro-2,2,6-trimethyl-
A n.d n.d n.d n.d
B n.d n.d n.d n.d
C n.d n.d n.d n.d
D n.d n.d n.d n.d
E n.d n.d n.d n.d
F n.d n.d n.d n.d
G 1.07 × 106 ± 7.09 × 104bc 1.12 × 106 ± 2.75 × 104ab 7.58 × 105 ± 2.48 × 102d 6.08 × 105 ± 2.29 × 104e
H n.d n.d n.d n.d

T0 = Start of analyzes; T1 = 90 days of storage; T2 = 180 days of storage; T3 = 270 days of storage; T4 = 360 days of storage; T5 = 450 days of storage; T6 = 540 days of storage

Values are mean ± standard deviation of replicate experiments. Values in lines with different letters a–f are significantly different at p < 0.05

Fig. 1.

Fig. 1

Representative chromatogram obtained from GC to MS for the identification of volatile compounds of honey during prolonged storage (Sample G—a-T0 and b-T6). Volatiles compounds: 1: Benzaldehyde; 2: Benzeneacetaldehyde; 3: Cis-linalool oxide; 4: Trans-linalool oxide; 5: Linalool; 6: Hotrienol; 7: Lilac Aldehyde Isomer I; 8: Lilac Aldehyde Isomer II; 9: Lilac Aldehyde Isomer III; 10: 2H-Pyran-3-ol.6-ethenyltetrahydro-2.2.6-trimethyl-; 11: Benzeneacetic acid. ethyl ester. T0 = Start of analyzes; T6 = 540 days of storage

Hotrienol, cis- and trans- linalool oxide were found from time zero to the end of the storage period in all samples. Also, these compounds are among those that presented greater abundance and significantly increased (p < 0.05) with the advance of the storage for all samples, except for sample H which showed a significantly decrease (p < 0.05) in the cis- and trans- linalool oxide contents.

The increase of hotrienol, cis- and trans- linalool oxide was also observed by other authors and could be due to the hydrolysis of glycosilated forms in acid conditions (Castro-Vázquez et al. 2008). These compounds may be indicated as degradation markers, as they appear in all honeys analyzed. Cis- and trans- linalool oxide can be generated from 6,7-epoxilinalol (Kuś et al. 2013), since honey is a food acid, thus favoring the formation of these oxides, and consequently, the progression of abundances over the 540 days of storage.

Kuś et al. (2013) describe the formation of hotrienol from the compounds terpendiol I and 8-hidroxilinallol. Barra et al. (2010) and Cuevas-Glory et al. (2007) describe that the hotrienol can be generated from 2,6-dimethyl-3, 7-octadien-2,6-diol, which is thermally generated. Since in the present study, the honey samples were not heated during the storage period, the hotrienol identified was most likely derived from the compounds terpendiol I and 8-hidroxilinallol.

The volatile compounds linalool, lilac aldehyde isomer I, lilac aldehyde isomer II, lilac aldehyde isomer III, and 2H-pyran-3-ol.6-ethenyltetrahydro-2,2,6-trimethyl- were found only for the sample G from time zero to the end of the storage period, while the compounds acetophenone, isopherone, 2,6,6-trimethyl-2-cyclohexene-1,4-dione, and phenol. 2,4,6-trimethyl- this were found only in the sample C over the 540 days of storage. The presence of these volatiles only in these samples can is related to the different flowering predominant and the region of collection of the samples (Da Silva et al., 2016). The compounds butanoic acid. 2-methyl and butanoic acid. 3-methyl also were found only in the sample C, however, were detected from T4 (360 days of storage). From 360 days of storage, other compounds (ethyl acetate, 1-hexanol. 2-ethyl, benzoic acid. ethyl ester, butanoic acid. 3-methyl, butanoic acid. 2-methyl, and salicylic acid. tert.-butyl ester) were detected in at least one sample (Table 3).

Castro-Vázquez et al. (2012) also observed an increase in the volatile compounds content with advancing of the storage period, reporting that these compounds may also be related to the fermentation processes, affecting the quality of honey, presenting loss of freshness.

Wootton et al. (1978) stored honey for one year at room temperature also observed the presence of 1-butanol, 3-methyl, and suggested that these compounds may be derived from the corresponding amino acids such as norleucine, isoleucine, leucine, RZ-aminobutyric acid.

The compounds benzaldehyde, acetophenone, isophenone, and 2,6,6-trimethyl-2-cyclohexene-1,4-dione showed statistically lower values (p < 0.05) at the end of storage. According to Alissandrakis et al. (2011), acetophenone is a reduction product of 1-phenylethanol, both derived from the shikimic acid pathway. Isophorone is derived from the degradation of carotenoids, belonging to the class of norisoprenoids. It is usually found in fruits, wine, and honey (Kuś et al. 2013). It is believed that the benzaldehyde may have been from microbial catabolism of amino acid, according to Dong et al. (2013) and it was also related to the characteristic odor of fresh honey (Castro-Vázquez et al. 2012), and this may explain the decrease of this compound over evaluated storage.

Conclusion

In this first study on the stability of the volatile compounds of honey during prolonged storage (540 days), 32 volatile compounds were identified. Of these, 24 showed higher abundances and were monitored during storage.

The compounds cis- and trans-linalool oxide and hotrienol showed increase abundance during 540 days of storagefor all samples (except for sample H), while other compounds (ethyl acetate, 1-hexanol. 2-ethyl, benzoic acid. ethyl ester, butanoic acid. 3-methyl, butanoic acid. 2-methyl, and salicylic acid. tert.-butyl ester) were detected from 360 days of storage. This data may indicate the quality of Apis mellifera L. honey samples and the compounds cis- and trans-linalool oxide and hotrienol, which were found in all samples and times evaluated, can be considered possible indicators of degradation of honey considering the storage system applied.

However, further studies are needed for a better understanding of the stability of the volatile compounds, considering the evaluation of other storage conditions, such as different times, temperatures and ambient light, including the evaluation of a larger number of samples.

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors wish to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Santa Catarina (FAPESC) for fellowships and financial support.

Footnotes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Fabíola Carina Biluca, Email: fabiolabiluca@gmail.com.

Roseane Fett, Email: roseane.fett@ufsc.br.

References

  1. Alissandrakis E, Tarantilis PA, Pappas C, et al. Investigation of organic extractives from unifloral chestnut (Castanea sativa L.) and eucalyptus (Eucalyptus globulus Labill.) honeys and flowers to identification of botanical marker compounds. LWT Food Sci Technol. 2011;44:1042–1051. doi: 10.1016/J.LWT.2010.10.002. [DOI] [Google Scholar]
  2. Barra MPG, Ponce-Díaz MC, Venegas-Gallegos C. Volatile compounds in honey produced in the Central Valley of Ñuble Province, Chile. Chil J Agric Res. 2010;70:75–84. doi: 10.4067/S0718-58392010000100008. [DOI] [Google Scholar]
  3. Bianchin JN, Nardini G, Merib J, et al. Screening of volatile compounds in honey using a new sampling strategy combining multiple extraction temperatures in a single assay by HS-SPME–GC–MS. Food Chem. 2014;145:1061–1065. doi: 10.1016/J.FOODCHEM.2013.08.139. [DOI] [PubMed] [Google Scholar]
  4. Castro-Vázquez L, Díaz-Maroto MC, González-Viñas MA, et al. Influence of storage conditions on chemical composition and sensory properties of Citrus Honey. J Agric Food Chem. 2008;56:1999–2006. doi: 10.1021/jf072227k. [DOI] [PubMed] [Google Scholar]
  5. Castro-Vázquez L, Elena Alañon M, Gonzalez-Viñas MA, Soledad Pérez-Coello M. Changes in the volatile fractions and sensory properties of heather honey during storage under different temperatures. Eur Food Res Technol. 2012;235:185–193. doi: 10.1007/s00217-012-1756-1. [DOI] [Google Scholar]
  6. Codex Alimentarius Commission (2001) Codex Alimentarius Commission Alinorm 41/10: revised standard for honey Alinorm 1, pp 19–26
  7. Cuevas-Glory LF, Pino JA, Santiago LS, Sauri-Duch E. A review of volatile analytical methods for determining the botanical origin of honey. Food Chem. 2007;103:1032–1043. doi: 10.1016/J.FOODCHEM.2006.07.068. [DOI] [Google Scholar]
  8. Da Silva PM, Gauche C, Gonzaga LV, et al. Honey: chemical composition, stability and authenticity. Food Chem. 2016;196:309–323. doi: 10.1016/j.foodchem.2015.09.051. [DOI] [PubMed] [Google Scholar]
  9. da Silva PDLM, de Lima LS, Caetano ÍK, Torres YR. Comparative analysis of the volatile composition of honeys from Brazilian stingless bees by static headspace GC–MS. Food Res Int. 2017;102:536–543. doi: 10.1016/j.foodres.2017.09.036. [DOI] [PubMed] [Google Scholar]
  10. Dong L, Piao Y, Zhang X, et al. Analysis of volatile compounds from a malting process using headspace solid-phase micro-extraction and GC–MS. Food Res Int. 2013;51:783–789. doi: 10.1016/J.FOODRES.2013.01.052. [DOI] [Google Scholar]
  11. Jerković I, Kuś PM. Terpenes in honey: occurrence, origin and their role as chemical biomarkers. RSC Adv. 2014;4:31710. doi: 10.1039/C4RA04791E. [DOI] [Google Scholar]
  12. Kaškonienė V, Venskutonis PR, Čeksterytė V. Composition of volatile compounds of honey of various floral origin and beebread collected in Lithuania. Food Chem. 2008;111:988–997. doi: 10.1016/J.FOODCHEM.2008.05.021. [DOI] [Google Scholar]
  13. Kuś PM, Jerković I, Tuberoso CIG, Šarolić M. The volatile profiles of a rare apple (Malus domestica Borkh.) honey: shikimic acid-pathway derivatives, terpenes, and others. Chem Biodivers. 2013;10:1638–1652. doi: 10.1002/cbdv.201200404. [DOI] [PubMed] [Google Scholar]
  14. Moreira RFA, De Maria CAB, Pietroluongo M, Trugo LC. Chemical changes in the volatile fractions of Brazilian honeys during storage under tropical conditions. Food Chem. 2010;121:697–704. doi: 10.1016/J.FOODCHEM.2010.01.006. [DOI] [Google Scholar]
  15. Patrignani M, Fagúndez GA, Tananaki C, et al. Volatile compounds of Argentinean honeys: correlation with floral and geographical origin. Food Chem. 2018;246:32–40. doi: 10.1016/J.FOODCHEM.2017.11.010. [DOI] [PubMed] [Google Scholar]
  16. Seraglio SKT, Silva B, Bergamo G, et al. An overview of physicochemical characteristics and health-promoting properties of honeydew honey. Food Res Int. 2019;119:44–66. doi: 10.1016/J.FOODRES.2019.01.028. [DOI] [PubMed] [Google Scholar]
  17. Tahir HE, Xiaobo Z, Xiaowei H, et al. Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques. Food Chem. 2016;206:37–43. doi: 10.1016/J.FOODCHEM.2016.03.032. [DOI] [PubMed] [Google Scholar]
  18. Viegas MC, Bassoli DG. Utilização do índice de retenção linear para caracterização de compostos voláteis em café solúvel utilizando GC–MS e coluna HP-innowax. Quim Nova. 2007;30:2031–2034. doi: 10.1590/S0100-40422007000800040. [DOI] [Google Scholar]
  19. Wootton M, Edwards RA, Faraji-Haremi R, Williams PJ. Effect of accelerated storage conditions on the chemical composition and properties of Australian honeys 3. Changes in volatile components. J Apic Res. 1978;17:167–172. doi: 10.1080/00218839.1978.11099921. [DOI] [Google Scholar]

Articles from Journal of Food Science and Technology are provided here courtesy of Springer

RESOURCES