Skip to main content
The EPMA Journal logoLink to The EPMA Journal
. 2019 Sep 11;11(1):95–117. doi: 10.1007/s13167-019-00185-y

An examination of colorectal cancer burden by socioeconomic status: evidence from GLOBOCAN 2018

Rajesh Sharma 1,
PMCID: PMC7028897  PMID: 32140188

Abstract

Aim and background

Colon and rectum (colorectal) cancer cause substantial mortality and morbidity worldwide. The management and control of a complex disease such as cancer cannot rely on the old strategy of “one disease one medicine” and must make a transition into new-age practices involving predictive, preventive, and personalized medicine (PPPM) at its core. Adoption of PPPM approach to cancer management at the policy level requires quantification of cancer burden at the country level. For this purpose, we examine the burden of colorectal cancer in 185 countries in 2018. Based on results, we discuss the opportunities presented by PPPM and challenges to be encountered while adopting PPPM for the treatment and prevention of colorectal cancer.

Data and methods

Age- and sex-wise estimates of colorectal cancer were procured from the GLOBOCAN 2018. The country- and region-wise burden of colorectal cancer in 185 countries was examined using all-age and age-standardized incidence and mortality estimates. Human development index (HDI) was employed as the indicator of socioeconomic status of a country. Mortality-to-incidence ratio (MIR) was employed as the proxy of 5-year survival rate.

Results

Globally, colorectal cancer claimed an estimated 880,792 lives (males 484,224; females 396,568) with 1.85 million new cases (males 1.03 million; females 823,303) were estimated to be diagnosed in 2018. Globally, the age-standardized incidence rate (ASIR) was 19.7/100,000, whereas age-standardized mortality rate (ASMR) recorded to be 16.3/100,000 in 2018. Age-standardized rates were the highest in developed countries led by Hungary with ASIR of 51.2/100,000 followed by South Korea with ASIR of 44.5/100,000. ASMR followed the patterns of ASIR with the highest ASMR recorded by Hungary (21.5 per 100,000) and Slovakia (20.4 per 100,000). Globally, MIR stood at 0.48, and among the countries recording more than 1000 cases, Nepal registered the highest MIR of 0.83 and the lowest was recorded by South Korea (0.27). The age-standardized rates exhibited nonlinear association with HDI, whereas MIR was negatively associated with HDI.

Conclusion

Colorectal cancer causes a substantial burden worldwide and exhibit a positive association with the socioeconomic status. With the aid of improving screening modalities, preventable nature of the disease (due to dietary and lifestyle risk factors) and improving treatment procedures, the burden of CRC can largely be curtailed. The high burden of CRC in developing countries, therefore, calls for effective prevention strategies, cost-effective screening, and early-stage detection, cost-effective predictive, and personalized treatment regime.

Keywords: Colorectal Cancer, Incidence, Mortality, Predictive preventive personalized medicine, Precision medicine, GLOBOCAN

Introduction

Globally, the burden of communicable diseases has been falling, and mortality and morbidity due to noncommunicable diseases have been rising since the last three decades [1]. The burden of communicable diseases has been proved to be amenable to interventions such as vaccination, public hygiene, and improvement in basic healthcare infrastructure. This, however, is not true for noncommunicable diseases such as cancer which lack an easy solution as a vaccine to treat every kind of neoplasia. Colorectal cancer (CRC) is one of the amenable causes of death and also has been one of the leading cancer groups causing substantial mortality and morbidity worldwide [1, 2]. CRC was previously considered to be a disease of affluence, but as the countries are climbing up the development hierarchy, its burden has risen sharply in developing countries exemplified by surges in countries such as Japan, Singapore and China [3]. Although the CRC burden has been the greatest in developed countries and rising in developing ones, survival rates, which depend crucially upon the stage of diagnosis, are significantly different in countries with different socioeconomic level [4]. The heterogeneous patterns of incidence, mortality, and survival implicate a gap in cancer detection and treatment in countries as per their socioeconomic status.

The majority of colorectal neoplasia are adenocarcinomas originating from epithelial cells of the colorectal mucosa; other rare types include neuroendocrine, squamous cell, adeno-squamous, spindle cell, and undifferentiated carcinomas [5]. Around 80–90% of newly diagnosed cases are sporadic with slow growth from adenomatous polyps to adenoma to adenocarcinoma while the rest (10–20%) is related to familial histories such as familial adenomatous polyposis (FAP) and hereditary nonpolyposis (HNPCC) [6]. The slow march of cancer from polyps to frank carcinoma can be arrested by employing screening methods such as stool-based procedures (e.g., fecal occult blood test and fecal immunochemical test) and structural examinations (e.g., colonoscopy, flexible sigmoidoscopy), thereby resulting in improved survival and low mortality rates [7].

Tackling the burden of a disease as complex as cancer requires new-age strategies such as predictive, preventive, and personalized medicine (PPPM) which is aiming to shift the focus of cancer therapeutics from reactive to a preventive and predictive one to provide individualized treatment paradigms to cancer patients [810]. In cancer management, this approach seeks to separate a healthy person from a patient, low-risk individual from the at-risk population, and a low-grade tumor from a high-grade tumor to offer precise and personalized medicine [8]. To devise proper cancer policy and implement PPPM strategies at the patient or provider level, it is pertinent to examine the recent estimates of the burden of cancer-in-question (CRC here) at the macro-level.

In this study, we examined the CRC burden using estimates from GLOBOCAN 2018 which produced country-, age-, and sex-wise estimates of the incidence, mortality, and prevalence of colorectal carcinoma in 185 countries for the year 2018 [11]. The socioeconomic status of a nation was gauged using country-level human development index (HDI)—a summary indicator of income, education, and longevity [12]. Five-year survival rate due to CRC was proxied using mortality-to-incidence ratio (MIR) which has been employed as the proxy of survival rates before [1316]. An examination of CRC burden is expected to aid policy making and devise appropriate policy interventions to tackle a public health threat that is growing but is also amenable to prevention and early detection.

Data and methods

We procured the estimates of CRC burden from GLOBOCAN 2018, which provided age-, sex-, and country-wise incidence, mortality, and prevalence estimates of 36 neoplasia for 185 countries for the year 2018 [11, 17]. GLOBOCAN 2018 provided incidence and mortality estimates for each cancer group for 21 regions defined by United Nations Population Division (UNPD) in 18 nonoverlapping age groups (0–4, 5–9, 10–14, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59, 60–64, 65–69, 70–74, 75–79, 80–84, and > 85 years). The complete GLOBOCAN 2018 estimation framework and calculation of various population health metrics are detailed elsewhere [11, 17]. The full set of GLOBOCAN 2018 results is available in the Global Cancer Observatory (http://gco.iarc.fr [18]). We procured data of CRC encoded as C18-C21 (colon, rectum, and anus) as per International Classification of Diseases tenth revision (ICD-10). In this study, we examine the CRC burden in terms of all-age incidence and mortality along with age-standardized rates expressed in terms of 100,000 person-years. The age-standardized incidence rate (ASIR) of a country was calculated using following formula.

ASIRi=jCijPijwjTPi 1

In the above equation, i indexes the country and j indexes the age group. Cij denotes number of cases in jth age group in ith country, Pij denotes population in ith country in jth age group, TPi denotes total population of ith country and wj is the weight of jth age group ascribed by world population reference standard. The age-standardized mortality rate (ASMR) for different countries was calculated similarly by replacing number of cases (Cij) by number of deaths (Dij) in equation 1.

The 5-year survival rate of CRC was proxied using mortality-to-incidence ratio (MIR), which was calculated as the ratio of all-age death counts to all-age incident cases. MIR has been previously employed as a proxy for 5-year survival rate in the case of different neoplasia [1316]. While we report estimates for all 185 countries, we focus primarily on the heavily burdened countries and regions. In addition to examining the country-wise burden of colorectal carcinoma, we also examined its relationship with a country’s socioeconomic status measured using its human development index (HDI) [12, 19]. HDI, an indicator of human development constructed by United N ations Development Program (UNDP), is a summary index of three indicators: health (life expectancy at birth), education (mean years of schooling and expected number of years of schooling)1, and income (gross national income (GNI) per capita)[12]. Country-specific value for each of the indicators was rescaled by UNDP on 0 to 1 scale with 0 corresponding to the lowest value and 1 to the highest reported value of the variable and the final HDI of a country is calculated as the geometric mean of the three indicators [12] using the following equation:

HDI=IIEIHI3 2

In the above equation, II is the income index, EI denotes the education index, and HI denotes the health index. As GLOBOCAN estimates were available for the year 2018, and HDI data was available for 2017, we extrapolated the values of HDI for the year 2018 using the country-specific HDI values in the years 2016 and 2017. It was done to make the HDI values consistent with the values of CRC burden in the year 2018. Data analysis was conducted using Python 3.6, MS Excel 2016, and Stata 13.0 statistical software.

Results

Globally, there were an estimated 1.85 million newly diagnosed CRC cases with ASIR estimated to be 19.7 per 100,000 person-years in 2018. Sex-wise, there were 1.03 million incident cases in males and 823,303 cases in females (Table 1). CRC claimed an estimated 880,792 lives in 2018, out of which there were 484,224 males and 396,568 females. The ASMR was estimated to be8.9 per 100,000 person-years in 2018. Region-wise, colorectal cancer burden was the highest in East Asia with 736,573 incident cases (males 426,342 and females 310,231) and 325,128 deaths (males 183,346 and females 141,782). In terms of all-age incidence, North America ranked second with 179,771 cases (93,898 males; 85,873 females) followed by central and eastern Europe with 164,998 (males 84,951 and females 80,047) cases. In terms of deaths, however, central and eastern Europe ranked second after East Asia with 94,545 deaths (males 48,025 and females 46,520). Country-wise, China ranked first with 521,490 cases and 247,563 deaths followed by the USA with 155,098 cases and 54,611 deaths in 2018 (Table 1).

Table 1.

Colon and rectum cancer burden in 185 countries, 2018

Incidence ASIR Deaths ASMR MIR
Population T M F T M F T M F T M F T M F
Australia/New Zealand 21,217 11,444 9773 36.7 41.7 32.1 7424 3893 3531 11.1 12.9 9.5 0.35 0.34 0.36
  Australia 17,782 9643 8139 36.9 41.9 32.4 6131 3237 2894 10.9 12.8 9.2 0.34 0.34 0.36
  New Zealand 3435 1801 1634 35.3 40.2 30.8 1293 656 637 12.1 13.4 10.9 0.38 0.36 0.39
Caribbean 10,886 5016 5870 17.9 17.9 17.8 6259 2898 3361 9.6 9.9 9.3 0.57 0.58 0.57
  Bahamas 115 60 55 22.2 26.4 19.4 50 28 22 9.3 12.3 7.4 0.43 0.47 0.4
  Barbados 219 118 101 38.9 50.3 28.8 101 53 48 16.6 21.4 12.4 0.46 0.45 0.48
  Cuba 4238 1811 2427 17.6 16.1 18.9 2811 1228 1583 10.7 10.2 11.1 0.66 0.68 0.65
  Dominican Republic 1489 730 759 13.4 13.9 12.9 858 428 430 7.4 7.9 6.9 0.58 0.59 0.57
  France, Guadeloupe 183 89 94 19.8 21.2 18.5 104 61 43 9.4 13.1 6.4 0.57 0.69 0.46
  France, Martinique 214 111 103 23.9 29 19.8 110 56 54 10.9 13.3 9 0.51 0.5 0.52
  Haiti 949 406 543 10.8 9.9 11.7 656 267 389 7.5 6.7 8.3 0.69 0.66 0.72
  Jamaica 953 380 573 24.9 21.3 28.2 467 186 281 11.2 9.8 12.4 0.49 0.49 0.49
  Puerto Rico 1823 979 844 27.3 34.1 22.1 736 414 322 9.8 13.4 7.1 0.4 0.42 0.38
  Saint Lucia 36 16 20 14.5 13.3 16 20 10 10 8 8.2 7.9 0.56 0.63 0.5
  Trinidad and Tobago 381 191 190 19.4 21.5 17.5 188 96 92 9.3 10.8 8 0.49 0.5 0.48
Central America 19,520 9959 9561 11 12.1 10 9614 4910 4704 5.3 5.9 4.7 0.49 0.49 0.49
  Belize 24 11 13 9.7 9.2 10 15 7 8 6.3 6.2 6.3 0.63 0.64 0.62
  Costa Rica 1128 560 568 16.7 17.6 15.9 617 316 301 8.6 9.5 7.7 0.55 0.56 0.53
  El Salvador 681 267 414 9 8.9 9.1 367 143 224 4.6 4.5 4.7 0.54 0.54 0.54
  Guatemala 802 368 434 6.3 6.3 6.3 450 206 244 3.5 3.5 3.4 0.56 0.56 0.56
  Honduras 573 286 287 8.2 9 7.6 340 175 165 4.5 4.9 4.1 0.59 0.61 0.57
  Mexico 14,900 7795 7105 11.2 12.5 10 7084 3719 3365 5.2 5.9 4.6 0.48 0.48 0.47
  Nicaragua 631 250 381 11.3 10.2 12.2 367 145 222 6.5 5.9 6.9 0.58 0.58 0.58
  Panama 781 422 359 16.2 18.5 14.1 374 199 175 7.4 8.4 6.5 0.48 0.47 0.49
Central and Eastern Europe 164,998 84,951 80,047 28.8 37.5 23.2 94,545 48,025 46,520 15.2 20.5 11.9 0.57 0.57 0.58
  Belarus 5680 2802 2878 31.8 41.6 26 2919 1315 1604 15.1 19.2 12.8 0.51 0.47 0.56
  Bulgaria 4604 2724 1880 28.5 38.3 20.7 2714 1642 1072 14.9 21.3 10 0.59 0.6 0.57
  Czechia 7838 4538 3300 32.7 42.5 24.9 3421 1974 1447 12.7 17.4 9.1 0.44 0.43 0.44
  Hungary 10,809 6115 4694 51.2 70.6 36.8 5076 2867 2209 21.5 31.2 14.8 0.47 0.47 0.47
  Moldova 2171 1241 930 34.2 47.3 25.2 1202 699 503 18.7 26.9 13.2 0.55 0.56 0.54
  Poland 24,507 14,027 10,480 30.3 41.1 22.1 14,362 8104 6258 16.1 22.6 11.4 0.59 0.58 0.6
  Romania 11,076 6500 4576 26.7 36.3 19.3 6319 3702 2617 13.7 19.2 9.5 0.57 0.57 0.57
  Russian Federation 71,406 33,095 38,311 26.7 32.9 23.2 42,349 19,430 22,919 14.7 18.9 12.3 0.59 0.59 0.6
  Slovakia 4624 2724 1900 43.8 60.7 31.2 2396 1376 1020 20.4 29.5 14.4 0.52 0.51 0.54
  Ukraine 22,283 11,185 11,098 25.8 33.6 21.1 13,787 6916 6871 15.1 20.3 11.9 0.62 0.62 0.62
Eastern Africa 17,125 7933 9192 7.7 7.8 7.7 12,201 5802 6399 5.7 6 5.5 0.71 0.73 0.7
  Burundi 418 193 225 8.3 7.7 8.8 357 166 191 7.4 7 7.6 0.85 0.86 0.85
  Comoros 18 8 10 4.3 4.1 4.5 18 8 10 4.3 4.1 4.5 1 1 1
  Djibouti 41 20 21 5.6 5.8 5.5 34 18 16 4.9 5.4 4.4 0.83 0.9 0.76
  Eritrea 189 95 94 6.3 7 5.8 149 77 72 5.2 5.9 4.7 0.79 0.81 0.77
  Ethiopia 4716 2206 2510 7.5 7.8 7.4 3555 1745 1810 5.8 6.3 5.5 0.75 0.79 0.72
  France, La Réunion 349 186 163 25.2 29.2 21.6 143 72 71 9.3 10.9 7.9 0.41 0.39 0.44
  Kenya 2316 1134 1182 9.3 10 8.7 1466 738 728 6 6.8 5.4 0.63 0.65 0.62
  Madagascar 827 366 461 6.1 5.5 6.5 579 258 321 4.4 4.2 4.7 0.7 0.7 0.7
  Malawi 354 171 183 3.5 3.9 3.3 239 119 120 2.5 2.9 2.2 0.68 0.7 0.66
  Mauritius 288 156 132 14.7 17.4 12.6 173 92 81 8.6 10.3 7.1 0.6 0.59 0.61
  Mozambique 561 278 283 3.3 3.7 3 451 224 227 2.8 3.2 2.5 0.8 0.81 0.8
  Rwanda 838 355 483 13.4 12.6 14.1 592 258 334 9.8 9.7 10 0.71 0.73 0.69
  Somalia 599 298 301 8 8.4 7.6 539 273 266 7.4 7.9 6.9 0.9 0.92 0.88
  South Sudan 509 256 253 7.1 7.5 6.7 420 216 204 6 6.6 5.5 0.83 0.84 0.81
  Tanzania 2594 1004 1590 9 7.4 10.4 1767 704 1063 6.3 5.5 7 0.68 0.7 0.67
  Uganda 1345 655 690 8.1 8.3 7.9 961 458 503 6.2 6.4 5.9 0.71 0.7 0.73
  Zambia 355 163 192 4.6 4.9 4.4 202 103 99 2.8 3.2 2.4 0.57 0.63 0.52
  Zimbabwe 793 382 411 10.1 11.6 9.1 549 269 280 7.2 8.4 6.3 0.69 0.7 0.68
Eastern Asia 736,573 426,342 310,231 26.5 32 21.3 325,128 183,346 141,782 10.9 13.3 8.7 0.44 0.43 0.46
  China 521,490 303,853 217,637 23.7 28.1 19.4 247,563 142,476 105,087 10.9 13.1 8.8 0.47 0.47 0.48
  Japan 148,151 82,641 65,510 38.9 49.1 29.6 57,910 30,228 27,682 12 15.2 9.2 0.39 0.37 0.42
  North Korea 6566 3266 3300 18.8 22.7 15.8 3112 1415 1697 8.5 10.4 7.3 0.47 0.43 0.51
  South Korea 42,363 26,143 16,220 44.5 59.5 31.3 9762 5445 4317 8.7 11.8 6.3 0.23 0.21 0.27
  Mongolia 146 67 79 6.2 6.5 6 88 42 46 3.8 4 3.6 0.6 0.63 0.58
Melanesia 906 557 349 12.8 17.8 9 561 372 189 8.1 12.3 4.9 0.62 0.67 0.54
  Fiji 86 43 43 10.1 11.3 9.3 50 27 23 6.2 7.9 5.2 0.58 0.63 0.53
  France, New Caledonia 101 59 42 25.8 31.7 20.5 34 23 11 9 13 5.6 0.34 0.39 0.26
  Papua New Guinea 684 439 245 13 19.3 8.4 447 307 140 8.7 14 4.8 0.65 0.7 0.57
  Solomon Islands 25 12 13 7 7.3 6.6 21 11 10 5.9 6.7 5.1 0.84 0.92 0.77
  Vanuatu 10 4 6 5.1 4.3 5.9 9 4 5 4.6 4.3 5 0.9 1 0.83
Micronesia 96 55 41 17.4 20.9 13.9 51 31 20 9.5 12.5 6.8 0.53 0.56 0.49
  Guam 38 21 17 17.2 20.1 14.6 20 12 8 9.1 11.6 7.1 0.53 0.57 0.47
Middle Africa 6010 2895 3115 7.5 7.8 7.3 4562 2232 2330 5.9 6.3 5.6 0.76 0.77 0.75
  Angola 733 374 359 5.3 6 4.8 480 254 226 3.6 4.3 3.1 0.65 0.68 0.63
  Cameroon 871 450 421 6.9 7.7 6.3 609 322 287 5 5.8 4.4 0.7 0.72 0.68
  Central African Republic 151 78 73 5.8 6.5 5.2 139 73 66 5.4 6.3 4.8 0.92 0.94 0.9
  Chad 413 214 199 5.9 6.6 5.3 325 169 156 5 5.6 4.5 0.79 0.79 0.78
  Congo 152 81 71 5 5.7 4.5 102 56 46 3.5 4.1 3 0.67 0.69 0.65
  Democratic Republic of Congo 3568 1627 1941 9.1 9 9.2 2831 1314 1517 7.4 7.5 7.3 0.79 0.81 0.78
  Equatorial Guinea 40 24 16 5.8 6.4 5.2 30 18 12 5 5.8 4.2 0.75 0.75 0.75
  Gabon 82 47 35 5.5 6.3 4.9 46 26 20 3.3 3.8 3 0.56 0.55 0.57
  Sao Tome and Principe 5 3 2 6.6 9.5 4.4 3 2 1 4.1 6.6 2.2 0.6 0.67 0.5
North America 179,771 93,898 85,873 26.2 29.5 23.2 64,121 33,752 30,369 8.4 9.9 7.1 0.36 0.36 0.35
  Canada 24,617 13,039 11,578 31.5 35.2 28 9494 5086 4408 10.1 12.2 8.2 0.39 0.39 0.38
  USA 155,098 80,829 74,269 25.6 28.8 22.6 54,611 28,658 25,953 8.2 9.6 6.9 0.35 0.35 0.35
Northern Africa 18,810 9696 9114 9.2 10 8.6 10,902 5801 5101 5.4 6.1 4.7 0.58 0.6 0.56
  Algeria 5537 2910 2627 13.9 14.8 13 3027 1684 1343 7.5 8.5 6.6 0.55 0.58 0.51
  Egypt 5393 2661 2732 6.5 6.6 6.3 3041 1487 1554 3.7 3.8 3.5 0.56 0.56 0.57
  Libya 675 309 366 12.6 13 12.5 404 192 212 8 8.5 7.6 0.6 0.62 0.58
  Morocco 4118 2205 1913 10.9 12.2 9.8 2462 1381 1081 6.5 7.7 5.4 0.6 0.63 0.57
  Sudan 1398 746 652 5.4 6.2 4.7 1004 555 449 3.9 4.7 3.3 0.72 0.74 0.69
  Tunisia 1657 848 809 11.9 13 11 950 493 457 6.6 7.5 5.9 0.57 0.58 0.56
Northern Europe 75,900 41,255 34,645 32.1 37.5 27.3 32,659 17,367 15,292 11.2 13.5 9.3 0.43 0.42 0.44
  Denmark 5585 2966 2619 41 45.9 36.6 1934 1003 931 12 13.7 10.5 0.35 0.34 0.36
  Estonia 942 416 526 29.2 34.8 25.9 482 234 248 12.5 17.8 9.5 0.51 0.56 0.47
  Finland 3440 1826 1614 24.6 28.7 21.2 1393 755 638 8.6 10.8 6.8 0.4 0.41 0.4
  Iceland 168 92 76 26.2 30.5 22 82 46 36 10.9 13.4 8.6 0.49 0.5 0.47
  Ireland 2968 1752 1216 34 42.4 26.4 1207 686 521 12.2 15.2 9.7 0.41 0.39 0.43
  Latvia 1550 735 815 33 42.6 27.7 706 321 385 12.8 17.3 10.4 0.46 0.44 0.47
  Lithuania 1831 898 933 27.2 35.6 22.1 996 535 461 12.8 19.6 8.9 0.54 0.6 0.49
  Norway 4887 2530 2357 42.9 46.9 39.3 1750 915 835 13.2 15.3 11.3 0.36 0.36 0.35
  Sweden 6421 3370 3051 26.9 29.7 24.3 3062 1637 1425 10.6 12.4 9 0.48 0.49 0.47
  UK 47,892 26,551 21,341 32.1 37.8 27 20,957 11,186 9771 11.1 13.3 9.3 0.44 0.42 0.46
Polynesia 113 67 46 16.2 20 12.4 30 23 7 4.4 7.4 2.1 0.27 0.34 0.15
  French Polynesia 47 27 20 13.9 15.9 11.6 11 9 2 3.4 5.6 1.2 0.23 0.33 0.1
  Samoa 37 24 13 22.6 30.6 14.8 13 8 5 7.8 10.9 6.3 0.35 0.33 0.38
South America 97,600 48,061 49,539 18.6 20.6 17.1 48,793 24,563 24,230 8.9 10.3 7.8 0.5 0.51 0.49
  Argentina 15,692 8527 7165 25 31.5 20.2 8721 4751 3970 12.6 16.6 9.8 0.56 0.56 0.55
  Bolivia 605 311 294 6.1 6.7 5.6 371 194 177 3.7 4.1 3.2 0.61 0.62 0.6
  Brazil 51,783 24,737 27,046 19.6 21.1 18.6 24,482 12,031 12,451 9 10.1 8.1 0.47 0.49 0.46
  Chile 5914 3002 2912 20.7 23.9 18.2 3144 1556 1588 10.2 11.9 8.9 0.53 0.52 0.55
  Colombia 9140 4396 4744 15.8 16.9 15 4489 2203 2286 7.6 8.4 6.9 0.49 0.5 0.48
  Ecuador 2025 902 1123 11.3 10.8 11.7 1100 507 593 5.8 5.9 5.8 0.54 0.56 0.53
  French Guyana 54 32 22 21.7 26.8 17 14 8 6 5.8 7.3 4.3 0.26 0.25 0.27
  Guyana 36 15 21 5 4.4 5.4 27 12 15 3.8 3.5 3.9 0.75 0.8 0.71
  Paraguay 895 466 429 13.9 15 12.7 552 284 268 8.3 9 7.5 0.62 0.61 0.62
  Peru 4610 2255 2355 13.3 14.2 12.4 2367 1220 1147 6.5 7.5 5.7 0.51 0.54 0.49
  Suriname 94 51 43 15.4 18.8 12.7 70 38 32 11.3 14.1 8.9 0.74 0.75 0.74
  Uruguay 2273 1152 1121 35 43.8 28.3 1093 555 538 15 19.3 12.1 0.48 0.48 0.48
  Venezuela 4479 2215 2264 13.6 14.8 12.6 2363 1204 1159 7.1 8.1 6.2 0.53 0.54 0.51
South-Eastern Asia 95,223 53,542 41,681 14.3 17.6 11.6 52,475 29,384 23,091 7.9 9.9 6.3 0.55 0.55 0.55
  Brunei 140 84 56 35 43.4 27.4 50 32 18 13.9 18.5 9.8 0.36 0.38 0.32
  Cambodia 1314 637 677 11.1 13 9.9 859 414 445 7.5 8.8 6.7 0.65 0.65 0.66
  Indonesia 30,017 19,113 10,904 12.1 16.2 8.4 16,386 10,279 6107 6.9 9.3 4.8 0.55 0.54 0.56
  Lao PDR 652 326 326 13.9 14.9 13.1 394 197 197 8.6 9.4 8 0.6 0.6 0.6
  Malaysia 6137 3342 2795 19.9 22 17.9 3414 1863 1551 11.2 12.5 9.9 0.56 0.56 0.55
  Myanmar 4751 2600 2151 9.1 11.1 7.6 2960 1606 1354 5.8 7.1 4.8 0.62 0.62 0.63
  Philippines 15,680 8791 6889 18.9 23.5 15.2 8821 4841 3980 11 13.9 8.9 0.56 0.55 0.58
  Singapore 4202 1994 2208 36.8 38.9 34 1980 1050 930 17.3 20.2 14.6 0.47 0.53 0.42
  Thailand 17,534 9015 8519 15.5 17.6 13.9 9462 4963 4499 8.4 9.7 7.4 0.54 0.55 0.53
  Timor-Leste 63 33 30 8.9 9.7 8.1 45 23 22 6.5 7.1 5.9 0.71 0.7 0.73
  Viet Nam 14,733 7607 7126 13.4 16 11.6 8104 4116 3988 7 8.7 5.9 0.55 0.54 0.56
Southern Africa 7167 3637 3530 13.4 16.8 11.2 3801 1979 1822 7.1 9.5 5.7 0.53 0.54 0.52
  Botswana 53 35 18 2.9 4.9 1.6 28 20 8 1.7 3.2 0.8 0.53 0.57 0.44
  Eswatini 30 16 14 3.6 4.6 2.9 18 11 7 2.4 3.5 1.7 0.6 0.69 0.5
  Lesotho 47 27 20 3.1 4.4 2.4 35 21 14 2.5 3.6 1.8 0.74 0.78 0.7
  Namibia 100 51 49 6.3 7.3 5.5 56 29 27 3.6 4.3 3.1 0.56 0.57 0.55
  South Africa 6937 3508 3429 14.4 18.1 12 3664 1898 1766 7.6 10.2 6.1 0.53 0.54 0.52
South-Central Asia 88,033 53,534 34,499 4.9 6.1 3.8 63,401 39,852 23,549 3.6 4.6 2.6 0.72 0.74 0.68
  Afghanistan 805 487 318 4 4.7 3.4 709 436 273 3.7 4.2 3 0.88 0.9 0.86
  Bangladesh 5549 3164 2385 3.8 4.3 3.3 4469 2605 1864 3 3.5 2.6 0.81 0.82 0.78
  Bhutan 30 23 7 4.2 6 2.1 24 19 5 3.7 5.5 1.6 0.8 0.83 0.71
  India 56,751 36,687 20,064 4.4 5.8 3.1 43,090 28,591 14,499 3.4 4.6 2.2 0.76 0.78 0.72
  Iran 9864 5630 4234 12.9 14.6 11.1 4153 2395 1758 5.6 6.3 4.8 0.42 0.43 0.42
  Kazakhstan 3049 1392 1657 15.4 17.7 14.1 2108 1023 1085 10.5 13.3 8.9 0.69 0.73 0.65
  Kyrgyzstan 352 174 178 7.3 8.1 6.5 274 136 138 5.7 6.4 5 0.78 0.78 0.78
  Maldives 41 30 11 11.9 15.9 7.2 20 17 3 6.3 10.5 1.8 0.49 0.57 0.27
  Nepal 1432 514 918 5.8 4.4 7 1191 449 742 4.8 3.9 5.7 0.83 0.87 0.81
  Pakistan 6475 3587 2888 4.2 4.5 3.8 5003 2822 2181 3.3 3.7 3 0.77 0.79 0.76
  Sri Lanka 1441 734 707 5.2 5.8 4.7 968 518 450 3.4 4 2.9 0.67 0.71 0.64
  Tajikistan 263 165 98 4 4.9 3.1 207 131 76 3.1 4 2.4 0.79 0.79 0.78
  Turkmenistan 278 134 144 6 6.7 5.6 168 87 81 3.7 4.2 3.2 0.6 0.65 0.56
  Uzbekistan 1703 813 890 6.3 6.5 6 1017 623 394 3.8 5.1 2.7 0.6 0.77 0.44
Southern Europe 119,949 69,446 50,503 31.6 40.4 24.1 53,975 30,991 22,984 11.5 15.4 8.4 0.45 0.45 0.46
  Albania 402 225 177 8.4 9.6 7.2 198 115 83 3.7 4.5 3 0.49 0.51 0.47
  Bosnia and Herzegovina 1818 1046 772 26.1 33 20.4 1081 628 453 13.3 18.2 9.4 0.59 0.6 0.59
  Croatia 3387 1951 1436 34.1 45.9 24.9 2187 1288 899 18.9 27.4 12.7 0.65 0.66 0.63
  Greece 7319 4158 3161 26.2 32.3 21.1 3430 1985 1445 9.7 12.7 7.3 0.47 0.48 0.46
  Italy 49,327 26,930 22,397 29.9 36 24.8 21,172 11,491 9681 10.2 12.8 8 0.43 0.43 0.43
  Macedonia FYR 996 517 479 28.4 30.9 26.3 472 248 224 12.5 14.2 11.1 0.47 0.48 0.47
  Malta 302 180 122 29.1 36 23.2 121 70 51 10.6 13.2 8.6 0.4 0.39 0.42
  Montenegro 210 115 95 18.6 22.7 14.9 115 62 53 9.2 11.2 7.5 0.55 0.54 0.56
  Portugal 10,270 6104 4166 40 54 28.7 4261 2497 1764 13.5 18.7 9.6 0.41 0.41 0.42
  Serbia 6149 3775 2374 36.7 49 26.4 3232 1966 1266 16.8 23.3 11.6 0.53 0.52 0.53
  Slovenia 1987 1301 686 41.1 58.9 25.5 740 423 317 12.5 17.1 8.9 0.37 0.33 0.46
  Spain 37,172 22,744 14,428 33.4 45.2 23.3 16,683 10,038 6645 12 16.8 8 0.45 0.44 0.46
Western Africa 12,734 6489 6245 6.4 6.8 6.1 8568 4440 4128 4.5 4.9 4.2 0.67 0.68 0.66
  Benin 433 274 159 6.8 9.5 4.6 299 190 109 4.8 6.8 3.2 0.69 0.69 0.69
  Burkina Faso 583 243 340 6.3 5.5 6.7 463 194 269 5.3 4.8 5.6 0.79 0.8 0.79
  Cabo Verde 30 9 21 6.4 7.3 6.3 21 6 15 4.2 4.2 4.3 0.7 0.67 0.71
  Côte d’Ivoire 737 333 404 5.8 4.9 6.9 552 259 293 4.5 3.9 5.2 0.75 0.78 0.73
  Gambia 11 9 2 1.1 1.7 0.48 9 7 2 0.98 1.5 0.48 0.82 0.78 1
  Ghana 1228 658 570 7.8 9.6 6.6 824 467 357 5.5 7.1 4.2 0.67 0.71 0.63
  Guinea 145 77 68 2 2.1 1.8 118 65 53 1.7 1.9 1.5 0.81 0.84 0.78
  Guinea-Bissau 61 30 31 6.1 7.1 5.5 53 28 25 5.6 6.9 4.7 0.87 0.93 0.81
  Liberia 102 43 59 3.9 3.4 4.3 84 37 47 3.4 3 3.6 0.82 0.86 0.8
  Mali 917 385 532 10.5 9 11.7 686 290 396 8.3 7.3 9.1 0.75 0.75 0.74
  Mauritania 159 70 89 6.1 5.2 6.7 111 48 63 4.5 3.8 4.9 0.7 0.69 0.71
  Niger 583 305 278 5.3 5.5 5 522 284 238 4.9 5.3 4.5 0.9 0.93 0.86
  Nigeria 6692 3568 3124 6.2 6.8 5.6 4059 2202 1857 4 4.5 3.5 0.61 0.62 0.59
  Senegal 529 226 303 6.5 6.3 6.6 372 165 207 4.8 4.9 4.7 0.7 0.73 0.68
  Sierra Leone 216 103 113 5.5 5 5.9 173 83 90 4.7 4.3 5 0.8 0.81 0.8
  Togo 303 153 150 7.2 7.2 7.1 219 113 106 5.5 5.6 5.3 0.72 0.74 0.71
Western Asia 38,067 21,490 16,577 16.3 19.4 13.6 20,418 11,240 9178 8.7 10.4 7.3 0.54 0.52 0.55
  Armenia 990 367 623 19.9 18.4 20.8 640 252 388 12.4 12.6 12.1 0.65 0.69 0.62
  Azerbaijan 1114 668 446 10.2 13.8 7.4 774 482 292 7.1 10.2 4.8 0.69 0.72 0.65
  Bahrain 120 72 48 12.6 14.2 11.2 70 40 30 8.1 8.9 7.6 0.58 0.56 0.63
  Cyprus 511 338 173 24.2 34.4 15.3 242 154 88 10.2 14.6 6.5 0.47 0.46 0.51
  West Bank and Gaza Strip 501 262 239 19.1 21.1 17.3 303 159 144 11.9 13.3 10.7 0.6 0.61 0.6
  Georgia 645 331 314 8.7 11.1 7.1 427 226 201 5.7 7.5 4.4 0.66 0.68 0.64
  Iraq 1391 763 628 6.1 7.2 5.2 813 446 367 3.7 4.4 3.1 0.58 0.58 0.58
  Israel 2519 1336 1183 20.1 22.8 18 1390 717 673 9.3 11 7.9 0.55 0.54 0.57
  Jordan 1105 460 645 17 14.8 19.2 589 257 332 9.3 8.5 10 0.53 0.56 0.51
  Kuwait 352 195 157 13.2 12.9 14 178 97 81 7.5 7.4 7.9 0.51 0.5 0.52
  Lebanon 1463 775 688 20 20.8 19.2 851 451 400 10.9 11.7 10.3 0.58 0.58 0.58
  Oman 368 262 106 11 11.7 9.6 195 137 58 6.4 6.8 5.6 0.53 0.52 0.55
  Qatar 142 100 42 13 13.5 13.8 79 54 25 8.7 9 9.5 0.56 0.54 0.6
  Saudi Arabia 3564 2405 1159 13.1 14.9 10.6 1603 1077 526 6.3 7.3 5 0.45 0.45 0.45
  Syrian Arab Republic 1890 870 1020 14.4 14.3 14.5 1248 583 665 9.5 9.7 9.4 0.66 0.67 0.65
  Turkey 20,031 11,548 8483 21 27.4 16 10,033 5571 4462 10.2 13.1 7.9 0.5 0.48 0.53
  United Arab Emirates 662 437 225 14.1 14.8 13.5 314 207 107 7.4 7.7 7.3 0.47 0.47 0.48
  Yemen 1210 639 571 8.6 9.5 7.8 911 484 427 6.7 7.5 6 0.75 0.76 0.75
Western Europe 138,820 75,948 62,872 28.8 34.5 23.7 61,304 33,323 27,981 10.3 13.1 8 0.44 0.44 0.45
  Austria 4421 2531 1890 20.7 26.3 16.1 2276 1318 958 8.9 12 6.2 0.51 0.52 0.51
  Belgium 9346 5266 4080 35.3 43.8 28 3224 1669 1555 9.7 11.9 7.8 0.34 0.32 0.38
  France 47,025 25,813 21,212 30.4 36.9 24.8 19,962 10,821 9141 10.2 13.1 7.9 0.42 0.42 0.43
  Germany 58,047 31,026 27,021 26.2 31 22.1 27,334 14,931 12,403 10.1 13 7.7 0.47 0.48 0.46
  Luxembourg 323 170 153 28.1 31.4 25.3 134 72 62 10.1 12.3 8.1 0.41 0.42 0.41
  Netherlands 14,921 8513 6408 37.8 45.3 31.1 6442 3443 2999 13.8 16.5 11.5 0.43 0.4 0.47
  Switzerland 4681 2598 2083 24 28.4 20.2 1909 1054 855 8.1 10.1 6.4 0.41 0.41 0.41
World 1,849,518 1,026,215 823,303 19.7 23.6 16.3 880,792 484,224 396,568 8.9 10.8 7.2 0.48 0.47 0.48
t Test (male vs female) 2.20** (0.014) 10.27*** (0.000) 2.14** (0.016) 12.29*** (0.000) 5.00*** (0.000)

T: Total, both sexes, all age-groups; F: Females, all age-groups; M: Males, all age-groups; ASIR: age-standardized incidence rate per 100,000 person-years; ASMR: age-standardized mortality rate per 100,000 person-years; MIR: Mortality-to-incidence ratio. Data Source: GLOBOCAN 2018 (IARC). T-test in the last column tests for the hypothesis of M (male mean) – F (female mean) = 0 against the one-sided alternate hypothesis M-F < 0; **/*** denotes statistical significance at 5%/1% respectively

Age-standardized rates were the highest in developed regions led by Australia/New Zealand region with ASIR of 36.7/100,000 followed by northern Europe with ASIR of 32.1/100,000. ASIR was the lowest in south-central Asia at 4.9 per 100,000 person-years in 2018. ASMR was again the highest in central and eastern Europe (15.2/100,000) followed by southern Europe (11.5/100,000) with south-central Asia registering the lowest ASMR of 3.6/100,000 in 2018. Top-3 countries with highest ASIR were Hungary (51.2/100,000), South Korea (44.5 per 100,000) and Slovakia (43.8 per 100,000) in 2018 (Table 1; Fig. 1a). The estimated ASMR was again the highest in developed countries led by Hungary (21.5/100,000) and Slovakia (20.4 per 100,000) (Table 1; Fig. 1b). Among the countries with more than 1000 incident cases in 2018, ASIR varied 13-fold from Bangladesh with ASIR of 3.8/100,000 to 51.2/100,000 recorded by Hungary. ASMR varied 7-fold in these countries (> 1000 cases) ranging from Bangladesh with ASMR of 3.0/100,000 to Hungary which recorded ASMR of 21.5/100,000 in 2018.

Fig. 1.

Fig. 1

Geographical distribution of colorectal cancer burden in both sexes in 2017. a ASIR. b ASMR. ASIR age-standardized incidence rate per 100,000 person-years, ASMR age-standardized mortality rate per 100,000 person-years. Data source: GLOBOCAN 2018 (IARC)

Sex-wise, we noted that CRC had more proclivity towards males than females with males recording ASIR of 23.8/100,000 as against female ASIR of 21.8/100,000. The male-female difference in ASIR was the greatest in European regions, e.g., Southern Europe, male ASIR 40.4/100,000 and female ASIR 24.1/100,000. Globally, the ASMR was again higher in males (10.8/100,000) than females (7.2/100,000). The male-female difference in ASMR was the highest in European regions, e.g., central and eastern Europe, male ASMR 20.5/100,000 and female ASMR 11.9/100,000. The pattern of male dominance in terms of CRC burden was preserved across other world regions with few of the heavily burdened countries recording male age-standardized rates approximately twice as that of female age-standardized rates; for instance, Poland has an estimated male ASMR of 22.6/100,000 and female ASMR of 11.4/100,000 (Table 1). The t test of mean difference between male and females across countries was again found to be significant across all the metrics (bottom row of Table 1).

Across the age groups, the CRC incidence exhibited bell-shaped distribution; deaths due to CRC, however, increased monotonically with age (Fig. 2). The male dominance in terms of CRC burden was again preserved across different age groups with each of them except the oldest (85 plus) registering higher incidence as well as the death counts in males than in females (Fig. 2).

Fig. 2.

Fig. 2

Age-group and gender-wise burden of colon and rectum cancer in 2018. a Incidence. b Deaths. Data source: GLOBOCAN 2018 (IARC)

To examine the statistical relationship between CRC and HDI, we regressed ASIR and ASMR on HDI in linear form as well as by including the quadratic term (Table 2). The model including only the linear term of HDI could explain 58.7% variation in ASIR, whereas it explained 38.6% variation in ASMR. The inclusion of quadratic term resulted in a better fit of the model with regression involving both linear and quadratic term explaining 66.8% and 40.9% variation in ASIR and ASMR, respectively. CRC was generally higher in developed countries with a sharp upsurge in the positive relationship at HDI around 0.5 and 0.37 with the nonlinearity not as sharp in case of ASMR as it was in the case of ASIR (Table 2, Fig. 3).

Table 2.

Association between human development and indicators of CRC burden

ASIR as dependent Variable ASMR as dependent Variable MIR as dependent Variable
HDI 56.9*** (3.4) − 134.8*** (22.9) 16.1*** (1.3) − 20.8* (11.0) − 0.7839*** (0.0324) − 0.6718** (0.2833)
HDI SQ 140.5*** (17.5) 27.0*** (8.1) − 0.0821 (0.2108)
Intercept − 24.0*** (2.3) 38.0*** (7.1) − 3.4*** (0.9) 8.6*** (3.5) 1.1504*** (0.0239) 1.1142*** (0.0900)
R2 0.5869 0.6691 0.3850 0.4101 0.7240 0.7242
Turning Point 0.4797 0.3852

Data source: MIR was calculated directly as the ratio of all-age death numbers and no. of all-age incident cases which were procured from GLOBOCAN 2018 (IARC) and HDI estimates from UNDP. Robust standard errors are presented inside parenthesis

ASMR age-standardized mortality rate per 100,000 person-years, both sexes, ASIR age-standardized incidence rate per 100,000 person-years, both sexes, MIR mortality-to-incidence ratio, HDI country-wise human development index

*, **, *** represent statistical significance at 10, 5, and 1% level of significance. Turning point is calculated as β12β2

Fig. 3.

Fig. 3

Nonlinear relationship between human development and age-standardized rates. a ASIR vs HDI. b ASMR vs HDI. c MIR vs HDI. ASMR age-standardized mortality rate per 100,000 person-years, both sexes, ASIR age-standardized incidence rate per 100,000 person-years, both sexes, MIR mortality-to-incidence ratio, HDI human development index. Data source: MIR was calculated directly as the ratio of all-age death numbers and no. of all-age incident cases, both of which were procured from GLOBOCAN 2018 (IARC) and HDI estimates were obtained from UNDP

MIR, a proxy indicator of 5-year survival rate, exhibited negative gradient with HDI (Fig. 3c). The global MIR of CRC stood at 0.48 with 140 countries recording MIR above the global MIR. Among the regions, the highest MIR (or the lowest survival rates) was recorded by African regions (middle Africa 0.76 and eastern Africa 0.71). The MIR was also high in south-central Asia at 0.71. Although ASIR was one of the highest in Australia/New Zealand region, its MIR was one of the lowest at 0.35. Among the countries with incidence greater than 1000 in 2018, MIR exhibited a 3.6-fold variation ranging from 0.23 in South Korea to 0.83 in Nepal. Unlike ASIR and ASMR, the pattern of association of MIR with HDI was found to be strictly linear and downward sloping rather than quadratic (Fig. 3c; Table 2). HDI could explain 72.6% of the variation in MIR (Table 2) with the inclusion of quadratic term does not significantly improve the fit of the model, which is again apparent from Fig. 3c.

Globally, 1 in 24 persons (1 in 19 men and 1 in 29 women) had the risk of developing CRC during their lifetime (before the age 85) whereas the risk of dying from CRC were 1 in 37 in males and 1 in 57 in females (Table 3; Table 4 of Appendix). There was wide geographical variations between the risk of developing and dying from CRC during lifetime i.e. before the age 85 (Table 3; Table 4 of Appendix). While the odds of CRC incidence were the greatest in Australia/New Zealand region with 1 in 13 persons (males 1 in 11; females: 1 in 15) were expected to develop CRC during their lifetime, the odds of CRC death, however, were the greatest in central and eastern Europe (both sexes 1 in 28; males 1 in 20; females 1 in 36). Country-wise, odds of developing CRC were the greatest in developed countries led by Hungary with odds of CRC incidence 1 in 10 (males 1 in 7; females 1 in 13). In females, the highest odds of CRC incidence and death were estimated in Singapore (incidence 1 in 11; death 1 in 27). Fifty-three countries had more than 5% risk of CRC incidence during a person’s lifetime, whereas 7 countries recorded greater than 10% risk of developing CRC. As per the development status, the CRC risk was the highest in developed countries and lowest in lesser developed and populous countries in Asia and Africa. India, for instance, had one of the lowest risks (incidence 1 in 120; death 1 in 149) of CRC incidence and mortality.

Table 3.

Region-wise probability of incidence and death due to colorectal cancer

Incidence Deaths
Population Both Male Female Both Male Female
Australia and New Zealand 7.83 (1 in 13) 8.98 (1 in 11) 6.75 (1 in 15) 2.77 (1 in 36) 3.16 (1 in 32) 2.4 (1 in 42)
Caribbean 3.97 (1 in 25) 4.01 (1 in 25) 3.94 (1 in 25) 2.37 (1 in 42) 2.45 (1 in 41) 2.29 (1 in 44)
Central America 2.17 (1 in 46) 2.38 (1 in 42) 1.98 (1 in 51) 1.17 (1 in 85) 1.3 (1 in 77) 1.06 (1 in 94)
Central and Eastern Europe 5.9 (1 in 17) 7.92 (1 in 13) 4.7 (1 in 21) 3.56 (1 in 28) 4.93 (1 in 20) 2.78 (1 in 36)
Eastern Africa 1.49 (1 in 67) 1.54 (1 in 65) 1.45 (1 in 69) 1.19 (1 in 84) 1.28 (1 in 78) 1.12 (1 in 89)
Eastern Asia 5.67 (1 in 18) 6.86 (1 in 15) 4.58 (1 in 22) 2.83 (1 in 35) 3.44 (1 in 29) 2.28 (1 in 44)
Melanesia 2.82 (1 in 35) 4.23 (1 in 24) 1.75 (1 in 57) 1.85 (1 in 54) 3.02 (1 in 33) 0.97 (1 in 103)
Micronesia 3.63 (1 in 28) 4.1 (1 in 24) 3.13 (1 in 32) 1.81 (1 in 55) 2.69 (1 in 37) 1.09 (1 in 92)
Middle Africa 1.72 (1 in 58) 1.84 (1 in 54) 1.63 (1 in 61) 1.47 (1 in 68) 1.61 (1 in 62) 1.37 (1 in 73)
North America 5.18 (1 in 19) 5.88 (1 in 17) 4.57 (1 in 22) 1.88 (1 in 53) 2.21 (1 in 45) 1.59 (1 in 63)
Northern Africa 1.68 (1 in 60) 1.9 (1 in 53) 1.51 (1 in 66) 1.14 (1 in 88) 1.35 (1 in 74) 0.97 (1 in 103)
Northern Europe 6.89 (1 in 15) 8.23 (1 in 12) 5.74 (1 in 17) 2.9 (1 in 34) 3.55 (1 in 28) 2.37 (1 in 42)
Polynesia 3.48 (1 in 29) 4.53 (1 in 22) 2.55 (1 in 39) 0.77 (1 in 130) 1.35 (1 in 74) 0.26 (1 in 385)
South America 3.91 (1 in 26) 4.42 (1 in 23) 3.51 (1 in 28) 2.14 (1 in 47) 2.53 (1 in 40) 1.84 (1 in 54)
South-Central Asia 0.93 (1 in 108) 1.2 (1 in 83) 0.68 (1 in 147) 0.72 (1 in 139) 0.95 (1 in 105) 0.5 (1 in 200)
South-Eastern Asia 2.92 (1 in 34) 3.65 (1 in 27) 2.35 (1 in 43) 1.84 (1 in 54) 2.36 (1 in 42) 1.46 (1 in 68)
Southern Africa 2.89 (1 in 35) 3.78 (1 in 26) 2.37 (1 in 42) 1.72 (1 in 58) 2.37 (1 in 42) 1.35 (1 in 74)
Southern Europe 6.64 (1 in 15) 8.66 (1 in 12) 4.95 (1 in 20) 2.89 (1 in 35) 3.92 (1 in 26) 2.06 (1 in 49)
Western Africa 1.15 (1 in 87) 1.24 (1 in 81) 1.07 (1 in 93) 0.9 (1 in 111) 0.99 (1 in 101) 0.82 (1 in 122)
Western Asia 3.38 (1 in 30) 4.15 (1 in 24) 2.75 (1 in 36) 2.05 (1 in 49) 2.5 (1 in 40) 1.69 (1 in 59)
Western Europe 6.12 (1 in 16) 7.48 (1 in 13) 4.94 (1 in 20) 2.6 (1 in 38) 3.32 (1 in 30) 1.99 (1 in 50)

Data source: cumulative risk of developing and dying from cancer (before age 85) were procured from GLOBOCAN 2018 and the odds were calculated using the CRC risk. Odds of developing and dying from CRC are presented inside parenthesis

Table 4.

Country-wise probability of incidence and death due to colorectal cancer

Incidence Deaths
Country Both Male Female Both Male Female
Afghanistan 0.68 (1 in 147) 0.77 (1 in 130) 0.59 (1 in 169) 0.62 (1 in 161) 0.69 (1 in 145) 0.55 (1 in 182)
Albania 1.49 (1 in 67) 1.73 (1 in 58) 1.27 (1 in 79) 0.84 (1 in 119) 1.02 (1 in 98) 0.66 (1 in 152)
Algeria 2.6 (1 in 38) 2.93 (1 in 34) 2.29 (1 in 44) 1.64 (1 in 61) 1.97 (1 in 51) 1.35 (1 in 74)
Angola 1.04 (1 in 96) 1.22 (1 in 82) 0.9 (1 in 111) 0.79 (1 in 127) 0.96 (1 in 104) 0.66 (1 in 152)
Argentina 5.11 (1 in 20) 6.69 (1 in 15) 3.98 (1 in 25) 3 (1 in 33) 4.09 (1 in 24) 2.25 (1 in 44)
Armenia 4.81 (1 in 21) 4.42 (1 in 23) 5.06 (1 in 20) 3.19 (1 in 31) 3.21 (1 in 31) 3.16 (1 in 32)
Australia 7.77 (1 in 13) 8.95 (1 in 11) 6.67 (1 in 15) 2.7 (1 in 37) 3.09 (1 in 32) 2.33 (1 in 43)
Austria 4.56 (1 in 22) 5.91 (1 in 17) 3.44 (1 in 29) 2.29 (1 in 44) 3.16 (1 in 32) 1.6 (1 in 63)
Azerbaijan 2.01 (1 in 50) 2.85 (1 in 35) 1.41 (1 in 71) 1.54 (1 in 65) 2.31 (1 in 43) 1 (1 in 100)
Bahamas 4.59 (1 in 22) 5.6 (1 in 18) 3.75 (1 in 27) 2.2 (1 in 45) 2.91 (1 in 34) 1.68 (1 in 60)
Bahrain 2.41 (1 in 41) 3.12 (1 in 32) 1.73 (1 in 58) 1.72 (1 in 58) 2.28 (1 in 44) 1.26 (1 in 79)
Bangladesh 0.68 (1 in 147) 0.76 (1 in 132) 0.61 (1 in 164) 0.58 (1 in 172) 0.66 (1 in 152) 0.49 (1 in 204)
Barbados 8.25 (1 in 12) 9.65 (1 in 10) 7 (1 in 14) 3.99 (1 in 25) 4.87 (1 in 21) 3.28 (1 in 30)
Belarus 6.4 (1 in 16) 8.77 (1 in 11) 5.17 (1 in 19) 3.48 (1 in 29) 4.57 (1 in 22) 2.95 (1 in 34)
Belgium 7.53 (1 in 13) 9.47 (1 in 11) 5.9 (1 in 17) 2.51 (1 in 40) 3.15 (1 in 32) 1.99 (1 in 50)
Belize 1.52 (1 in 66) 1.48 (1 in 68) 1.54 (1 in 65) 1.16 (1 in 86) 1.08 (1 in 93) 1.22 (1 in 82)
Benin 0.91 (1 in 110) 1.42 (1 in 70) 0.52 (1 in 192) 0.68 (1 in 147) 1.07 (1 in 93) 0.37 (1 in 270)
Bhutan 0.68 (1 in 147) 0.78 (1 in 128) 0.57 (1 in 175) 0.65 (1 in 154) 0.74 (1 in 135) 0.53 (1 in 189)
Bolivia 1.16 (1 in 86) 1.29 (1 in 78) 1.03 (1 in 97) 0.75 (1 in 133) 0.87 (1 in 115) 0.65 (1 in 154)
Bosnia and Herzegovina 5.19 (1 in 19) 6.61 (1 in 15) 4.07 (1 in 25) 3.19 (1 in 31) 4.34 (1 in 23) 2.33 (1 in 43)
Botswana 0.53 (1 in 189) 0.93 (1 in 108) 0.27 (1 in 370) 0.4 (1 in 250) 0.73 (1 in 137) 0.2 (1 in 500)
Brazil 4 (1 in 25) 4.42 (1 in 23) 3.68 (1 in 27) 2.09 (1 in 48) 2.43 (1 in 41) 1.85 (1 in 54)
Brunei 6.97 (1 in 14) 8.72 (1 in 11) 5.44 (1 in 18) 3.03 (1 in 33) 4.15 (1 in 24) 2.07 (1 in 48)
Bulgaria 5.67 (1 in 18) 7.82 (1 in 13) 4.1 (1 in 24) 3.47 (1 in 29) 5.05 (1 in 20) 2.36 (1 in 42)
Burkina Faso 1.21 (1 in 83) 1.05 (1 in 95) 1.32 (1 in 76) 1.11 (1 in 90) 0.98 (1 in 102) 1.18 (1 in 85)
Burundi 1.93 (1 in 52) 1.67 (1 in 60) 2.14 (1 in 47) 1.81 (1 in 55) 1.61 (1 in 62) 1.97 (1 in 51)
Cabo Verde 1.97 (1 in 51) 2.65 (1 in 38) 1.64 (1 in 61) 1.26 (1 in 79) 1.76 (1 in 57) 0.99 (1 in 101)
Cambodia 2.39 (1 in 42) 2.8 (1 in 36) 2.12 (1 in 47) 1.85 (1 in 54) 2.16 (1 in 46) 1.65 (1 in 61)
Cameroon 1.53 (1 in 65) 1.75 (1 in 57) 1.35 (1 in 74) 1.24 (1 in 81) 1.46 (1 in 68) 1.06 (1 in 94)
Canada 6.49 (1 in 15) 7.4 (1 in 14) 5.68 (1 in 18) 2.55 (1 in 39) 3.1 (1 in 32) 2.06 (1 in 49)
Central African Republic 1.19 (1 in 84) 1.43 (1 in 70) 1.01 (1 in 99) 1.16 (1 in 86) 1.41 (1 in 71) 0.98 (1 in 102)
Chad 1.07 (1 in 93) 1.23 (1 in 81) 0.93 (1 in 108) 0.97 (1 in 103) 1.11 (1 in 90) 0.85 (1 in 118)
Chile 4.65 (1 in 22) 5.45 (1 in 18) 4.03 (1 in 25) 2.62 (1 in 38) 3.11 (1 in 32) 2.25 (1 in 44)
China 5.05 (1 in 20) 5.99 (1 in 17) 4.16 (1 in 24) 2.86 (1 in 35) 3.42 (1 in 29) 2.34 (1 in 43)
Colombia 3.45 (1 in 29) 3.68 (1 in 27) 3.27 (1 in 31) 1.89 (1 in 53) 2.09 (1 in 48) 1.74 (1 in 57)
Comoros 1.01 (1 in 99) 0.83 (1 in 120) 1.14 (1 in 88) 1.01 (1 in 99) 0.83 (1 in 120) 1.14 (1 in 88)
Congo, Democratic Republic of 2.21 (1 in 45) 2.26 (1 in 44) 2.19 (1 in 46) 1.95 (1 in 51) 2.05 (1 in 49) 1.88 (1 in 53)
Congo, Republic of 1.14 (1 in 88) 1.35 (1 in 74) 0.97 (1 in 103) 0.9 (1 in 111) 1.08 (1 in 93) 0.75 (1 in 133)
Costa Rica 3.61 (1 in 28) 3.83 (1 in 26) 3.42 (1 in 29) 2.09 (1 in 48) 2.32 (1 in 43) 1.88 (1 in 53)
Côte d’Ivoire 1.11 (1 in 90) 0.91 (1 in 110) 1.35 (1 in 74) 0.95 (1 in 105) 0.79 (1 in 127) 1.13 (1 in 88)
Croatia 7.19 (1 in 14) 9.91 (1 in 10) 5.22 (1 in 19) 4.71 (1 in 21) 7 (1 in 14) 3.14 (1 in 32)
Cuba 4.12 (1 in 24) 3.74 (1 in 27) 4.45 (1 in 22) 2.76 (1 in 36) 2.66 (1 in 38) 2.85 (1 in 35)
Cyprus 5.39 (1 in 19) 7.81 (1 in 13) 3.28 (1 in 30) 2.62 (1 in 38) 3.81 (1 in 26) 1.62 (1 in 62)
Czechia 6.96 (1 in 14) 9.31 (1 in 11) 5.19 (1 in 19) 3.17 (1 in 32) 4.4 (1 in 23) 2.26 (1 in 44)
Denmark 8.99 (1 in 11) 10.29 (1 in 10) 7.85 (1 in 13) 3.18 (1 in 31) 3.71 (1 in 27) 2.74 (1 in 36)
Djibouti 0.81 (1 in 123) 1 (1 in 100) 0.65 (1 in 154) 0.75 (1 in 133) 0.97 (1 in 103) 0.56 (1 in 179)
Dominican Republic 2.66 (1 in 38) 2.62 (1 in 38) 2.68 (1 in 37) 1.64 (1 in 61) 1.66 (1 in 60) 1.62 (1 in 62)
Ecuador 2.53 (1 in 40) 2.37 (1 in 42) 2.66 (1 in 38) 1.45 (1 in 69) 1.44 (1 in 69) 1.46 (1 in 68)
Egypt 1.16 (1 in 86) 1.15 (1 in 87) 1.16 (1 in 86) 0.78 (1 in 128) 0.78 (1 in 128) 0.77 (1 in 130)
El Salvador 1.91 (1 in 52) 1.71 (1 in 58) 2.07 (1 in 48) 1.08 (1 in 93) 0.96 (1 in 104) 1.16 (1 in 86)
Equatorial Guinea 0.98 (1 in 102) 1.19 (1 in 84) 0.79 (1 in 127) 0.92 (1 in 109) 1.15 (1 in 87) 0.71 (1 in 141)
Eritrea 1.03 (1 in 97) 1.25 (1 in 80) 0.85 (1 in 118) 0.91 (1 in 110) 1.13 (1 in 88) 0.73 (1 in 137)
Estonia 6.64 (1 in 15) 8.18 (1 in 12) 5.8 (1 in 17) 3.36 (1 in 30) 4.87 (1 in 21) 2.55 (1 in 39)
Eswatini 0.59 (1 in 169) 0.77 (1 in 130) 0.49 (1 in 204) 0.46 (1 in 217) 0.67 (1 in 149) 0.34 (1 in 294)
Ethiopia 1.16 (1 in 86) 1.35 (1 in 74) 1.01 (1 in 99) 0.97 (1 in 103) 1.19 (1 in 84) 0.79 (1 in 127)
Fiji 1.87 (1 in 53) 2.02 (1 in 50) 1.77 (1 in 56) 1.2 (1 in 83) 1.5 (1 in 67) 0.99 (1 in 101)
Finland 5.38 (1 in 19) 6.45 (1 in 16) 4.5 (1 in 22) 2.18 (1 in 46) 2.79 (1 in 36) 1.69 (1 in 59)
France 6.39 (1 in 16) 7.92 (1 in 13) 5.08 (1 in 20) 2.55 (1 in 39) 3.31 (1 in 30) 1.91 (1 in 52)
France, Guadeloupe 3.92 (1 in 26) 4.59 (1 in 22) 3.4 (1 in 29) 2.32 (1 in 43) 3.53 (1 in 28) 1.39 (1 in 72)
France, La Réunion 5.3 (1 in 19) 6.31 (1 in 16) 4.45 (1 in 22) 2.4 (1 in 42) 2.95 (1 in 34) 1.94 (1 in 52)
France, Martinique 4.93 (1 in 20) 5.82 (1 in 17) 4.2 (1 in 24) 2.29 (1 in 44) 2.92 (1 in 34) 1.8 (1 in 56)
France, New Caledonia 5.36 (1 in 19) 6.51 (1 in 15) 4.28 (1 in 23) 1.64 (1 in 61) 2.06 (1 in 49) 1.24 (1 in 81)
French Guyana 3.8 (1 in 26) 4 (1 in 25) 3.45 (1 in 29) 0.84 (1 in 119) 1.37 (1 in 73) 0.39 (1 in 256)
French Polynesia 3.24 (1 in 31) 4.04 (1 in 25) 2.47 (1 in 40) 0.72 (1 in 139) 1.29 (1 in 78) 0.17 (1 in 588)
Gabon 0.75 (1 in 133) 0.94 (1 in 106) 0.6 (1 in 167) 0.5 (1 in 200) 0.64 (1 in 156) 0.41 (1 in 244)
Gaza Strip and West Bank 4.01 (1 in 25) 4.65 (1 in 22) 3.47 (1 in 29) 2.81 (1 in 36) 3.27 (1 in 31) 2.43 (1 in 41)
Georgia 1.85 (1 in 54) 2.42 (1 in 41) 1.49 (1 in 67) 1.26 (1 in 79) 1.71 (1 in 58) 0.98 (1 in 102)
Germany 5.62 (1 in 18) 6.74 (1 in 15) 4.65 (1 in 22) 2.56 (1 in 39) 3.27 (1 in 31) 1.96 (1 in 51)
Ghana 2.03 (1 in 49) 2.69 (1 in 37) 1.54 (1 in 65) 1.56 (1 in 64) 2.17 (1 in 46) 1.1 (1 in 91)
Greece 5.57 (1 in 18) 7.11 (1 in 14) 4.31 (1 in 23) 2.48 (1 in 40) 3.33 (1 in 30) 1.8 (1 in 56)
Guam 3.59 (1 in 28) 3.96 (1 in 25) 3.21 (1 in 31) 1.76 (1 in 57) 2.51 (1 in 40) 1.16 (1 in 86)
Guatemala 1.28 (1 in 78) 1.27 (1 in 79) 1.29 (1 in 78) 0.8 (1 in 125) 0.8 (1 in 125) 0.79 (1 in 127)
Guinea 0.31 (1 in 323) 0.33 (1 in 303) 0.29 (1 in 345) 0.28 (1 in 357) 0.3 (1 in 333) 0.26 (1 in 385)
Guinea-Bissau 1.29 (1 in 78) 1.53 (1 in 65) 1.11 (1 in 90) 1.23 (1 in 81) 1.52 (1 in 66) 1.01 (1 in 99)
Guyana 1.85 (1 in 54) 1.54 (1 in 65) 2.08 (1 in 48) 1.53 (1 in 65) 1.42 (1 in 70) 1.61 (1 in 62)
Haiti 2.93 (1 in 34) 3.29 (1 in 30) 2.7 (1 in 37) 2.07 (1 in 48) 2.06 (1 in 49) 2.1 (1 in 48)
Honduras 1.73 (1 in 58) 2.09 (1 in 48) 1.45 (1 in 69) 0.86 (1 in 116) 0.93 (1 in 108) 0.81 (1 in 123)
Hungary 10.09 (1 in 10) 14.02 (1 in 7) 7.43 (1 in 13) 5.01 (1 in 20) 7.37 (1 in 14) 3.53 (1 in 28)
Iceland 5.98 (1 in 17) 6.84 (1 in 15) 5.15 (1 in 19) 2.78 (1 in 36) 3.44 (1 in 29) 2.17 (1 in 46)
India 0.83 (1 in 120) 1.16 (1 in 86) 0.53 (1 in 189) 0.67 (1 in 149) 0.96 (1 in 104) 0.41 (1 in 244)
Indonesia 2.33 (1 in 43) 3.19 (1 in 31) 1.62 (1 in 62) 1.58 (1 in 63) 2.16 (1 in 46) 1.11 (1 in 90)
Iran, Islamic Republic of 2.6 (1 in 38) 2.99 (1 in 33) 2.18 (1 in 46) 1.37 (1 in 73) 1.52 (1 in 66) 1.19 (1 in 84)
Iraq 1.11 (1 in 90) 1.31 (1 in 76) 0.95 (1 in 105) 0.74 (1 in 135) 0.88 (1 in 114) 0.63 (1 in 159)
Ireland 7.55 (1 in 13) 9.5 (1 in 11) 5.77 (1 in 17) 3.21 (1 in 31) 3.95 (1 in 25) 2.56 (1 in 39)
Israel 4.32 (1 in 23) 5.3 (1 in 19) 3.54 (1 in 28) 2.4 (1 in 42) 2.89 (1 in 35) 2.01 (1 in 50)
Italy 6.45 (1 in 16) 7.95 (1 in 13) 5.18 (1 in 19) 2.61 (1 in 38) 3.36 (1 in 30) 2 (1 in 50)
Jamaica 5.14 (1 in 19) 4.4 (1 in 23) 5.78 (1 in 17) 2.63 (1 in 38) 2.28 (1 in 44) 2.93 (1 in 34)
Japan 8.09 (1 in 12) 10.27 (1 in 10) 6.17 (1 in 16) 2.92 (1 in 34) 3.72 (1 in 27) 2.24 (1 in 45)
Jordan 3.34 (1 in 30) 3.14 (1 in 32) 3.54 (1 in 28) 2.04 (1 in 49) 2.01 (1 in 50) 2.08 (1 in 48)
Kazakhstan 3.14 (1 in 32) 3.81 (1 in 26) 2.79 (1 in 36) 2.4 (1 in 42) 3.17 (1 in 32) 1.99 (1 in 50)
Kenya 1.68 (1 in 60) 1.95 (1 in 51) 1.47 (1 in 68) 1.21 (1 in 83) 1.48 (1 in 68) 0.99 (1 in 101)
Korea, Democratic Republic of 3.88 (1 in 26) 4.7 (1 in 21) 3.37 (1 in 30) 2.17 (1 in 46) 2.62 (1 in 38) 1.91 (1 in 52)
Korea, Republic of 8.38 (1 in 12) 11.25 (1 in 9) 5.97 (1 in 17) 2.23 (1 in 45) 3.06 (1 in 33) 1.61 (1 in 62)
Kuwait 2.98 (1 in 34) 3.05 (1 in 33) 2.94 (1 in 34) 1.91 (1 in 52) 1.98 (1 in 51) 1.86 (1 in 54)
Kyrgyzstan 1.58 (1 in 63) 1.61 (1 in 62) 1.52 (1 in 66) 1.31 (1 in 76) 1.41 (1 in 71) 1.22 (1 in 82)
Lao People’s Democratic Republic 2.72 (1 in 37) 2.99 (1 in 33) 2.51 (1 in 40) 1.97 (1 in 51) 2.23 (1 in 45) 1.78 (1 in 56)
Latvia 7.21 (1 in 14) 9.81 (1 in 10) 5.87 (1 in 17) 3.31 (1 in 30) 4.64 (1 in 22) 2.65 (1 in 38)
Lebanon 4.13 (1 in 24) 4.41 (1 in 23) 3.9 (1 in 26) 2.58 (1 in 39) 2.83 (1 in 35) 2.37 (1 in 42)
Lesotho 0.54 (1 in 185) 0.81 (1 in 123) 0.39 (1 in 256) 0.46 (1 in 217) 0.72 (1 in 139) 0.32 (1 in 313)
Liberia 0.73 (1 in 137) 0.63 (1 in 159) 0.82 (1 in 122) 0.68 (1 in 147) 0.6 (1 in 167) 0.74 (1 in 135)
Libya 2.21 (1 in 45) 2.49 (1 in 40) 1.99 (1 in 50) 1.58 (1 in 63) 1.85 (1 in 54) 1.37 (1 in 73)
Lithuania 5.77 (1 in 17) 7.93 (1 in 13) 4.57 (1 in 22) 3.2 (1 in 31) 5.04 (1 in 20) 2.2 (1 in 45)
Luxembourg 6.21 (1 in 16) 7.43 (1 in 13) 5.21 (1 in 19) 2.67 (1 in 37) 3.42 (1 in 29) 2.05 (1 in 49)
Madagascar 1.35 (1 in 74) 1.19 (1 in 84) 1.47 (1 in 68) 1.07 (1 in 93) 0.98 (1 in 102) 1.15 (1 in 87)
Malawi 0.53 (1 in 189) 0.64 (1 in 156) 0.47 (1 in 213) 0.43 (1 in 233) 0.54 (1 in 185) 0.35 (1 in 286)
Malaysia 4.3 (1 in 23) 4.78 (1 in 21) 3.86 (1 in 26) 2.87 (1 in 35) 3.25 (1 in 31) 2.51 (1 in 40)
Maldives 2.28 (1 in 44) 2.94 (1 in 34) 1.55 (1 in 65) 1.57 (1 in 64) 2.4 (1 in 42) 0.67 (1 in 149)
Mali 2.07 (1 in 48) 1.75 (1 in 57) 2.33 (1 in 43) 1.78 (1 in 56) 1.56 (1 in 64) 1.96 (1 in 51)
Malta 6.63 (1 in 15) 8.56 (1 in 12) 4.99 (1 in 20) 2.81 (1 in 36) 3.62 (1 in 28) 2.16 (1 in 46)
Mauritania 1.27 (1 in 79) 1.03 (1 in 97) 1.44 (1 in 69) 1.03 (1 in 97) 0.86 (1 in 116) 1.15 (1 in 87)
Mauritius 3.08 (1 in 32) 3.8 (1 in 26) 2.55 (1 in 39) 2.04 (1 in 49) 2.47 (1 in 40) 1.71 (1 in 58)
Mexico 2.16 (1 in 46) 2.41 (1 in 41) 1.93 (1 in 52) 1.14 (1 in 88) 1.3 (1 in 77) 1 (1 in 100)
Mongolia 1.29 (1 in 78) 1.36 (1 in 74) 1.25 (1 in 80) 0.72 (1 in 139) 0.83 (1 in 120) 0.65 (1 in 154)
Montenegro 3.55 (1 in 28) 4.13 (1 in 24) 3.05 (1 in 33) 2.17 (1 in 46) 2.63 (1 in 38) 1.83 (1 in 55)
Morocco 1.92 (1 in 52) 2.26 (1 in 44) 1.63 (1 in 61) 1.33 (1 in 75) 1.67 (1 in 60) 1.05 (1 in 95)
Mozambique 0.61 (1 in 164) 0.66 (1 in 152) 0.58 (1 in 172) 0.54 (1 in 185) 0.59 (1 in 169) 0.5 (1 in 200)
Myanmar 1.73 (1 in 58) 2.13 (1 in 47) 1.43 (1 in 70) 1.28 (1 in 78) 1.58 (1 in 63) 1.06 (1 in 94)
Namibia 1.25 (1 in 80) 1.48 (1 in 68) 1.09 (1 in 92) 0.8 (1 in 125) 1.04 (1 in 96) 0.64 (1 in 156)
Nepal 1.32 (1 in 76) 1.09 (1 in 92) 1.53 (1 in 65) 1.15 (1 in 87) 0.99 (1 in 101) 1.3 (1 in 77)
New Zealand 8.14 (1 in 12) 9.13 (1 in 11) 7.23 (1 in 14) 3.12 (1 in 32) 3.51 (1 in 28) 2.77 (1 in 36)
Nicaragua 2.28 (1 in 44) 1.99 (1 in 50) 2.51 (1 in 40) 1.47 (1 in 68) 1.29 (1 in 78) 1.6 (1 in 63)
Niger 0.88 (1 in 114) 0.91 (1 in 110) 0.84 (1 in 119) 0.86 (1 in 116) 0.9 (1 in 111) 0.81 (1 in 123)
Nigeria 0.95 (1 in 105) 1.08 (1 in 93) 0.84 (1 in 119) 0.67 (1 in 149) 0.78 (1 in 128) 0.57 (1 in 175)
Norway 9.45 (1 in 11) 10.5 (1 in 10) 8.52 (1 in 12) 3.46 (1 in 29) 4.06 (1 in 25) 2.93 (1 in 34)
Oman 1.87 (1 in 53) 1.91 (1 in 52) 1.78 (1 in 56) 1.25 (1 in 80) 1.26 (1 in 79) 1.22 (1 in 82)
Pakistan 0.68 (1 in 147) 0.73 (1 in 137) 0.63 (1 in 159) 0.57 (1 in 175) 0.62 (1 in 161) 0.52 (1 in 192)
Panama 3.45 (1 in 29) 4.09 (1 in 24) 2.89 (1 in 35) 1.78 (1 in 56) 2.08 (1 in 48) 1.51 (1 in 66)
Papua New Guinea 2.96 (1 in 34) 4.8 (1 in 21) 1.61 (1 in 62) 2.1 (1 in 48) 3.69 (1 in 27) 0.96 (1 in 104)
Paraguay 2.95 (1 in 34) 3.05 (1 in 33) 2.84 (1 in 35) 2 (1 in 50) 2.09 (1 in 48) 1.91 (1 in 52)
Peru 3.03 (1 in 33) 3.3 (1 in 30) 2.8 (1 in 36) 1.66 (1 in 60) 1.92 (1 in 52) 1.45 (1 in 69)
Philippines 4.06 (1 in 25) 5.14 (1 in 19) 3.25 (1 in 31) 2.83 (1 in 35) 3.59 (1 in 28) 2.28 (1 in 44)
Poland 6.4 (1 in 16) 8.85 (1 in 11) 4.68 (1 in 21) 3.93 (1 in 25) 5.64 (1 in 18) 2.79 (1 in 36)
Portugal 8.1 (1 in 12) 11.06 (1 in 9) 5.74 (1 in 17) 3.31 (1 in 30) 4.68 (1 in 21) 2.28 (1 in 44)
Puerto Rico 5.49 (1 in 18) 6.9 (1 in 14) 4.41 (1 in 23) 2.26 (1 in 44) 3.07 (1 in 33) 1.66 (1 in 60)
Qatar 3.41 (1 in 29) 3.7 (1 in 27) 2.96 (1 in 34) 2.55 (1 in 39) 2.69 (1 in 37) 2.38 (1 in 42)
Republic of Moldova 6.56 (1 in 15) 9.27 (1 in 11) 4.83 (1 in 21) 4.05 (1 in 25) 6.02 (1 in 17) 2.84 (1 in 35)
Romania 5.46 (1 in 18) 7.57 (1 in 13) 3.95 (1 in 25) 3.25 (1 in 31) 4.65 (1 in 22) 2.3 (1 in 43)
Russian Federation 5.51 (1 in 18) 7 (1 in 14) 4.72 (1 in 21) 3.48 (1 in 29) 4.63 (1 in 22) 2.9 (1 in 34)
Rwanda 3.29 (1 in 30) 3.15 (1 in 32) 3.41 (1 in 29) 2.68 (1 in 37) 2.7 (1 in 37) 2.68 (1 in 37)
Saint Lucia 3.53 (1 in 28) 4.19 (1 in 24) 3.04 (1 in 33) 2.25 (1 in 44) 2.93 (1 in 34) 1.72 (1 in 58)
Samoa 4.32 (1 in 23) 5.98 (1 in 17) 2.89 (1 in 35) 1.07 (1 in 93) 1.5 (1 in 67) 0.76 (1 in 132)
Sao Tome and Principe 0.88 (1 in 114) 1.33 (1 in 75) 0.55 (1 in 182) 0.57 (1 in 175) 0.96 (1 in 104) 0.28 (1 in 357)
Saudi Arabia 2.37 (1 in 42) 2.8 (1 in 36) 1.85 (1 in 54) 1.3 (1 in 77) 1.58 (1 in 63) 0.99 (1 in 101)
Senegal 1.38 (1 in 72) 1.42 (1 in 70) 1.35 (1 in 74) 1.12 (1 in 89) 1.22 (1 in 82) 1.05 (1 in 95)
Serbia 6.64 (1 in 15) 9.04 (1 in 11) 4.71 (1 in 21) 3.84 (1 in 26) 5.45 (1 in 18) 2.64 (1 in 38)
Sierra Leone 1.1 (1 in 91) 0.94 (1 in 106) 1.24 (1 in 81) 1.01 (1 in 99) 0.86 (1 in 116) 1.15 (1 in 87)
Singapore 8.88 (1 in 11) 8.9 (1 in 11) 8.72 (1 in 11) 4.4 (1 in 23) 5.11 (1 in 20) 3.77 (1 in 27)
Slovakia 9.01 (1 in 11) 12.73 (1 in 8) 6.44 (1 in 16) 5.11 (1 in 20) 7.6 (1 in 13) 3.57 (1 in 28)
Slovenia 8.49 (1 in 12) 12.32 (1 in 8) 5.28 (1 in 19) 3.23 (1 in 31) 4.47 (1 in 22) 2.28 (1 in 44)
Solomon Islands 1.23 (1 in 81) 1.43 (1 in 70) 1.03 (1 in 97) 1.06 (1 in 94) 1.28 (1 in 78) 0.84 (1 in 119)
Somalia 1.31 (1 in 76) 1.52 (1 in 66) 1.12 (1 in 89) 1.25 (1 in 80) 1.47 (1 in 68) 1.05 (1 in 95)
South Africa 3.12 (1 in 32) 4.09 (1 in 24) 2.55 (1 in 39) 1.84 (1 in 54) 2.55 (1 in 39) 1.44 (1 in 69)
South Sudan 1.35 (1 in 74) 1.49 (1 in 67) 1.24 (1 in 81) 1.23 (1 in 81) 1.37 (1 in 73) 1.1 (1 in 91)
Spain 7.06 (1 in 14) 9.74 (1 in 10) 4.82 (1 in 21) 3.01 (1 in 33) 4.33 (1 in 23) 1.96 (1 in 51)
Sri Lanka 0.93 (1 in 108) 1.08 (1 in 93) 0.82 (1 in 122) 0.68 (1 in 147) 0.82 (1 in 122) 0.57 (1 in 175)
Sudan 0.92 (1 in 109) 1.16 (1 in 86) 0.72 (1 in 139) 0.77 (1 in 130) 1.02 (1 in 98) 0.57 (1 in 175)
Suriname 3.89 (1 in 26) 4.88 (1 in 20) 3.18 (1 in 31) 2.87 (1 in 35) 3.39 (1 in 29) 2.46 (1 in 41)
Sweden 6.03 (1 in 17) 6.74 (1 in 15) 5.4 (1 in 19) 2.77 (1 in 36) 3.28 (1 in 30) 2.32 (1 in 43)
Switzerland 5.15 (1 in 19) 6.3 (1 in 16) 4.16 (1 in 24) 2.08 (1 in 48) 2.64 (1 in 38) 1.61 (1 in 62)
Syrian Arab Republic 2.87 (1 in 35) 2.97 (1 in 34) 2.8 (1 in 36) 2.11 (1 in 47) 2.24 (1 in 45) 2.02 (1 in 50)
Tajikistan 0.69 (1 in 145) 0.81 (1 in 123) 0.58 (1 in 172) 0.58 (1 in 172) 0.72 (1 in 139) 0.46 (1 in 217)
Tanzania 2.09 (1 in 48) 1.7 (1 in 59) 2.41 (1 in 41) 1.62 (1 in 62) 1.38 (1 in 72) 1.82 (1 in 55)
Thailand 3.2 (1 in 31) 3.71 (1 in 27) 2.8 (1 in 36) 1.74 (1 in 57) 2.07 (1 in 48) 1.48 (1 in 68)
The former Yugoslav Republic of Macedonia 5.33 (1 in 19) 5.98 (1 in 17) 4.81 (1 in 21) 2.93 (1 in 34) 3.37 (1 in 30) 2.59 (1 in 39)
The Netherlands 8.13 (1 in 12) 9.93 (1 in 10) 6.51 (1 in 15) 3.55 (1 in 28) 4.28 (1 in 23) 2.92 (1 in 34)
The Republic of the Gambia 0.15 (1 in 667) 0.21 (1 in 476) 0.1 (1 in 1000) 0.15 (1 in 667) 0.2 (1 in 500) 0.1 (1 in 1000)
Timor-Leste 1.88 (1 in 53) 1.86 (1 in 54) 1.88 (1 in 53) 1.53 (1 in 65) 1.52 (1 in 66) 1.52 (1 in 66)
Togo 1.43 (1 in 70) 1.38 (1 in 72) 1.46 (1 in 68) 1.19 (1 in 84) 1.19 (1 in 84) 1.19 (1 in 84)
Trinidad and Tobago 4.12 (1 in 24) 4.63 (1 in 22) 3.71 (1 in 27) 2.22 (1 in 45) 2.64 (1 in 38) 1.9 (1 in 53)
Tunisia 2.3 (1 in 43) 2.55 (1 in 39) 2.09 (1 in 48) 1.49 (1 in 67) 1.68 (1 in 60) 1.33 (1 in 75)
Turkey 4.27 (1 in 23) 5.64 (1 in 18) 3.21 (1 in 31) 2.43 (1 in 41) 3.16 (1 in 32) 1.88 (1 in 53)
Turkmenistan 1.29 (1 in 78) 1.45 (1 in 69) 1.18 (1 in 85) 0.69 (1 in 145) 0.84 (1 in 119) 0.58 (1 in 172)
Uganda 1.86 (1 in 54) 1.75 (1 in 57) 1.94 (1 in 52) 1.56 (1 in 64) 1.48 (1 in 68) 1.61 (1 in 62)
Ukraine 5.12 (1 in 20) 6.92 (1 in 14) 4.12 (1 in 24) 3.29 (1 in 30) 4.53 (1 in 22) 2.61 (1 in 38)
United Arab Emirates 2.93 (1 in 34) 3.3 (1 in 30) 2.25 (1 in 44) 1.72 (1 in 58) 1.85 (1 in 54) 1.51 (1 in 66)
UK 6.8 (1 in 15) 8.17 (1 in 12) 5.57 (1 in 18) 2.87 (1 in 35) 3.48 (1 in 29) 2.35 (1 in 43)
USA 5.01 (1 in 20) 5.68 (1 in 18) 4.44 (1 in 23) 1.79 (1 in 56) 2.1 (1 in 48) 1.53 (1 in 65)
Uruguay 7.54 (1 in 13) 9.54 (1 in 10) 6.1 (1 in 16) 3.73 (1 in 27) 4.91 (1 in 20) 2.94 (1 in 34)
Uzbekistan 1.22 (1 in 82) 1.21 (1 in 83) 1.22 (1 in 82) 0.75 (1 in 133) 1 (1 in 100) 0.55 (1 in 182)
Vanuatu 0.72 (1 in 139) 0.64 (1 in 156) 0.81 (1 in 123) 0.69 (1 in 145) 0.64 (1 in 156) 0.73 (1 in 137)
Venezuela, Bolivarian Republic of 2.85 (1 in 35) 3.02 (1 in 33) 2.69 (1 in 37) 1.66 (1 in 60) 1.84 (1 in 54) 1.5 (1 in 67)
Viet Nam 2.51 (1 in 40) 3.11 (1 in 32) 2.12 (1 in 47) 1.55 (1 in 65) 2 (1 in 50) 1.28 (1 in 78)
World 4.25 (1 in 24) 5.15 (1 in 19) 3.48 (1 in 29) 2.18 (1 in 46) 2.69 (1 in 37) 1.76 (1 in 57)
Yemen 1.86 (1 in 54) 2.01 (1 in 50) 1.74 (1 in 57) 1.55 (1 in 65) 1.67 (1 in 60) 1.44 (1 in 69)
Zambia 0.75 (1 in 133) 0.89 (1 in 112) 0.66 (1 in 152) 0.49 (1 in 204) 0.65 (1 in 154) 0.38 (1 in 263)
Zimbabwe 2.01 (1 in 50) 2.35 (1 in 43) 1.77 (1 in 56) 1.55 (1 in 65) 1.85 (1 in 54) 1.34 (1 in 75)

Data source: cumulative risk of developing and dying from cancer (before age 85) were procured from GLOBOCAN 2018 and the odds were calculated using the CRC risk. Odds of developing and dying from CRC are presented inside parenthesis.

Discussion

We examined the CRC burden using estimates of incidence and mortality from GLOBOCAN 2018 [11, 17] and examined its association with socioeconomic status measured using HDI. We found that CRC incidence increases with age and has more proclivity towards males than females. While all-age incidence and mortality were the highest in high HDI countries led by China (incidence 521,490 and deaths 247,563), the age-standardized rates were the highest in very high HDI countries led by Hungary (ASIR 51.2/100,000) and South Korea (44.5/100,000); ASMR too was the highest in Hungary (21.5/100,000) followed by Slovakia (20.4/100,000). Due to large population size, East Asia led the world regions in terms of all-age incidence and death counts, whereas ASIR and ASMR were the highest in developed regions, e.g., Northern Europe recorded ASIR of 32.1/100,000 and central and eastern Europe recorded ASMR of 15.2/100,000. Both ASIR and ASMR were lowest in south-central Asia at estimated at 4.9/100,000 and 3.6/100,000, respectively, in 2018. Higher incidence in developed societies has already been documented before [20] and is attributable to a greater percentage of the older population, dietary patterns, and availability of screening procedures [21]. Higher risk of males towards CRC has been documented before and can be possibly attributed to factors such as greater prevalence of risk factors such as alcohol and smoking in males [2224]. The differences in mortality rates, however, also reflect the role of factors other than alcohol and smoking, though it requires more research to provide conclusive evidence.

Ninety percent of CRC incidence and 92% of CRC deaths occurred in 50-plus age group (Fig. 2). As age increases, adenomatous polyps grows slowly from adenoma to frank carcinoma; therefore, CRC deaths can be prevented by the detection and removal of adenomatous polyps through early screening. Although operational screening modalities differ in terms of convenience and cost, mainly two types of screening procedures are currently employed. First is stool based, e.g., fecal occult blood test (FOBT), Guaiac-based FOBT, and fecal immunochemical test (FIT); second involves structural examinations such as flexible sigmoidoscopy and colonoscopy. Colonoscopy is considered to be the gold standard of CRC screening and diagnosis; it has higher specificity and sensitivity than the stool-based methods, the colonoscopy, however, is quite resource-intensive in comparison with stool-based methods [7]. Although different methods vary in terms of efficiency and their implementation varies geographically, randomized control trials have demonstrated that screening methods have been quite effective in early detection of adenomas and colorectal carcinoma, thereby boosting the survival rates [2529]. There are currently two approaches to screening: population-wide and opportunistic. The population-wide screening is quite prevalent in Western countries, the opportunistic screening, however, had limited success in boosting the take-up rates [30]. As per WHO country survey on cancer control policies, FOBT-based screening procedure was available at public primary level in 82/160 of the responding countries, whereas colonoscopy was present in 70/160 countries (Table 5 of Appendix). Even in those countries where these screening modalities were available, most of the countries belonged to high/very high HDI category. The US Preventive Services Task Force (USPSTF) recommends screening for CRC in the 50–75 age group; those with familial history and other high-risk population are recomended for screening at a comparatively younger age and higher frequency [7]. S A significant percentage of US citizens still had no access to screening in 2010 [31]. Moreover, heterogenous participation rates were observed in developed societies owing to differential socioeconomic status and level of education, thereby resulting in inequalities in the disease outcomes [32].

Table 5.

Country-wise availability of screening modalities

Population FOBT Colonoscopy
Afghanistan 0 0
Albania 0 0
Algeria 0 0
Angola ND ND
Argentina 1 1
Armenia 1 0
Australia 1 1
Austria 1 1
Azerbaijan 1 0
Bahamas 1 0
Bahrain 1 1
Bangladesh 0 0
Barbados 1 1
Belarus ND ND
Belgium 1 1
Belize 1 1
Benin 0 0
Bhutan 0 1
Bolivia 1 0
Bosnia and Herzegovina ND ND
Botswana 0 0
Brazil 1 1
Brunei 1 1
Bulgaria 1 1
Burkina Faso 0 1
Burundi 0 0
Cabo Verde ND ND
Cambodia 0 DK
Cameroon 1 0
Canada 1 1
Central African Republic 0 0
Chad ND ND
Chile 1 1
China 1 1
Colombia 1 1
Comoros 1 0
Congo 0 1
Costa Rica 1 1
Côte d’Ivoire 0 0
Croatia 1 1
Cuba 1 1
Cyprus 1 1
Czechia 1 1
Democratic Republic of Congo ND ND
Denmark 1 1
Djibouti 0 0
Dominican Republic 1 0
Ecuador 1 0
Egypt 1 0
El Salvador 0 0
Equatorial Guinea 0 0
Eritrea 0 0
Estonia 1 0
Eswatini 0 0
Ethiopia ND ND
Fiji 1 1
Finland 1 1
France 1 1
France, Guadeloupe
France, La Réunion
France, Martinique
France, New Caledonia
French Guyana
French Polynesia
Gabon 1 1
Gambia 0 0
Gaza Strip and West Bank
Georgia 0 0
Germany 1 1
Ghana 0 0
Greece 1 1
Guam
Guatemala 0 0
Guinea 0 0
Guinea-Bissau 0 0
Guyana ND ND
Haiti ND ND
Honduras 0 0
Hungary 0 0
Iceland 1 0
India 0 0
Indonesia 0 0
Iran 1 1
Iraq 0 0
Ireland 1 1
Israel 1 1
Italy 1 1
Jamaica 1 1
Japan 1 1
Jordan 1 0
Kazakhstan 1 1
Kenya 0 0
Kuwait 0 0
Kyrgyzstan 0 0
Lao PDR DK 1
Latvia 1 1
Lebanon 0 0
Lesotho 0 0
Liberia 0 0
Libya 0 0
Lithuania 1 1
Luxembourg 1 1
Macedonia FYR 1 1
Madagascar 0 0
Malawi 0 0
Malaysia 0 1
Maldives 0 0
Mali 0 0
Malta 1 1
Mauritania 0 0
Mauritius ND ND
Mexico DK DK
Moldova 1 1
Mongolia 0 0
Montenegro 0 0
Morocco 0 1
Mozambique 0 0
Myanmar 0 0
Namibia 1 DK
Nepal 0 0
Netherlands 0 0
New Zealand 1 0
Nicaragua 1 1
Niger 0 0
Nigeria 0 0
North Korea 0 0
Norway 1 1
Oman 1 1
Pakistan 0 0
Panama 1 0
Papua New Guinea 1 0
Paraguay 0 0
Peru 0 0
Philippines 0 0
Poland 1 1
Portugal 1 1
Puerto Rico
Qatar 1 0
Romania 0 0
Russian Federation 1 1
Rwanda 0 0
Saint Lucia 1 1
Samoa 1 0
Sao Tome and Principe 0 0
Saudi Arabia 0 0
Senegal 0 1
Serbia 1 1
Sierra Leone ND ND
Singapore 1 1
Slovakia 1 1
Slovenia 1 1
Solomon Islands 0 0
Somalia 0 0
South Africa ND ND
South Korea 1 1
South Sudan ND ND
Spain 1 1
Sri Lanka 0 0
Sudan 0 0
Suriname 1 1
Sweden 1 1
Switzerland 1 1
Syrian Arab Republic 1 1
Tajikistan NR NR
Tanzania ND ND
Thailand 0 0
Timor-Leste ND ND
Togo 0 0
Trinidad and Tobago 1 1
Tunisia 0 0
Turkey 1 1
Turkmenistan 1 1
Uganda 0 0
Ukraine 0 0
United Arab Emirates 1 0
UK 1 0
USA 1 1
Uruguay 1 1
Uzbekistan 0 0
Vanuatu 0 0
Venezuela 1 1
Viet Nam 0 0
Yemen 0 0
Zambia 0 0
Zimbabwe 0 1

All the data is procured from WHO Cancer Country Profiles. The answer to the question on screening availability was coded as follows: generally available at the public primary healthcare level (1) and not generally available at the public primary health care level (0). Data was not available for the countries for which no entry is there in the table

DK do not know, ND county did not respond to WHO questionnaire, NR country responded to WHO survey but did not responded to particular question

The modifiable risk factors that are associated with elevated risk of CRC include alcohol [33], smoking [34], red meat [35], obesity [36, 37], and type 2 diabetes [38], whereas fruit and vegetable consumption [39, 40] and physical activity reduce the risk of CRC [41]. The nonmodifiable risk factors of CRC include aging, familial history, preoccurrence of polyps, and inflammatory bowel diseases such as Crohn’s disease and ulcerative colitis [21]. Inflammation has recently been found to be associated with increased incidence of CRC; accordingly, anti-inflammatory drugs like low-dose aspirin has been found to be effective in reducing the CRC incidence [4244].2

We observed high CRC burden in Asian countries exemplified by high absolute incidence and mortality in China, Japan, India, and South Korea with these four countries accounting for 41.6% (768,755 of 1.85 million) of incident cases and 40.7% (358,325 of 880,792) of global deaths in 2018. Previous studies also reported an increased risk of colorectal carcinoma in Asian populations [3]. The increasing incidence of CRC in these countries is reflective of changing lifestyle and behavior as factors including lack of physical activity and dietary patterns have been shown to be positively associated with high incidence of colorectal neoplasia in developed countries [21, 46]. The first pillar of the PPPM approach advocates for the prevention of CRC via controlling risk factors, the vast majority of which are related to lifestyle [3341]. Preventable nature of CRC makes it a likely target of PPPM approach to medicine. For targeted therapy and precision medicine envisaged by PPPM, diagnostic, prognostic, and therapeutic markers need to be developed and continually adopted in CRC medicine. Carcinoembryonic antigen (CEA), for instance, has been shown to be a promising prognostic biomarker for CRC [47] and preliminary research has identified few hormones to have prognostic and therapeutic marker properties for CRC, though more research is still needed to explore their full potential [48].

The mortality due to CRC reflects the strength of the healthcare system and infrastructure to prevent, diagnose, and treat the disease. The CRC mortality rates were in concordance with incidence rates with ASMR being the highest in Europe (e.g. Hungary (21.5 per 100,000) and Slovakia (20.4 per 100,000)). The lesser developed (low/medium HDI) countries have comparatively lower ASMR because of large population and relatively lower life expectancy, the survival rates (proxied by MIR), however, were lot higher in developed countries (high/very high HDI) as compared to the lesser developed ones. Statistically too, we found that better socioeconomic status of a country measured using HDI has had strong statistically significant negative effect on MIR (a proxy for 5-year survival rate). Low survival rates in lesser developed countries reflect screening prevalence as well as treatment modalities for CRC, which depend critically upon the stage at which malignancy gets detected. While adenomatous polyps or a low-grade tumor detected during screening can be removed by polypectomy, the late-stage tumor, however, can be treated using colectomy (partial or complete removal of colon) in conjunction with adjuvant (neo)chemotherapy and/or radiotherapy. Few of these treatment modalities such as surgery (even if cancer or polyps are detected early) are insufficiently present in less developed countries [49].

Limitations

The accuracy and validity of the estimates of CRC examined in this paper is crucially dependent upon data availability from cancer registries which is far from complete in many of the less developed countries led by Africa. Therefore, the estimates produced for few countries lacking cancer registry mostly reflect estimates from the neighboring countries [11, 17]. Moreover, for the countries lacking coverage and completeness, the GLOBOCAN estimates reported in this paper are expected to be downward biased. Second, the estimates presented in this paper were available only for 1 year (i.e., 2018) which could not be utilized to gauge the temporal patterns of the CRC burden. Third, we employed MIR as a proxy indicator of 5-year survival rate which is not an exact measure of survival rate. This indicator, however, can serve as a useful proxy for the survival rate of colorectal neoplasia in the absence of country-wise exact measure of survival rate.

Conclusion and expert recommendations

High burden of CRC was estimated in developed countries and was correlated positively with HDI and but is also substantially high in Asian countries. It shows that as countries are moving up in the development hierarchy, they are emulating Westernized lifestyle and dietary habits which have manifested in high CRC incidence in these countries. As the vast majority of risk factors are associated with lifestyle and diet, and screening programs are available, the CRC burden can be curtailed to attain the sustainable development goal (SDG 3) of ensuring a healthy and quality life.

Against the rising burden, it is also noteworhty that CRC deaths can be prevented via primary approaches (i.e., control of risk factors) and secondary prevention using cancer screening; both of these approaches are fundamental to the preventive, predictive, and personalized approach to medicine [810]. PPPM approach epitomizes the changing philosophy of healthcare from illness to health, from treatment to prevention and from one-size-fits-all to personalized medicine [50]. PPPM approach to medicine requires effective cancer control policies, aware citizens (at-risk population and patient), healthcare infrastructure, and availability and affordability of various technologies (omics technologies etc) to offer personalized medicine [51, 52]. The adoption of the PPPM approach to cancer management, however, is not easy in the context of developing and less-developed countries. This is because the PPPM approach is an integrated approach that combines advantages of individual bio/medical fields through a multi-professional collaboration [9]; such multi-professional collaboration along with multi-omics approach is quite a challenging and costly task for low-resource economies. Additionally, a large percentage of people in low-resource economies are still poor and lacks access to basic healthcare facilities let alone personalized medicine. Therefore, at the policy level, the following strategies must be adopted for cancer management and control in concordance with PPPM approach to disease managment and control. First, prevention must be adopted as the first-line attack on colorectal carcinoma. The major thrust of any policy intervention must be on providing cost-effective screening services and ensure their availability at the broadest possible level. Second, universal health coverage (UHC) can ensure access to basic health services (screening and treatment), which can later be upgraded to provide precision and personalized medicine. Third, through health literacy campaigns, various preventive approaches, behavioral risk factors, and screening programs must be popularized and made available to high-risk populations. Finally, new-age screening devices, omics technologies, and diagnostic and prognostic biomarker panels suiting the low-cost requirements need to be continuously developed and adopted.

Acknowledgments

The authors thank the International Agency for Research on Cancer (IARC) for making available GLOBOCAN 2018 estimates in the public domain.

Appendix

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research is conducted using data available in the public domain and does not include any human participants and/or animals.

Footnotes

1

UNDP defines mean number of years of schooling as the number of years of schooling received by people ages 25 and older, and expected years of schooling s defined as number of years of schooling that a child of school entrance age can expect to receive if prevailing patterns of age-specific enrolment rates persist throughout life [12].

2

US Preventive Services Task Force (US PSTF) recommends the use of low-dose aspirin for the prevention of colorectal cancer in high-risk patients [45].

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, Abbastabar H, Abd-Allah F, Abdela J, Abdelalim A, Abdollahpour I, Abdulkader RS, Abebe HT, Abebe M, Abebe Z, Abejie AN, Abera SF, Abil OZ, Abraha HN, Abrham AR, Abu-Raddad LJ, Accrombessi MMK, Acharya D, Adamu AA, Adebayo OM, Adedoyin RA, Adekanmbi V, Adetokunboh OO, Adhena BM, Adib MG, Admasie A, Afshin A, Agarwal G, Agesa KM, Agrawal A, Agrawal S, Ahmadi A, Ahmadi M, Ahmed MB, Ahmed S, Aichour AN, Aichour I, Aichour MTE, Akbari ME, Akinyemi RO, Akseer N, al-Aly Z, al-Eyadhy A, al-Raddadi RM, Alahdab F, Alam K, Alam T, Alebel A, Alene KA, Alijanzadeh M, Alizadeh-Navaei R, Aljunid SM, Alkerwi A', Alla F, Allebeck P, Alonso J, Altirkawi K, Alvis-Guzman N, Amare AT, Aminde LN, Amini E, Ammar W, Amoako YA, Anber NH, Andrei CL, Androudi S, Animut MD, Anjomshoa M, Ansari H, Ansha MG, Antonio CAT, Anwari P, Aremu O, Ärnlöv J, Arora A, Arora M, Artaman A, Aryal KK, Asayesh H, Asfaw ET, Ataro Z, Atique S, Atre SR, Ausloos M, Avokpaho EFGA, Awasthi A, Quintanilla BPA, Ayele Y, Ayer R, Azzopardi PS, Babazadeh A, Bacha U, Badali H, Badawi A, Bali AG, Ballesteros KE, Banach M, Banerjee K, Bannick MS, Banoub JAM, Barboza MA, Barker-Collo SL, Bärnighausen TW, Barquera S, Barrero LH, Bassat Q, Basu S, Baune BT, Baynes HW, Bazargan-Hejazi S, Bedi N, Beghi E, Behzadifar M, Behzadifar M, Béjot Y, Bekele BB, Belachew AB, Belay E, Belay YA, Bell ML, Bello AK, Bennett DA, Bensenor IM, Berman AE, Bernabe E, Bernstein RS, Bertolacci GJ, Beuran M, Beyranvand T, Bhalla A, Bhattarai S, Bhaumik S, Bhutta ZA, Biadgo B, Biehl MH, Bijani A, Bikbov B, Bilano V, Bililign N, Bin Sayeed MS, Bisanzio D, Biswas T, Blacker BF, Basara BB, Borschmann R, Bosetti C, Bozorgmehr K, Brady OJ, Brant LC, Brayne C, Brazinova A, Breitborde NJK, Brenner H, Briant PS, Britton G, Brugha T, Busse R, Butt ZA, Callender CSKH, Campos-Nonato IR, Campuzano Rincon JC, Cano J, Car M, Cárdenas R, Carreras G, Carrero JJ, Carter A, Carvalho F, Castañeda-Orjuela CA, Castillo Rivas J, Castle CD, Castro C, Castro F, Catalá-López F, Cerin E, Chaiah Y, Chang JC, Charlson FJ, Chaturvedi P, Chiang PPC, Chimed-Ochir O, Chisumpa VH, Chitheer A, Chowdhury R, Christensen H, Christopher DJ, Chung SC, Cicuttini FM, Ciobanu LG, Cirillo M, Cohen AJ, Cooper LT, Cortesi PA, Cortinovis M, Cousin E, Cowie BC, Criqui MH, Cromwell EA, Crowe CS, Crump JA, Cunningham M, Daba AK, Dadi AF, Dandona L, Dandona R, Dang AK, Dargan PI, Daryani A, Das SK, Gupta RD, Neves JD, Dasa TT, Dash AP, Davis AC, Davis Weaver N, Davitoiu DV, Davletov K, de la Hoz FP, de Neve JW, Degefa MG, Degenhardt L, Degfie TT, Deiparine S, Demoz GT, Demtsu BB, Denova-Gutiérrez E, Deribe K, Dervenis N, Des Jarlais DC, Dessie GA, Dey S, Dharmaratne SD, Dicker D, Dinberu MT, Ding EL, Dirac MA, Djalalinia S, Dokova K, Doku DT, Donnelly CA, Dorsey ER, Doshi PP, Douwes-Schultz D, Doyle KE, Driscoll TR, Dubey M, Dubljanin E, Duken EE, Duncan BB, Duraes AR, Ebrahimi H, Ebrahimpour S, Edessa D, Edvardsson D, Eggen AE, el Bcheraoui C, el Sayed Zaki M, el-Khatib Z, Elkout H, Ellingsen CL, Endres M, Endries AY, Er B, Erskine HE, Eshrati B, Eskandarieh S, Esmaeili R, Esteghamati A, Fakhar M, Fakhim H, Faramarzi M, Fareed M, Farhadi F, Farinha CSE, Faro A, Farvid MS, Farzadfar F, Farzaei MH, Feigin VL, Feigl AB, Fentahun N, Fereshtehnejad SM, Fernandes E, Fernandes JC, Ferrari AJ, Feyissa GT, Filip I, Finegold S, Fischer F, Fitzmaurice C, Foigt NA, Foreman KJ, Fornari C, Frank TD, Fukumoto T, Fuller JE, Fullman N, Fürst T, Furtado JM, Futran ND, Gallus S, Garcia-Basteiro AL, Garcia-Gordillo MA, Gardner WM, Gebre AK, Gebrehiwot TT, Gebremedhin AT, Gebremichael B, Gebremichael TG, Gelano TF, Geleijnse JM, Genova-Maleras R, Geramo YCD, Gething PW, Gezae KE, Ghadami MR, Ghadimi R, Ghasemi Falavarjani K, Ghasemi-Kasman M, Ghimire M, Gibney KB, Gill PS, Gill TK, Gillum RF, Ginawi IA, Giroud M, Giussani G, Goenka S, Goldberg EM, Goli S, Gómez-Dantés H, Gona PN, Gopalani SV, Gorman TM, Goto A, Goulart AC, Gnedovskaya EV, Grada A, Grosso G, Gugnani HC, Guimaraes ALS, Guo Y, Gupta PC, Gupta R, Gupta R, Gupta T, Gutiérrez RA, Gyawali B, Haagsma JA, Hafezi-Nejad N, Hagos TB, Hailegiyorgis TT, Hailu GB, Haj-Mirzaian A, Haj-Mirzaian A, Hamadeh RR, Hamidi S, Handal AJ, Hankey GJ, Harb HL, Harikrishnan S, Haro JM, Hasan M, Hassankhani H, Hassen HY, Havmoeller R, Hay RJ, Hay SI, He Y, Hedayatizadeh-Omran A, Hegazy MI, Heibati B, Heidari M, Hendrie D, Henok A, Henry NJ, Herteliu C, Heydarpour F, Heydarpour P, Heydarpour S, Hibstu DT, Hoek HW, Hole MK, Homaie Rad E, Hoogar P, Hosgood HD, Hosseini SM, Hosseinzadeh M, Hostiuc M, Hostiuc S, Hotez PJ, Hoy DG, Hsiao T, Hu G, Huang JJ, Husseini A, Hussen MM, Hutfless S, Idrisov B, Ilesanmi OS, Iqbal U, Irvani SSN, Irvine CMS, Islam N, Islam SMS, Islami F, Jacobsen KH, Jahangiry L, Jahanmehr N, Jain SK, Jakovljevic M, Jalu MT, James SL, Javanbakht M, Jayatilleke AU, Jeemon P, Jenkins KJ, Jha RP, Jha V, Johnson CO, Johnson SC, Jonas JB, Joshi A, Jozwiak JJ, Jungari SB, Jürisson M, Kabir Z, Kadel R, Kahsay A, Kalani R, Karami M, Karami Matin B, Karch A, Karema C, Karimi-Sari H, Kasaeian A, Kassa DH, Kassa GM, Kassa TD, Kassebaum NJ, Katikireddi SV, Kaul A, Kazemi Z, Karyani AK, Kazi DS, Kefale AT, Keiyoro PN, Kemp GR, Kengne AP, Keren A, Kesavachandran CN, Khader YS, Khafaei B, Khafaie MA, Khajavi A, Khalid N, Khalil IA, Khan EA, Khan MS, Khan MA, Khang YH, Khater MM, Khoja AT, Khosravi A, Khosravi MH, Khubchandani J, Kiadaliri AA, Kibret GD, Kidanemariam ZT, Kiirithio DN, Kim D, Kim YE, Kim YJ, Kimokoti RW, Kinfu Y, Kisa A, Kissimova-Skarbek K, Kivimäki M, Knudsen AKS, Kocarnik JM, Kochhar S, Kokubo Y, Kolola T, Kopec JA, Koul PA, Koyanagi A, Kravchenko MA, Krishan K, Kuate Defo B, Kucuk Bicer B, Kumar GA, Kumar M, Kumar P, Kutz MJ, Kuzin I, Kyu HH, Lad DP, Lad SD, Lafranconi A, Lal DK, Lalloo R, Lallukka T, Lam JO, Lami FH, Lansingh VC, Lansky S, Larson HJ, Latifi A, Lau KMM, Lazarus JV, Lebedev G, Lee PH, Leigh J, Leili M, Leshargie CT, Li S, Li Y, Liang J, Lim LL, Lim SS, Limenih MA, Linn S, Liu S, Liu Y, Lodha R, Lonsdale C, Lopez AD, Lorkowski S, Lotufo PA, Lozano R, Lunevicius R, Ma S, Macarayan ERK, Mackay MT, MacLachlan JH, Maddison ER, Madotto F, Magdy Abd el Razek H, Magdy Abd el Razek M, Maghavani DP, Majdan M, Majdzadeh R, Majeed A, Malekzadeh R, Malta DC, Manda AL, Mandarano-Filho LG, Manguerra H, Mansournia MA, Mapoma CC, Marami D, Maravilla JC, Marcenes W, Marczak L, Marks A, Marks GB, Martinez G, Martins-Melo FR, Martopullo I, März W, Marzan MB, Masci JR, Massenburg BB, Mathur MR, Mathur P, Matzopoulos R, Maulik PK, Mazidi M, McAlinden C, McGrath JJ, McKee M, McMahon BJ, Mehata S, Mehndiratta MM, Mehrotra R, Mehta KM, Mehta V, Mekonnen TC, Melese A, Melku M, Memiah PTN, Memish ZA, Mendoza W, Mengistu DT, Mengistu G, Mensah GA, Mereta ST, Meretoja A, Meretoja TJ, Mestrovic T, Mezgebe HB, Miazgowski B, Miazgowski T, Millear AI, Miller TR, Miller-Petrie MK, Mini GK, Mirabi P, Mirarefin M, Mirica A, Mirrakhimov EM, Misganaw AT, Mitiku H, Moazen B, Mohammad KA, Mohammadi M, Mohammadifard N, Mohammed MA, Mohammed S, Mohan V, Mokdad AH, Molokhia M, Monasta L, Moradi G, Moradi-Lakeh M, Moradinazar M, Moraga P, Morawska L, Moreno Velásquez I, Morgado-da-Costa J, Morrison SD, Moschos MM, Mouodi S, Mousavi SM, Muchie KF, Mueller UO, Mukhopadhyay S, Muller K, Mumford JE, Musa J, Musa KI, Mustafa G, Muthupandian S, Nachega JB, Nagel G, Naheed A, Nahvijou A, Naik G, Nair S, Najafi F, Naldi L, Nam HS, Nangia V, Nansseu JR, Nascimento BR, Natarajan G, Neamati N, Negoi I, Negoi RI, Neupane S, Newton CRJ, Ngalesoni FN, Ngunjiri JW, Nguyen AQ, Nguyen G, Nguyen HT, Nguyen HT, Nguyen LH, Nguyen M, Nguyen TH, Nichols E, Ningrum DNA, Nirayo YL, Nixon MR, Nolutshungu N, Nomura S, Norheim OF, Noroozi M, Norrving B, Noubiap JJ, Nouri HR, Nourollahpour Shiadeh M, Nowroozi MR, Nyasulu PS, Odell CM, Ofori-Asenso R, Ogbo FA, Oh IH, Oladimeji O, Olagunju AT, Olivares PR, Olsen HE, Olusanya BO, Olusanya JO, Ong KL, Ong SKS, Oren E, Orpana HM, Ortiz A, Ortiz JR, Otstavnov SS, Øverland S, Owolabi MO, Özdemir R, P A M, Pacella R, Pakhale S, Pakhare AP, Pakpour AH, Pana A, Panda-Jonas S, Pandian JD, Parisi A, Park EK, Parry CDH, Parsian H, Patel S, Pati S, Patton GC, Paturi VR, Paulson KR, Pereira A, Pereira DM, Perico N, Pesudovs K, Petzold M, Phillips MR, Piel FB, Pigott DM, Pillay JD, Pirsaheb M, Pishgar F, Polinder S, Postma MJ, Pourshams A, Poustchi H, Pujar A, Prakash S, Prasad N, Purcell CA, Qorbani M, Quintana H, Quistberg DA, Rade KW, Radfar A, Rafay A, Rafiei A, Rahim F, Rahimi K, Rahimi-Movaghar A, Rahman M, Rahman MHU, Rahman MA, Rai RK, Rajsic S, Ram U, Ranabhat CL, Ranjan P, Rao PC, Rawaf DL, Rawaf S, Razo-García C, Reddy KS, Reiner RC, Reitsma MB, Remuzzi G, Renzaho AMN, Resnikoff S, Rezaei S, Rezaeian S, Rezai MS, Riahi SM, Ribeiro ALP, Rios-Blancas MJ, Roba KT, Roberts NLS, Robinson SR, Roever L, Ronfani L, Roshandel G, Rostami A, Rothenbacher D, Roy A, Rubagotti E, Sachdev PS, Saddik B, Sadeghi E, Safari H, Safdarian M, Safi S, Safiri S, Sagar R, Sahebkar A, Sahraian MA, Salam N, Salama JS, Salamati P, Saldanha RDF, Saleem Z, Salimi Y, Salvi SS, Salz I, Sambala EZ, Samy AM, Sanabria J, Sanchez-Niño MD, Santomauro DF, Santos IS, Santos JV, Milicevic MMS, Sao Jose BP, Sarker AR, Sarmiento-Suárez R, Sarrafzadegan N, Sartorius B, Sarvi S, Sathian B, Satpathy M, Sawant AR, Sawhney M, Saxena S, Sayyah M, Schaeffner E, Schmidt MI, Schneider IJC, Schöttker B, Schutte AE, Schwebel DC, Schwendicke F, Scott JG, Sekerija M, Sepanlou SG, Serván-Mori E, Seyedmousavi S, Shabaninejad H, Shackelford KA, Shafieesabet A, Shahbazi M, Shaheen AA, Shaikh MA, Shams-Beyranvand M, Shamsi M, Shamsizadeh M, Sharafi K, Sharif M, Sharif-Alhoseini M, Sharma R, She J, Sheikh A, Shi P, Shiferaw MS, Shigematsu M, Shiri R, Shirkoohi R, Shiue I, Shokraneh F, Shrime MG, Si S, Siabani S, Siddiqi TJ, Sigfusdottir ID, Sigurvinsdottir R, Silberberg DH, Silva DAS, Silva JP, Silva NTD, Silveira DGA, Singh JA, Singh NP, Singh PK, Singh V, Sinha DN, Sliwa K, Smith M, Sobaih BH, Sobhani S, Sobngwi E, Soneji SS, Soofi M, Sorensen RJD, Soriano JB, Soyiri IN, Sposato LA, Sreeramareddy CT, Srinivasan V, Stanaway JD, Starodubov VI, Stathopoulou V, Stein DJ, Steiner C, Stewart LG, Stokes MA, Subart ML, Sudaryanto A, Sufiyan M'B, Sur PJ, Sutradhar I, Sykes BL, Sylaja PN, Sylte DO, Szoeke CEI, Tabarés-Seisdedos R, Tabuchi T, Tadakamadla SK, Takahashi K, Tandon N, Tassew SG, Taveira N, Tehrani-Banihashemi A, Tekalign TG, Tekle MG, Temsah MH, Temsah O, Terkawi AS, Teshale MY, Tessema B, Tessema GA, Thankappan KR, Thirunavukkarasu S, Thomas N, Thrift AG, Thurston GD, Tilahun B, To QG, Tobe-Gai R, Tonelli M, Topor-Madry R, Torre AE, Tortajada-Girbés M, Touvier M, Tovani-Palone MR, Tran BX, Tran KB, Tripathi S, Troeger CE, Truelsen TC, Truong NT, Tsadik AG, Tsoi D, Tudor Car L, Tuzcu EM, Tyrovolas S, Ukwaja KN, Ullah I, Undurraga EA, Updike RL, Usman MS, Uthman OA, Uzun SB, Vaduganathan M, Vaezi A, Vaidya G, Valdez PR, Varavikova E, Vasankari TJ, Venketasubramanian N, Villafaina S, Violante FS, Vladimirov SK, Vlassov V, Vollset SE, Vos T, Wagner GR, Wagnew FS, Waheed Y, Wallin MT, Walson JL, Wang Y, Wang YP, Wassie MM, Weiderpass E, Weintraub RG, Weldegebreal F, Weldegwergs KG, Werdecker A, Werkneh AA, West TE, Westerman R, Whiteford HA, Widecka J, Wilner LB, Wilson S, Winkler AS, Wiysonge CS, Wolfe CDA, Wu S, Wu YC, Wyper GMA, Xavier D, Xu G, Yadgir S, Yadollahpour A, Yahyazadeh Jabbari SH, Yakob B, Yan LL, Yano Y, Yaseri M, Yasin YJ, Yentür GK, Yeshaneh A, Yimer EM, Yip P, Yirsaw BD, Yisma E, Yonemoto N, Yonga G, Yoon SJ, Yotebieng M, Younis MZ, Yousefifard M, Yu C, Zadnik V, Zaidi Z, Zaman SB, Zamani M, Zare Z, Zeleke AJ, Zenebe ZM, Zhang AL, Zhang K, Zhou M, Zodpey S, Zuhlke LJ, Naghavi M, Murray CJL. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1736–1788. doi: 10.1016/S0140-6736(18)32203-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Fitzmaurice C, Akinyemiju TF, Al Lami FH, Alam T, Alizadeh-Navaei R, Allen C, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol. 2018;4:1553–68. [DOI] [PMC free article] [PubMed]
  • 3.Sung JJ, Lau JY, Goh KL, Leung WK. Increasing incidence of colorectal cancer in Asia: implications for screening. Lancet Oncol. 2005;6:871–876. doi: 10.1016/S1470-2045(05)70422-8. [DOI] [PubMed] [Google Scholar]
  • 4.Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikšić M. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391:1023–1075. doi: 10.1016/S0140-6736(17)33326-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Hamilton SR, Bosman FT, Boffetta P, et al. Carcinoma of the colon and rectum. In: In Bosman FT, Carneiro F, Hruban RH, Theise ND, editors. WHO classification of tumours of the digestive system. Lyon: IARC Press; 2010. p. 134–46.
  • 6.Taylor David P., Burt Randall W., Williams Marc S., Haug Peter J., Cannon–Albright Lisa A. Population-Based Family History–Specific Risks for Colorectal Cancer: A Constellation Approach. Gastroenterology. 2010;138(3):877–885. doi: 10.1053/j.gastro.2009.11.044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW, García FA, et al. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. JAMA. 2016;315:2564–75. [DOI] [PubMed]
  • 8.Grech G, Zhan X, Yoo BC, Bubnov R, Hagan S, Danesi R, Vittadini G, Desiderio DM. EPMA position paper in cancer: current overview and future perspectives. EPMA J. 2015;6:9. doi: 10.1186/s13167-015-0030-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, Krapfenbauer K, Mozaffari MS, Costigliola V. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7:23. doi: 10.1186/s13167-016-0072-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Janssens JP, Schuster K, Voss A. Preventive, predictive, and personalized medicine for effective and affordable cancer care. EPMA J. 2018;9:113–123. doi: 10.1007/s13167-018-0130-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. doi: 10.3322/caac.21492. [DOI] [PubMed] [Google Scholar]
  • 12.UNDP (2018). Human Development Indices and Indicators 2018 Statistical Update. Available at http://hdr.undp.org/sites/default/files/2018_human_development_statistical_update.pdf (Accessed: 3.5.2019).
  • 13.Vostakolaei F, Karim-Kos HE, Janssen-Heijnen ML, Visser O, Verbeek AL, Kiemeney LA. The validity of the mortality to incidence ratio as a proxy for site-specific cancer survival. Eur J Pub Health. 2010;21:573–577. doi: 10.1093/eurpub/ckq120. [DOI] [PubMed] [Google Scholar]
  • 14.Sunkara V, Hebert JR. The colorectal cancer mortality-to-incidence ratio as an indicator of global cancer screening and care. Cancer. 2015;121:1563–1569. doi: 10.1002/cncr.29228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Sharma R. Breast cancer incidence, mortality and mortality-to-incidence ratio (MIR) are associated with human development, 1990–2016: evidence from Global Burden of Disease Study 2016. Breast Cancer. 2019;26:428–445. doi: 10.1007/s12282-018-00941-4. [DOI] [PubMed] [Google Scholar]
  • 16.Sharma R. The burden of prostate cancer is associated with human development index: evidence from 87 countries, 1990–2016. EPMA J. 2019;10:137–152. doi: 10.1007/s13167-019-00169-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144:1941–1953. doi: 10.1002/ijc.31937. [DOI] [PubMed] [Google Scholar]
  • 18.Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M et al (2018). Global Cancer Observatory. Lyon, France: International Agency for Research on Cancer. Available from: https://gco.iarc.fr/, accessed [01.05.2019].
  • 19.Human Development Database: http://hdr.undp.org/en/data# (Accessed: 3.5.2019).
  • 20.Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66:683–691. doi: 10.1136/gutjnl-2015-310912. [DOI] [PubMed] [Google Scholar]
  • 21.Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22:191–197. doi: 10.1055/s-0029-1242458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Devesa SS, Chow WH. Variation in colorectal cancer incidence in the United States by subsite of origin. Cancer. 1993;71:3819–3826. doi: 10.1002/1097-0142(19930615)71:12<3819::aid-cncr2820711206>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  • 23.Cheng X, Chen VW, Steele B, Ruiz B, Fulton J, Liu L, Carozza SE, Greenlee R. Subsite-specific incidence rate and stage of disease in colorectal cancer by race, gender, and age group in the United States, 1992–1997. Cancer. 2001;92:2547–2554. doi: 10.1002/1097-0142(20011115)92:10<2547::aid-cncr1606>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  • 24.Murphy G, Devesa SS, Cross AJ, Inskip PD, McGlynn KA, Cook MB. Sex disparities in colorectal cancer incidence by anatomic subsite, race and age. Int J Cancer. 2011;128:1668–1675. doi: 10.1002/ijc.25481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Atkin WS, Edwards R, Kralj-Hans I, Wooldrage K, Hart AR, Northover JM, et al. Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: a multicentre randomised controlled trial. Lancet. 2010;375:1624–1633. doi: 10.1016/S0140-6736(10)60551-X. [DOI] [PubMed] [Google Scholar]
  • 26.Segnan N, Armaroli P, Bonelli L, Risio M, Sciallero S, Zappa M, Andreoni B, Arrigoni A, Bisanti L, Casella C, Crosta C, Falcini F, Ferrero F, Giacomin A, Giuliani O, Santarelli A, Visioli CB, Zanetti R, Atkin WS, Senore C, and the SCORE Working Group Once-only sigmoidoscopy in colorectal cancer screening: follow-up findings of the Italian Randomized Controlled Trial—SCORE. J Natl Cancer Inst. 2011;103:1310–1322. doi: 10.1093/jnci/djr284. [DOI] [PubMed] [Google Scholar]
  • 27.Schoen RE, Pinsky PF, Weissfeld JL, Yokochi LA, Church T, Laiyemo AO, Bresalier R, Andriole GL, Buys SS, Crawford ED, Fouad MN, Isaacs C, Johnson CC, Reding DJ, O'Brien B, Carrick DM, Wright P, Riley TL, Purdue MP, Izmirlian G, Kramer BS, Miller AB, Gohagan JK, Prorok PC, Berg CD, PLCO Project Team Colorectal-cancer incidence and mortality with screening flexible sigmoidoscopy. N Engl J Med. 2012;366:2345–2357. doi: 10.1056/NEJMoa1114635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Holme Ø, Bretthauer M, Fretheim A, Odgaard-Jensen J, Hoff G. Flexible sigmoidoscopy versus faecal occult blood testing for colorectal cancer screening in asymptomatic individuals. Cochrane Database Syst Rev. 2013;9:CD0009259 [DOI] [PMC free article] [PubMed]
  • 29.Holme Øyvind, Løberg Magnus, Kalager Mette, Bretthauer Michael, Hernán Miguel A., Aas Eline, Eide Tor J., Skovlund Eva, Schneede Jørn, Tveit Kjell Magne, Hoff Geir. Effect of Flexible Sigmoidoscopy Screening on Colorectal Cancer Incidence and Mortality. JAMA. 2014;312(6):606. doi: 10.1001/jama.2014.8266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Schreuders EH, Ruco A, Rabeneck L, Schoen RE, Sung JJ, Young GP, et al. Colorectal cancer screening: a global overview of existing programmes. Gut. 2015;64:1637–1649. doi: 10.1136/gutjnl-2014-309086. [DOI] [PubMed] [Google Scholar]
  • 31.Shapiro JA, Klabunde CN, Thompson TD, Nadel MR, Seeff LC, White A. Patterns of colorectal cancer test use, including CT colonography, in the 2010 National Health Interview Survey. Cancer Epidemiol Biomark Prev. 2012;21:895–904. doi: 10.1158/1055-9965.EPI-12-0192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Decker KM, Singh H. Reducing inequalities in colorectal cancer screening in North America. J Carcinog. 2014;13:12. doi: 10.4103/1477-3163.144576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Fedirko V, Tramacere I, Bagnardi V, Rota M, Scotti L, Islami F. Alcohol drinking and colorectal cancer risk: an overall and dose–response meta-analysis of published studies. Ann Oncol. 2011;22:1958–1972. doi: 10.1093/annonc/mdq653. [DOI] [PubMed] [Google Scholar]
  • 34.Botteri Edoardo, Iodice Simona, Bagnardi Vincenzo, Raimondi Sara, Lowenfels Albert B., Maisonneuve Patrick. Smoking and Colorectal Cancer. JAMA. 2008;300(23):2765. doi: 10.1001/jama.2008.839. [DOI] [PubMed] [Google Scholar]
  • 35.Demeyer D, Mertens B, De Smet S, Ulens M. Mechanisms linking colorectal cancer to the consumption of (processed) red meat: a review. Crit Rev Food Sci Nutr. 2016;56:2747–2766. doi: 10.1080/10408398.2013.873886. [DOI] [PubMed] [Google Scholar]
  • 36.Bardou M, Barkun AN, Martel M. Obesity and colorectal cancer. Gut. 2013;62:933–947. doi: 10.1136/gutjnl-2013-304701. [DOI] [PubMed] [Google Scholar]
  • 37.Moghaddam AA, Woodward M, Huxley R. Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol Biomark Prev. 2007;16:2533–2547. doi: 10.1158/1055-9965.EPI-07-0708. [DOI] [PubMed] [Google Scholar]
  • 38.Peeters PJ, Bazelier MT, Leufkens HG, de Vries F, De Bruin ML. The risk of colorectal cancer in patients with type 2 diabetes: associations with treatment stage and obesity. Diabetes Care. 2015;38:495–502. doi: 10.2337/dc14-1175. [DOI] [PubMed] [Google Scholar]
  • 39.Terry P, Giovannucci E, Michels KB, Bergkvist L, Hansen H, Holmberg L, Wolk A. Fruit, vegetables, dietary fiber, and risk of colorectal cancer. J Natl Cancer Inst. 2001;93:525–533. doi: 10.1093/jnci/93.7.525. [DOI] [PubMed] [Google Scholar]
  • 40.Van Duijnhoven FJ, Bueno-De-Mesquita HB, Ferrari P, Jenab M, Boshuizen HC, Ros MM, et al. Fruit, vegetables, and colorectal cancer risk: the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr. 2009;89:1441–1452. doi: 10.3945/ajcn.2008.27120. [DOI] [PubMed] [Google Scholar]
  • 41.Huxley RR, Ansary-Moghaddam A, Clifton P, Czernichow S, Parr CL, Woodward M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence. Int J Cancer. 2009;125:171–180. doi: 10.1002/ijc.24343. [DOI] [PubMed] [Google Scholar]
  • 42.Rothwell PM, Wilson M, Elwin CE, Norrving B, Algra A, Warlow CP, Meade TW. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet. 2010;376:1741–1750. doi: 10.1016/S0140-6736(10)61543-7. [DOI] [PubMed] [Google Scholar]
  • 43.Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377:31–41. doi: 10.1016/S0140-6736(10)62110-1. [DOI] [PubMed] [Google Scholar]
  • 44.Burn J, Gerdes AM, Macrae F, Mecklin JP, Moeslein G, Olschwang S, Eccles D, Evans DG, Maher ER, Bertario L, Bisgaard ML, Dunlop MG, Ho JWC, Hodgson SV, Lindblom A, Lubinski J, Morrison PJ, Murday V, Ramesar R, Side L, Scott RJ, Thomas HJW, Vasen HF, Barker G, Crawford G, Elliott F, Movahedi M, Pylvanainen K, Wijnen JT, Fodde R, Lynch HT, Mathers JC, Bishop DT. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet. 2011;378:2081–2087. doi: 10.1016/S0140-6736(11)61049-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Chubak J, Kamineni A, Buist DSM, Anderson ML & Whitlock EP (2015) Aspirin use for the prevention of colorectal cancer: an updated systematic evidence review for the U.S. Preventive Services Task Force (Agency for Healthcare Research and Quality (US), 2015). [PubMed]
  • 46.Gonzalez CA, Riboli E. Diet and cancer prevention: contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Cancer. 2010;46:2555–2562. doi: 10.1016/j.ejca.2010.07.025. [DOI] [PubMed] [Google Scholar]
  • 47.Thirunavukarasu P, Sukumar S, Sathaiah M, Mahan M, Pragatheeshwar KD, Pingpank JF, Zeh H, Bartels CJ, Lee KKW, Bartlett DL. C-stage in colon cancer: implications of carcinoembryonic antigen biomarker in staging, prognosis, and management. J Natl Cancer Inst. 2011;103:689–697. doi: 10.1093/jnci/djr078. [DOI] [PubMed] [Google Scholar]
  • 48.Nikolaou S, Qiu S, Fiorentino F, Rasheed S, Tekkis P, Kontovounisios C. The prognostic and therapeutic role of hormones in colorectal cancer: a review. Mol Biol Rep. 2019:461477–86. [DOI] [PubMed]
  • 49.Sullivan R, Alatise OI, Anderson BO, Audisio R, Autier P, Aggarwal A, Balch C, Brennan MF, Dare A, D'Cruz A, Eggermont AMM, Fleming K, Gueye SM, Hagander L, Herrera CA, Holmer H, Ilbawi AM, Jarnheimer A, Ji JF, Kingham TP, Liberman J, Leather AJM, Meara JG, Mukhopadhyay S, Murthy SS, Omar S, Parham GP, Pramesh CS, Riviello R, Rodin D, Santini L, Shrikhande SV, Shrime M, Thomas R, Tsunoda AT, van de Velde C, Veronesi U, Vijaykumar DK, Watters D, Wang S, Wu YL, Zeiton M, Purushotham A. Global cancer surgery: delivering safe, affordable, and timely cancer surgery. Lancet Oncol. 2015;16:1193–1224. doi: 10.1016/S1470-2045(15)00223-5. [DOI] [PubMed] [Google Scholar]
  • 50.Lu M, Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018;9:77–102. doi: 10.1007/s13167-018-0128-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Horgan RP, Kenny LC. ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet Gynaecol. 2011;13:189–195. [Google Scholar]
  • 52.Golubnitschaja O, Kinkorova J, Costigliola V. Predictive, preventive and personalized medicine as the hardcore of ‘Horizon 2020’: EPMA position paper. EPMA J. 2014;5:6. doi: 10.1186/1878-5085-5-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EPMA Journal are provided here courtesy of Springer

RESOURCES