Skip to main content
West China Journal of Stomatology logoLink to West China Journal of Stomatology
. 2017 Apr;35(2):215–220. [Article in Chinese] doi: 10.7518/hxkq.2017.02.020

口腔中过氧化氢的来源及在微生态平衡中的作用

The origin of hydrogen peroxide in oral cavity and its role in oral microecology balance

章 可可 1, 周 学东 1, 徐 欣 1,
Editor: 吴 爱华1
PMCID: PMC7029991  PMID: 28682556

Abstract

过氧化氢(H2O2)作为口腔中一种重要的抑菌物质,在口腔微生态平衡中发挥着重要作用。在口腔龈上菌斑定植的先锋菌中,约有80%细菌属于口腔链球菌属,这些口腔链球菌可以利用不同的氧化酶合成H2O2,同时H2O2可通过抑制对H2O2敏感的微生物参与菌间竞争拮抗,使氧耐受菌得以存活,从而调节生物膜的发展过程;H2O2还可通过影响微生物细胞外DNA的释放和感受态细胞的形成进而影响基因的水平转移,调节生物膜对口腔环境的适应能力;同时口腔微生物也可通过一系列机制耐受H2O2。此外,H2O2在微生物与宿主的关系中也发挥着重要作用。本文就口腔中H2O2的来源及其在口腔微生态平衡的作用两方面的研究进展进行综述。

Keywords: 过氧化氢, 口腔微生物, 口腔微生态, 生物膜, 微生物与宿主


口腔是一个复杂的微生态系统,过氧化氢(H2O2)是这个复杂生态系中一种重要的非特异性抗菌物质。H2O2可由乳杆菌和牙菌斑早期定植的链球菌产生,也可来源于宿主,在调控微生态平衡中发挥重要作用。H2O2可通过抑制对其敏感的微生物参与微生物间的竞争拮抗,使得对H2O2较为耐受的细菌获得竞争优势,从而在生物膜形成过程中,特别是在生物膜形成初期发挥重要的菌群调节作用。H2O2可通过介导细胞外DNA(extracellular DNA,eDNA)的释放,参与细菌间基因的水平转移[1],影响生物膜对口腔复杂环境的适应能力;口腔内微生物也可通过一系列耐受机制减少H2O2对自身的伤害[2][3]。此外,H2O2在微生物和宿主的交互关系中也发挥着重要作用[4][5]。本文就口腔中H2O2的来源及其在口腔微生态中的作用进行综述。

1. 口腔中H2O2的来源

口腔中的H2O2主要来源于细菌和宿主[6]。乳杆菌和口腔链球菌很早就被发现可以产生H2O2[7][8]。定性和定量研究[9][12]发现,口腔链球菌、缓症链球菌、表兄链球菌、血链球菌、戈登链球菌、寡发酵链球菌、副血链球菌等均能产生H2O2。这些链球菌均可以从人口腔牙菌斑中分离,且在牙菌斑中具有较高丰度[13]。体外实验[8][9],[11]表明,细菌H2O2的产生与其培养环境条件密切相关。口腔细菌主要依赖丙酮酸氧化酶[14]、乳酸氧化酶[15]、烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NADH)氧化酶[16]和L-氨基酸氧化酶[17]等途径来产H2O2

1.1. 丙酮酸氧化酶途径

血链球菌和戈登链球菌依赖丙酮酸氧化酶产生H2O2,该酶由spxB基因编码,可催化丙酮酸盐、无机磷酸盐和氧分子生成H2O2[14],[18]。研究者通过构建血链球菌和戈登链球菌的spxB基因的突变株和spxB基因的补偿菌株,并比较了野生株、spxB基因突变株及spxB基因补偿株与变异链球菌的竞争关系,证实spxB基因编码丙酮酸氧化酶合成H2O2是血链球菌和戈登链球菌与变异链球菌细菌间相互竞争的重要分子机制[14]

血链球菌和戈登链球菌H2O2的产生受细菌生长环境影响和自身相关基因的调控。Barnard等[11]系统研究了外环境因素对戈登链球菌H2O2产生的影响,结果发现,培养基中葡萄糖和蔗糖、金属离子、pH、细菌生长期和氧分压均会对戈登链球菌H2O2合成造成显著影响。当培养基中蔗糖、葡萄糖含量有限时(0.1 mmol·L−1左右),戈登链球菌产生H2O2和乳酸的能力相当,而当培养基中蔗糖和葡萄糖较为富足时,H2O2合成显著减少。由于口腔中的各种碳源代谢底物有限,戈登链球菌为了获取有限的生存空间和营养,可能通过产生H2O2来抑制其他H2O2敏感菌的生长,进而在生物膜群落中获得生长优势。Zheng等[19]发现,戈登链球菌中的分解代谢物控制蛋白CcpA可结合到spxB的启动子,抑制spxB基因表达,从而调控戈登链球菌H2O2的合成。

血链球菌H2O2的合成也受到一系列基因的调控。Zheng等[20]研究发现,血链球菌分解代谢物控制蛋白CcpA同样能调控spxB的表达,血链球菌ccpA突变株spxB表达量较野生株上调约6倍,提示血链球菌CcpA也可通过抑制spxB基因的表达调控H2O2的产生。与戈登链球菌不同的是,血链球菌spxB的表达受培养基中葡萄糖含量的影响并不显著,推测血链球菌CcpA蛋白依赖抑制作用受到其他代谢物(例如辅脱氢酶Ⅱ)的控制。Chen等[21]通过突变血链球菌全局性调控因子编码基因spxA1和spxA2,研究了这两个基因对血链球菌H2O2产生的影响。研究发现,spxA1突变株H2O2产量显著减少,spxA1补偿株H2O2的产生约为野生株的80%,但spxA2突变株H2O2的产量与野生株相比无明显差异,提示血链球菌的全局性调控因子SpxA1参与控制spxB的表达,而spxA2对该细菌H2O2的产生无明显影响。Chen等[22]另一研究表明,血链球菌ackA、spxR和tpk三个基因的突变株与野生株相比,产H2O2明显减少。ackA和spxR的突变株中spxB的表达量减少而tpk的突变株中spxB的表达量增多,推测ackA和spxR可能为spxB表达的正调节基因,而tpk为spxB表达的辅因子。Zhu等[23]设计spxB通用引物对口腔菌斑spxB的动态表达进行定量检测,结果发现,个体菌斑中spxB的表达量随时间的改变相对稳定,提示spxB在口腔菌斑中具有功能性作用。

1.2. 乳酸氧化酶途径

寡发酵链球菌除可通过丙酮酸氧化酶合成H2O2[15],还可通过乳酸氧化酶参与H2O2的合成。Tong等[10]发现,寡发酵链球菌可通过乳酸氧化酶利用变异链球菌产生的乳酸合成H2O2。在细菌生长的不同周期,主要负责合成H2O2的基因不同。丙酮酸氧化酶主要负责细菌生长潜伏期和对数期H2O2的产生,而乳酸氧化酶主要负责细菌生长平台期H2O2的合成。

1.3. NADH氧化酶和L-氨基酸氧化酶途径

Higuchi等[16]在变异链球菌耐氧菌株NCIB11723中分离纯化获得了可产生H2O2的NADH氧化酶Nox-1。该酶由4个相对分子质量约为5.6×104的亚基组成,黄素腺嘌呤二核苷酸可促进该酶H2O2合成活性。Tong等[17]发现,寡发酵链球菌乳酸氧化酶Lox突变株在蛋白胨富集时对变异链球菌仍具有显著抑制作用。进一步体外研究发现,氨基酸氧化酶LAAO可通过7种氨基酸产生H2O2,该蛋白编码基因aaoSo突变株在上述氨基酸存在条件下也不产生H2O2,证实寡发酵链球菌还可通过氨基酸氧化酶LAAO合成H2O2

1.4. 宿主来源的H2O2

H2O2是活性氧(reactive oxygen species,ROS)的一种[24]。宿主来源的H2O2可来自众多途径。线粒体可通过呼吸作用产生ROS,包括H2O2[25][27]。细胞内的清除系统有效地保护宿主免受ROS造成的伤害,其中产生的H2O2可能不会离开黏膜细胞,但这个途径产生的H2O2的量大到足以在口腔微生态中发挥作用[5]。H2O2产生的另一个途径来自巨噬细胞的氧化爆发。ROS的稳定产生(包括H2O2)是巨噬细胞氧化爆发的一部分,巨噬细胞产生的ROS是针对巨噬细胞外对宿主有侵害的病原菌,因此可以自由扩散到病原菌的附近[28]。但有研究[29][30]表明,个体巨噬细胞的含量处于一个逐日变化的过程,因此由巨噬细胞产生的H2O2量很难确定。Geiszt等[31]发现了另一种宿主产H2O2的途径,他们发现表达双氧化酶2的唾液腺细胞能持续地给唾液供应H2O2,并且产生的H2O2能直接随着唾液进入到口腔中,这可能是唾液中H2O2的宿主来源的最主要途径。

2. H2O2在口腔中的生物学作用

2.1. H2O2对生物膜的调节作用

H2O2可在牙菌斑生物膜形成初期影响微生物的早期定植。细菌的初始黏附在生物膜形成过程中具有重要作用。在初始黏附时,链球菌是主要的早期定植菌,通过特异性表面蛋白与唾液中蛋白结合,黏附定植于牙齿表面[32]。链球菌本身的表面蛋白也为其他口腔细菌提供了黏附和聚集的位点[33]。因此,初始黏附的细菌(主要是链球菌)为生物膜的成熟奠定了基础。临床研究发现,血链球菌与低龋风险相关[34][35];寡发酵链球菌与龋病发生呈负相关[36],提示在生物膜形成初期,早期黏附的链球菌可通过产生H2O2抑制龋病的机会致病菌(如变异链球菌)的生长和定植,对早期生物膜健康发展具有重要意义。

H2O2可通过对微生物的杀伤作用在生物膜形成过程中调节生物膜的组成。在生物膜形成过程中,细菌间的距离是一个重要因素[37]。Liu等[38]通过测量距戈登链球菌生物膜不同距离H2O2的浓度发现,在距生物膜表面100 µm处H2O2浓度为1.4 mmol·L−1,而在距离生物膜表面200 µm处H2O2的浓度为0.4 mmol·L−1。1.4 mmol·L−1是一个可以抑制H2O2敏感细菌的浓度,提示细菌产生的H2O2主要作用于那些与其相距较近的细菌。生物膜形成过程中H2O2浓度梯度的存在提示H2O2可通过对不同H2O2敏感性的微生物进行筛选,调节生物膜的组成。H2O2可穿过细菌细胞膜,对细菌的杀伤作用机制包括破坏细菌的酶活性或直接氧化细菌大分子(蛋白质和DNA)[39]。H2O2的氧自由基可与Fe2+发生反应,破坏对酶活性进行调控的铁硫簇[4Fe-4S]结构[40]。此外,细菌细胞内H2O2的积累会导致在精氨酸、赖氨酸、脯氨酸及苏氨酸残基的侧链中引入羰基引起不可逆的蛋白质羰基化,介导蛋白质的靶向降解[41][43]

口腔细菌可以通过产生H2O2影响细菌eDNA的释放和细菌感受态的形成,从而影响基因的水平转移,进而调节生物膜对口腔多变环境的适应能力。口腔细菌为适应多变的口腔环境进化出了一系列的应对措施,包括基因的水平转移[1],[44][45]。接合、转导和转化是微生物基因水平转移的3种形式[46]。转化是处于感受态的细菌获取eDNA进行DNA同源交换的过程[47]。通过同源交换,细菌可以获取新的基因适应环境(如抗性基因、代谢相关基因等),同时也可修复突变的基因以维持其遗传稳定性[48]。细菌eDNA的释放依赖胞外细菌素、胞壁酸水解酶、胞内细菌素和H2O2等途径[49]。Kreth等[14]发现,戈登链球菌和血链球菌染色体DNA的释放与H2O2产生密切相关,SpxB缺陷株H2O2产生减少,染色体DNA的释放也相应减少。Itzek等[50]研究发现,戈登链球菌在厌氧环境下H2O2合成降低,其染色体DNA的释放也减少;在厌氧条件下加入H2O2会导致DNA的释放增加。尽管H2O2导致细菌DNA释放的具体机制尚不清楚,但该研究指出H2O2并不是通过介导细菌裂解进而促使DNA的释放。细菌H2O2的产生也伴随着细菌感受态的产生[50][51],可以推测细菌在感知到H2O2所介导的DNA损伤后,可通过一些未知的分子机制释放DNA并形成感受态细胞,通过转化修复基因损伤与突变。

口腔微生物能通过一系列机制减少H2O2的损害。部分口腔细菌能利用过氧化氢酶减少H2O2对其的伤害。“戈登链球菌和内氏放线菌”是口腔细菌相互作用的经典研究模型,戈登链球菌可产生H2O2抑制内氏放线菌[52][53]。值得注意的是,戈登链球菌不能产生过氧化氢酶缓解H2O2对自身的伤害。Jakubovics等[3],[53]发现,内氏放线菌可通过自身过氧化氢酶不断消耗H2O2,从而减少H2O2对自身和戈登链球菌的伤害。另有研究表明,口腔细菌中的很多基因与耐受H2O2密切相关。“血链球菌和变异链球菌”以及“戈登链球菌和变异链球菌”是经典的口腔相互竞争研究模型,血链球菌和戈登链球菌主要产生H2O2抑制变异链球菌,而变异链球菌可产生变链素抑制血链球菌和戈登链球菌[14],[54][55]。Xu等[2]分别观察了血链球菌和戈登链球菌dps、trxB和sodA三个基因突变株对H2O2的耐受情况,发现血链球菌和戈登链球菌Dps突变株对H2O2极为敏感;血链球菌的TrxB的突变株和戈登链球菌SodA突变株对H2O2的敏感也显著增加;而血链球菌SodA和戈登链球菌TrxB突变株对H2O2的耐受无明显变化,提示戈登链球菌Dps和SodA及血链球菌Dsp和TrxB在相关细菌耐受H2O2过程中发挥了重要作用。另外,该研究还发现戈登链球菌比血链球菌更耐受H2O2,推测戈登链球菌在牙菌斑中的丰度较低,因此需要更强的耐受力进而在牙菌斑中获得生长优势。Zheng等[56]发现,与野生株相比,变异链球菌谷胱甘肽合成酶基因缺失株对H2O2更敏感;进一步通过血链球菌和变异链球菌双菌种实验证明谷胱甘肽合成酶在变异链球菌耐受H2O2过程中有重要作用。此外,产H2O2细菌为了减少H2O2对自身的伤害,可通过Mn2+代替[4Fe-4S]结构中的Fe2+,减少细胞内依赖铁硫簇调控活性的蛋白质[57][58]

2.2. H2O2在微生物与宿主交互关系中的作用

H2O2参与了微生物与宿主之间的交互作用。口腔微生物与宿主口腔细胞相互接近,微生物与宿主间存在频繁的交互作用。微生物可产生对宿主有毒害作用的H2O2,对宿主造成损害。Ramsey等[59]发现,戈登链球菌产生的H2O2诱导伴放线菌嗜血菌表达基因katA和apiA,促使伴放线菌嗜血菌逃脱宿主的免疫系统。Okahashi等[60]发现,血链球菌可产生H2O2导致人类巨噬细胞死亡,抑制血链球菌ROS的产生可有效减少血链球菌对巨噬细胞的毒害作用。Okahashi等[61]进一步研究了口腔链球菌SpxB对人类巨噬细胞的作用,阐明了口腔链球菌产生H2O2导致人类巨噬细胞死亡的机制。Okahashi等[4]还发现,口腔链球菌产生的H2O2可诱导宿主上皮细胞白细胞介素-6的表达,引起上皮细胞死亡。宿主细胞也能通过合成H2O2,起到杀菌或化学屏障的作用[28],[62]。例如巨噬细胞针对病原菌的氧化爆发过程产生大量的ROS(包括H2O2),可杀灭病原菌或将病原菌屏蔽在由H2O2组成的化学屏障外,进而保护宿主。有意思的是,细菌还可以通过产生H2O2减少条件致病菌对宿主的侵害,乳杆菌可以通过产生H2O2抑制白假丝酵母菌对上皮细胞的黏附[63]

在口腔中,生物膜中的微生物持续处于“战争与和平”的状态,致病菌与宿主之间也时刻展开着“斗争”。微生物可通过一系列途径产生H2O2,限制有限生存资源内的竞争对手,并采取措施减少H2O2对自身的损害。H2O2是研究产H2O2菌株与对H2O2敏感菌间交互关系的良好切入口。H2O2在微生物与宿主间的关系中也发挥着重要的调节作用。系统研究H2O2在口腔微生态中的作用,揭示H2O2在维持口腔微生态平衡中的更多功能,有利于更好地理解口腔微生态系统。

Funding Statement

[基金项目] 国家自然科学基金(81170959,81200782,81430011,81371135)

Supported by: The National Natural Science Foundation of China (81170959, 81200782, 81430011, 81371135).

References

  • 1.Roberts AP, Kreth J. The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome[J] Front Cell Infect Microbiol. 2014;4:124. doi: 10.3389/fcimb.2014.00124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Xu Y, Itzek A, Kreth J. Comparison of genes required for H2O2 resistance in Streptococcus gordonii and Streptococcus sanguinis[J] Microbiology. 2014;160(Pt 12):2627–2638. doi: 10.1099/mic.0.082156-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Jakubovics NS, Gill SR, Vickerman MM, et al. Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii[J] FEMS Microbiol Ecol. 2008;66(3):637–644. doi: 10.1111/j.1574-6941.2008.00585.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Okahashi N, Sumitomo T, Nakata M, et al. Hydrogen peroxide contributes to the epithelial cell death induced by the oral mitis group of streptococci[J] PLoS ONE. 2014;9(1):e88136. doi: 10.1371/journal.pone.0088136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling[J] Ann N Y Acad Sci. 2008;1147:37–52. doi: 10.1196/annals.1427.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body[J] FEBS Lett. 2000;486(1):10–13. doi: 10.1016/s0014-5793(00)02197-9. [DOI] [PubMed] [Google Scholar]
  • 7.Hillier SL, Krohn MA, Klebanoff SJ, et al. The relationship of hydrogen peroxide-producing lactobacilli to bacterial vaginosis and genital microflora in pregnant women[J] Obstet Gynecol. 1992;79(3):369–373. doi: 10.1097/00006250-199203000-00008. [DOI] [PubMed] [Google Scholar]
  • 8.Ryan CS, Kleinberg I. Bacteria in human mouths involved in the production and utilization of hydrogen peroxide[J] Arch Oral Biol. 1995;40(8):753–763. doi: 10.1016/0003-9969(95)00029-o. [DOI] [PubMed] [Google Scholar]
  • 9.García-Mendoza A, Liébana J, Castillo AM, et al. Evaluation of the capacity of oral streptococci to produce hydrogen peroxide[J] J Med Microbiol. 1993;39(6):434–439. doi: 10.1099/00222615-39-6-434. [DOI] [PubMed] [Google Scholar]
  • 10.Tong H, Chen W, Merritt J, et al. Streptococcus oligofermentans inhibits Streptococcus mutans through conversion of lactic acid into inhibitory H2O2: a possible counteroffensive strategy for interspecies competition[J] Mol Microbiol. 2007;63(3):872–880. doi: 10.1111/j.1365-2958.2006.05546.x. [DOI] [PubMed] [Google Scholar]
  • 11.Barnard JP, Stinson MW. Influence of environmental conditions on hydrogen peroxide formation by Streptococcus gordonii[J] Infect Immun. 1999;67(12):6558–6564. doi: 10.1128/iai.67.12.6558-6564.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Scoffield JA, Wu H. Oral streptococci and nitrite-mediated interference of Pseudomonas aeruginosa[J] Infect Immun. 2015;83(1):101–107. doi: 10.1128/IAI.02396-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Lucas VS, Beighton D, Roberts GJ. Composition of the oral streptococcal flora in healthy children[J] J Dent. 2000;28(1):45–50. doi: 10.1016/s0300-5712(99)00048-2. [DOI] [PubMed] [Google Scholar]
  • 14.Kreth J, Zhang Y, Herzberg MC. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans[J] J Bacteriol. 2008;190(13):4632–4640. doi: 10.1128/JB.00276-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Liu L, Tong H, Dong X. Function of the pyruvate oxidaselactate oxidase cascade in interspecies competition between Streptococcus oligofermentans and Streptococcus mutans[J] Appl Environ Microbiol. 2012;78(7):2120–2127. doi: 10.1128/AEM.07539-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Higuchi M, Shimada M, Yamamoto Y, et al. Identification of two distinct NADH oxidases corresponding to H2O2-forming oxidase and H2O-forming oxidase induced in Streptococcus mutans[J] J Gen Microbiol. 1993;139(10):2343–2351. doi: 10.1099/00221287-139-10-2343. [DOI] [PubMed] [Google Scholar]
  • 17.Tong H, Chen W, Shi W, et al. SO-LAAO, a novel L-amino acid oxidase that enables Streptococcus oligofermentans to outcompete Streptococcus mutans by generating H2O2 from peptone[J] J Bacteriol. 2008;190(13):4716–4721. doi: 10.1128/JB.00363-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Ramos-Montañez S, Tsui HC, Wayne KJ, et al. Polymorphism and regulation of the spxB (pyruvate oxidase) virulence factor gene by a CBS-HotDog domain protein (SpxR) in serotype 2 Streptococcus pneumoniae[J] Mol Microbiol. 2008;67(4):729–746. doi: 10.1111/j.1365-2958.2007.06082.x. [DOI] [PubMed] [Google Scholar]
  • 19.Zheng L, Itzek A, Chen Z, et al. Environmental influences on competitive hydrogen peroxide production in Streptococcus gordonii[J] Appl Environ Microbiol. 2011;77(13):4318–4328. doi: 10.1128/AEM.00309-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Zheng L, Chen Z, Itzek A, et al. Catabolite control protein A controls hydrogen peroxide production and cell death in Streptococcus sanguinis[J] J Bacteriol. 2011;193(2):516–526. doi: 10.1128/JB.01131-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Chen L, Ge X, Wang X, et al. SpxA1 involved in hydrogen peroxide production, stress tolerance and endocarditis virulence in Streptococcus sanguinis[J] PLoS ONE. 2012;7(6):e40034. doi: 10.1371/journal.pone.0040034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Chen L, Ge X, Dou Y, et al. Identification of hydrogen peroxide production-related genes in Streptococcus sanguinis and their functional relationship with pyruvate oxidase[J] Microbiology. 2011;157(Pt 1):13–20. doi: 10.1099/mic.0.039669-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Zhu L, Xu Y, Ferretti JJ, et al. Probing oral microbial functionality—expression of spxB in plaque samples[J] PLoS ONE. 2014;9(1):e86685. doi: 10.1371/journal.pone.0086685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Kanta J. The role of hydrogen peroxide and other reactive oxygen species in wound healing[J] Acta Medica. 2011;54(3):97–101. doi: 10.14712/18059694.2016.28. [DOI] [PubMed] [Google Scholar]
  • 25.Lambert AJ, Brand MD. Reactive oxygen species production by mitochondria[J] Methods Mol Biol. 2009;554:165–181. doi: 10.1007/978-1-59745-521-3_11. [DOI] [PubMed] [Google Scholar]
  • 26.Murphy MP. How mitochondria produce reactive oxygen species[J] Biochem J. 2009;417(1):1–13. doi: 10.1042/BJ20081386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Turrens JF. Mitochondrial formation of reactive oxygen species[J] J Physiol. 2003;552(Pt 2):335–344. doi: 10.1113/jphysiol.2003.049478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Leto TL, Geiszt M. Role of Nox family NADPH oxidases in host defense[J] Antioxid Redox Signal. 2006;8(9/10):1549–1561. doi: 10.1089/ars.2006.8.1549. [DOI] [PubMed] [Google Scholar]
  • 29.Ozmeric N. Advances in periodontal disease markers[J] Clin Chim Acta. 2004;343(1/2):1–16. doi: 10.1016/j.cccn.2004.01.022. [DOI] [PubMed] [Google Scholar]
  • 30.Vidović A, Vidović Juras D, Vučićević Boras V, et al. Determination of leucocyte subsets in human saliva by flow cytometry[J] Arch Oral Biol. 2012;57(5):577–583. doi: 10.1016/j.archoralbio.2011.10.015. [DOI] [PubMed] [Google Scholar]
  • 31.Geiszt M, Witta J, Baffi J, et al. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense[J] FASEB J. 2003;17(11):1502–1504. doi: 10.1096/fj.02-1104fje. [DOI] [PubMed] [Google Scholar]
  • 32.Kolenbrander PE, Palmer RJ, Jr, Rickard AH, et al. Bacterial interactions and successions during plaque development[J] Periodontol 2000. 2006;42:47–79. doi: 10.1111/j.1600-0757.2006.00187.x. [DOI] [PubMed] [Google Scholar]
  • 33.Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization[J] Microbiol Mol Biol Rev. 2009;73(3):407–450. doi: 10.1128/MMBR.00014-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Nyvad B, Kilian M. Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals[J] Caries Res. 1990;24(4):267–272. doi: 10.1159/000261281. [DOI] [PubMed] [Google Scholar]
  • 35.Becker MR, Paster BJ, Leys EJ, et al. Molecular analysis of bacterial species associated with childhood caries[J] J Clin Microbiol. 2002;40(3):1001–1009. doi: 10.1128/JCM.40.3.1001-1009.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Zhang J, Tong HC, Dong XZ, et al. A preliminary study of biological characteristics of Streptococcus oligofermentans in oral microecology[J] Caries Res. 2010;44(4):345–348. doi: 10.1159/000315277. [DOI] [PubMed] [Google Scholar]
  • 37.Kolenbrander PE, Palmer RJ, Jr, Periasamy S, et al. Oral multispecies biofilm development and the key role of cell-cell distance[J] Nat Rev Microbiol. 2010;8(7):471–480. doi: 10.1038/nrmicro2381. [DOI] [PubMed] [Google Scholar]
  • 38.Liu X, Ramsey MM, Chen X, et al. Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy[J] Proc Natl Acad Sci USA. 2011;108(7):2668–2673. doi: 10.1073/pnas.1018391108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Imlay JA. Pathways of oxidative damage[J] Annu Rev Microbiol. 2003;57:395–418. doi: 10.1146/annurev.micro.57.030502.090938. [DOI] [PubMed] [Google Scholar]
  • 40.Jang S, Imlay JA. Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes[J] J Biol Chem. 2007;282(2):929–937. doi: 10.1074/jbc.M607646200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Nyström T. Role of oxidative carbonylation in protein quality control and senescence[J] EMBO J. 2005;24(7):1311–1317. doi: 10.1038/sj.emboj.7600599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins[J] Amino Acids. 2003;25(3/4):207–218. doi: 10.1007/s00726-003-0011-2. [DOI] [PubMed] [Google Scholar]
  • 43.Grune T, Merker K, Sandig G, et al. Selective degradation of oxidatively modified protein substrates by the proteasome[J] Biochem Biophys Res Commun. 2003;305(3):709–718. doi: 10.1016/s0006-291x(03)00809-x. [DOI] [PubMed] [Google Scholar]
  • 44.Fux CA, Costerton JW, Stewart PS, et al. Survival strategies of infectious biofilms[J] Trends Microbiol. 2005;13(1):34–40. doi: 10.1016/j.tim.2004.11.010. [DOI] [PubMed] [Google Scholar]
  • 45.Hannan S, Ready D, Jasni AS, et al. Transfer of antibiotic resistance by transformation with eDNA within oral biofilms[J] FEMS Immunol Med Microbiol. 2010;59(3):345–349. doi: 10.1111/j.1574-695X.2010.00661.x. [DOI] [PubMed] [Google Scholar]
  • 46.Gal-Mor O, Finlay BB. Pathogenicity islands: a molecular toolbox for bacterial virulence[J] Cell Microbiol. 2006;8(11):1707–1719. doi: 10.1111/j.1462-5822.2006.00794.x. [DOI] [PubMed] [Google Scholar]
  • 47.Smillie CS, Smith MB, Friedman J, et al. Ecology drives a global network of gene exchange connecting the human microbiome[J] Nature. 2011;480(7376):241–244. doi: 10.1038/nature10571. [DOI] [PubMed] [Google Scholar]
  • 48.Knöppel A, Lind PA, Lustig U, et al. Minor fitness costs in an experimental model of horizontal gene transfer in bacteria[J] Mol Biol Evol. 2014;31(5):1220–1227. doi: 10.1093/molbev/msu076. [DOI] [PubMed] [Google Scholar]
  • 49.Jakubovics NS, Burgess JG. Extracellular DNA in oral microbial biofilms[J] Microbes Infect. 2015;17(7):531–537. doi: 10.1016/j.micinf.2015.03.015. [DOI] [PubMed] [Google Scholar]
  • 50.Itzek A, Zheng L, Chen Z, et al. Hydrogen peroxide-dependent DNA release and transfer of antibiotic resistance genes in Streptococcus gordonii[J] J Bacteriol. 2011;193(24):6912–6922. doi: 10.1128/JB.05791-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Prudhomme M, Attaiech L, Sanchez G, et al. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae[J] Science. 2006;313(5783):89–92. doi: 10.1126/science.1127912. [DOI] [PubMed] [Google Scholar]
  • 52.Stacy A, Everett J, Jorth P, et al. Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection[J] Proc Natl Acad Sci USA. 2014;111(21):7819–7824. doi: 10.1073/pnas.1400586111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Jakubovics NS, Gill SR, Iobst SE, et al. Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii[J] J Bacteriol. 2008;190(10):3646–3657. doi: 10.1128/JB.00088-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Kreth J, Merritt J, Shi W, et al. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm[J] J Bacteriol. 2005;187(21):7193–7203. doi: 10.1128/JB.187.21.7193-7203.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Ge Y, Caufield PW, Fisch GS, et al. Streptococcus mutans and Streptococcus sanguinis colonization correlated with caries experience in children[J] Caries Res. 2008;42(6):444–448. doi: 10.1159/000159608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Zheng X, Zhang K, Zhou X, et al. Involvement of gshAB in the interspecies competition within oral biofilm[J] J Dent Res. 2013;92(9):819–824. doi: 10.1177/0022034513498598. [DOI] [PubMed] [Google Scholar]
  • 57.Jakubovics NS, Smith AW, Jenkinson HF. Oxidative stress tolerance is manganese Mn2+ regulated in Streptococcus gordonii[J] Microbiology. 2002;148(Pt 10):3255–3263. doi: 10.1099/00221287-148-10-3255. [DOI] [PubMed] [Google Scholar]
  • 58.Tseng HJ, McEwan AG, Paton JC, et al. Virulence of Streptococcus pneumoniae: PsaA mutants are hypersensitive to oxidative stress[J] Infect Immun. 2002;70(3):1635–1639. doi: 10.1128/IAI.70.3.1635-1639.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Ramsey MM, Whiteley M. Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception[J] Proc Natl Acad Sci USA. 2009;106(5):1578–1583. doi: 10.1073/pnas.0809533106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Okahashi N, Okinaga T, Sakurai A, et al. Streptococcus sanguinis induces foam cell formation and cell death of macrophages in association with production of reactive oxygen species[J] FEMS Microbiol Lett. 2011;323(2):164–170. doi: 10.1111/j.1574-6968.2011.02375.x. [DOI] [PubMed] [Google Scholar]
  • 61.Okahashi N, Nakata M, Sumitomo T, et al. Hydrogen peroxide produced by oral streptococci induces macrophage cell death[J] PLoS ONE. 2013;8(5):e62563. doi: 10.1371/journal.pone.0062563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Allaoui A, Botteaux A, Dumont JE, et al. Dual oxidases and hydrogen peroxide in a complex dialogue between host mucosae and bacteria[J] Trends Mol Med. 2009;15(12):571–579. doi: 10.1016/j.molmed.2009.10.003. [DOI] [PubMed] [Google Scholar]
  • 63.Morales DK, Hogan DA. Candida albicans interactions with bacteria in the context of human health and disease[J] PLoS Pathog. 2010;6(4):e1000886. doi: 10.1371/journal.ppat.1000886. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from West China Journal of Stomatology are provided here courtesy of Editorial Department of West China Journal of Stomatology

RESOURCES