Skip to main content
West China Journal of Stomatology logoLink to West China Journal of Stomatology
. 2016 Aug;34(4):433–438. [Article in Chinese] doi: 10.7518/hxkq.2016.04.023

细菌非编码小RNA对细菌毒力的调控作用

Role of small noncoding RNA in the regulation of bacterial virulence

Lu Wang 1, Xin Zheng 1, Shida Wang 2, Jiyao Li 1, Xin Xu 1,
Editor: 吴 爱华
PMCID: PMC7030005  PMID: 28317367

Abstract

在病原菌与宿主长期的交互作用过程中,病原菌可通过调节相关基因的表达响应宿主微环境的变化,以适应宿主内环境并在宿主体内生存。过去认为,细菌的基因表达调控主要发生在转录水平。近年发现,细菌非编码小RNA(sRNA)在调控细菌致病机制方面发挥着重要作用。细菌sRNA是一类长度在50~500个核苷酸之间的非编码RNA,病原菌可感受宿主微环境的变化,通过sRNA调控自身毒力相关基因的表达,促进致病菌在宿主内的生存能力,利于致病菌对宿主的侵袭及致病。相对于各种转录因子,sRNA介导的基因表达调控可使细菌更快速、灵敏地对外界环境变化作出应答。目前已发现多种与细菌毒力及致病性相关的sRNA,可在转录后水平精细调节细菌毒力及其致病机制。本文就sRNA调控细菌毒力的分子机制及其在常见病原菌致病过程中的作用进行综述。

Keywords: 非编码小RNA, 转录后调控, 细菌, 毒力因子


细菌非编码小RNA(small noncoding RNA,sRNA)是一类含有50~500个核苷酸,在基因组中被转录但不编码蛋白质的RNA[1]。在病原菌与宿主长期的交互作用过程中,病原菌可通过感应宿主信号(如温度、pH值、氧含量、渗透性等)调节基因的表达,以适应宿主内环境并在宿主内生存[2]。传统观念认为,原核生物基因表达调控主要发生在转录水平;但近年来研究发现,原核生物与真核生物一样都存在转录后调控机制,而这种调控与sRNA密切相关[3]。目前已在大肠埃希菌、霍乱弧菌、沙眼衣原体、单核细胞增生李斯特菌、铜绿假单胞菌、金黄色葡萄球菌以及产气荚膜梭菌等多种细菌中发现了sRNA[4]。sRNA在调控细菌基因表达方面具有重要作用。相对于转录因子在生物体中对基因的表达调控,sRNA介导的基因表达调控可使细菌对外界环境变化作出更快速的应答。当致病菌进入宿主内感应宿主微环境变化,可通过sRNA调整自身毒力基因的表达,促进致病菌在宿主内的生存能力,利于致病菌对宿主的侵袭及致病[5]。目前已发现多种与细菌的毒力及致病性相关的sRNA,这些sRNA作为细菌毒力调控网络中的重要组成部分,在转录后水平精细调节细菌毒力及其致病机制。本文就sRNA调控细菌毒力的分子机制及其在常见病原菌致病过程中的作用作一概述。

1. sRNA调控细菌毒力的分子机制

细菌sRNA作为一种重要的基因表达调控元件,在转录后层面精密调节相关基因的表达水平,其调控细菌毒力表达的主要分子机制可分为以下3种。

1.1. 碱基互补配对机制

细菌sRNA与靶mRNA碱基互补配对结合,调节靶标mRNA的翻译或影响其稳定性,促进或降低mRNA的降解,这是sRNA发挥调控功能的最主要机制。

1.1.1. 顺式编码的sRNA

顺式编码的sRNA通常是由其所调控靶标基因的互补链转录而来,并且能够与其调控的靶标基因形成完全互补配对。目前顺式编码sRNA在质粒、噬菌体、转座子及染色体中均有发现,可与靶标mRNA完全互补配对调控目标基因的表达,这些基因多为毒力相关的基因[6][7]。例如枯草芽孢杆菌的抗毒素sRNA RatA与txpA mRNA碱基互补配对后,在RNase Ⅲ的协同作用下,介导txpA mRNA降解,进而抑制毒素TxpA的合成[8]。大肠埃希菌抗毒素sRNA RdlD通过与ldrD mRNA碱基互补配对,抑制ldrD mRNA翻译起始或影响其稳定性,在转录后水平调控毒素ldrD的表达[6]

1.1.2. 反式编码的sRNA

反式编码的sRNA通常由细菌染色体中与其所调控靶基因不相邻的基因区转录而来[9],通常对靶基因起负性调控作用,能够与靶标mRNA通过不完全的碱基互补配对方式结合,这种碱基互补配对通常位于mRNA的5′-非翻译区(5′-untranslated regions,5′-UTR),覆盖核糖体的结合位点;或者通过促进RNase介导的降解作用,影响靶标基因的表达[10]。一些sRNA还可与mRNA SD/AUG上游区域互补配对,破坏其二级结构,暴露核糖体结合位点,激活靶标基因的表达[11]。反式编码sRNA在转录后水平上的调控过程通常需要RNA伴侣蛋白Hfq的协助。Hfq促进sRNA与其靶标mRNA互补配对,保护sRNA稳定性,调节靶标基因的翻译或稳定性[12]

1.2. 调控蛋白质活性

sRNA除了通过与靶标mRNA碱基互补配对来调控基因的表达以外,还可通过模仿核酸结构调节蛋白质的活性,影响毒力基因的表达[13]。CsrA(RsmA)蛋白家族作为RNA结合蛋白,可以与靶标mRNA的5′-UTR区域结合,调控靶基因的翻译或其稳定性,在转录后水平调控毒力因子表达。sRNA CsrB和CsrC序列中存在多个CrsA结合位点,能够被CrsA识别并结合,进而与CrsA的靶标mRNA竞争,使CsrA与靶标mRNA解离,抑制CsrA的调控作用,从而调控下游基因的表达。在铜绿假单胞菌中,sRNA RsmY和RsmZ通过同样的方式调控RsmA蛋白的活性[14][15]。大肠埃希菌RNA聚合酶的σ亚基可识别基因启动子区域,启动转录。6S RNA可模拟启动子并与σ亚基结合,从而改变RNA聚合酶的活性,影响转录过程[16]

1.3. 行使管家功能的sRNA

除了上述sRNA之外,还有一种具有管家功能的sRNA,包括转运信使RNA(transfer-messenger RNA,tmRNA)、M1 RNA和4.5S RNA,是细菌行使生物学功能必需的sRNA。tmRNA在蛋白质合成过程中具有质量控制作用,当翻译出现错误时,tmRNA可将滞留的核糖体解脱并介导缺陷蛋白质水解。tmRNA还可以在细菌基因表达以及应对环境压力等方面发挥重要功能[17]。M1 RNA是组成RNaseP的亚单位,RNaseP对细菌转运RNA(transfer RNA,tRNA)前体5′末端进行剪切,促进tRNA成熟。4.5S RNA是信号识别颗粒的组成部分,参与识别核糖体上新生肽的信号序列[18]

2. sRNA在调控细菌致病性中的作用

2.1. 大肠埃希菌

大肠埃希菌是在细菌sRNA研究中使用最多的模式菌,目前已发现多种与其致病调控相关的sRNA。调节蛋白CsrA是Csr系统(碳储存调节系统)的中心组件,能够在碳饥饿、群体感应、糖原合成、乙酸代谢、菌毛合成及细菌毒力调控等多方面发挥作用。目前发现CsrB及CsrC两种sRNA能够在细菌指数生长期拮抗CsrA活性并抑制细菌生长稳定期的多种代谢通路[19]。另一种sRNA—RyhB在大肠埃希菌铁代谢调控中具有重要作用。当铁离子浓度高时,Fe2+-Fur蛋白(铁摄取调节子)可与ryhB基因结合,阻止RyhB转录。当铁离子浓度低时,Fur蛋白与铁离子解离,构象发生改变,不能与ryhB基因结合,失去对ryhB基因的转录阻遏作用,RyhB进而与多种铁结合蛋白mRNA结合,调节细菌对铁的吸收[20]。对致病性大肠埃希菌CFT073的研究表明,RyhB还与细菌定植密切相关。在鼠尿路感染模型中,ryhB缺陷株在膀胱的定植能力显著降低[21]。肠出血性大肠埃希菌是出血性结肠炎和溶血性尿毒综合征的病原菌,其毒力因子主要由LEE毒力岛基因编码而成,包括LEE1-LEE5共5个操纵子。sRNA GlmY和GlmZ能够干扰LEE4以及LEE5的转录,同时促进效应器EspFu的翻译,而EspFu在A/E损伤(肠出血性大肠埃希菌黏附到宿主肠道上皮细胞,与宿主细胞相互作用,介导宿主细胞的黏附与擦拭性损伤即A/E损伤)形成的转录后调控中发挥重要功能。除了上述两种sRNA外,肠出血性大肠埃希菌还有几种独特的sRNA,如Esr41可调节菌毛的表达及细菌活性,AsxR及AgvB分别参与调节血红素加氧酶及氨基酸代谢活性[22]

2.2. 金黄色葡萄球菌

RNAⅢ是金黄色葡萄球菌中发现的第1个与细菌致病毒力调控相关的sRNA。RNAⅢ的长度为514 nt,由14个茎环结构折叠而成,具有双重功能,既可作为mRNA编码δ-溶血素,又能作为调控因子调控多个毒力相关基因的表达。RNAⅢ5′端与呈折叠状态的hla mRNA二级结构结合时,暴露出核糖体结合位点,激活α-溶血素的表达[2],[23][24]。RNAⅢ3′端包含3个冗余的富含C序列的发夹结构,能与靶mRNA的核糖体结合位点的G序列结合,以阻止核糖体就位,并与RNaseⅢ共同作用诱导靶mRNA快速降解。这些靶mRNA包括spa、coa、SA1000及rot mRNA。spa mRNA及coa mRNA分别编码蛋白A及凝固酶。蛋白A是该菌表面的主要黏附素,SA1000 mRNA编码黏附素样蛋白因子,在金黄色葡萄球菌黏附和侵染表皮细胞时发挥重要功能。rot mRNA编码毒素转录抑制物Rot,通过抑制Rot的合成,RNAⅢ可调控下游毒力基因的表达,间接激活许多外毒素的转录。可见RNAⅢ能够在转录后水平与靶mRNA直接结合,抑制细胞表面黏附素的合成;而在转录水平上,通过抑制Rot的合成间接激活外毒素表达[24][26]

2.3. 单核细胞增生李斯特菌

在单核细胞增生李斯特菌中已经发现多种与毒力表达调控相关的sRNA。sRNA LhrA通过与chiA mRNA碱基互补配对,干扰核糖体就位,抑制其转录,在转录后水平负性调控chiA(编码壳质酶)的表达[27]。ChiA是单核细胞增生李斯特菌致病相关的重要毒力因子,可通过抑制宿主的先天免疫应答来提高细菌的毒力[28]。LhrA对ChiA的调控作用依赖于毒力调节因子PrfA和σB的参与。LhrC是该菌中另一个与毒力调控相关的sRNA,可通过与lapB mRNA互补配对负性调控LapB的表达。LapB是一种与细菌致病毒力相关的胞壁蛋白。在血液中,LhrC高表达抑制lapB的表达,可使细菌逃避宿主的免疫系统[29]。研究[30]发现,Rli31、Rli33-1和Rli50 sRNA与单核细胞增生李斯特菌的致病毒力相关,这3株sRNA缺失株在小鼠和昆虫感染模型中的毒力均显著下降。

2.4. 产气荚膜梭菌

产气荚膜梭菌中的sRNA VR-RNA(VirR调节RNA)是VirR/VirS 双组分调节系统的二级RNA调节子,能够调控(正性或负性)多种毒力因子的表达。VirR/VirS-VR调控级联可以正调控多种毒力相关基因,包括plc(编码α-毒素)、colA(编码κ-毒素)、nagL(编码透明质酸酶),nanI及nanJ(编码唾液酸酶);还可以调控多种毒力相关操纵子的表达,对nanE-nanA操纵子有正调控作用,对与荚膜多糖合成相关的操纵子(CPE0474-CPE0490、CPE0491-CPE0497、CPE0500-CPE0502)则呈负性调节[31][32]。VirX是产气荚膜梭菌中第2个与毒力因子调控相关的sRNA,能够调控毒力基因pfoA(编码θ-毒素)、plc及colA的表达[33]

2.5. 铜绿假单胞菌

GacS-GacA-RsmY-Z-RsmA传导通路在调控铜绿假单胞菌的致病毒力方面具有重要作用[23]。GacS-GacA双组分调节系统可正性调节sRNA RsmY和RsmZ的表达。RsmA是一种RNA结合蛋白,sRNA RsmY/RsmZ能够与其结合,解除RsmA与靶标mRNA的结合,促进靶标mRNA的翻译。RsmA作为一种翻译调节蛋白,能够调控多种毒力相关基因的表达,包括与绿脓菌素、氰化氢及PA-IL凝集素合成相关的基因[34][36]。此外,RsmA在铜绿假单胞菌致急性感染向慢性感染转换过程中发挥重要作用。RsmA可上调铜绿假单胞菌Ⅲ型分泌系统和Ⅳ型菌毛的合成及鞭毛的活力,抑制Ⅵ型分泌系统及生物膜的形成能力[14],[37]。氮源调节的sRNA NrsZ能在转录后水平调节rhlA(合成鼠李糖)基因的表达,进而调控铜绿假单胞菌的群集运动,影响其活力[38]

2.6. 沙眼衣原体

沙眼衣原体是一种专性细胞内寄生的原核微生物,具有独特的细胞内二相生活周期,即有感染性而没有代谢活性的原体和只有代谢活性而没有感染性的网状体,这两种形式的相互分化由在分化周期后期表达的组蛋白样蛋白HctA所调控。HctA伴随着网状体向原体分化过程而表达,通过调整DNA拓扑结构或与DNA或RNA结合来抑制转录和翻译过程。sRNA IhtA通过与hctA mRNA结合调控HctA的表达。当沙眼衣原体入侵宿主细胞后,由原体形式分化为网状体形式,IhtA表达上升,HctA蛋白合成水平下降;当由网状体形式向原体分化时,IhtA转录水平下降,而HctA蛋白的表达上升[39][40]

2.7. 化脓性链球菌

化脓性链球菌是一种机会致病菌,可产生多种毒力因子,包括毒素和侵袭性酶等。这些毒力因子可由多种调控机制所调控,其中sRNA有重要作用。在化脓性链球菌中,有3种主要的sRNA参与其毒力因子的调控过程。sRNA Fasx是fasBCAX操纵子的一员,该操纵子编码两种组氨酸链激酶(FasB和FasC)和一种反应调节因子(FasA)。sRNA FasX可在转录后水平下调化脓性链球菌表面的菌毛合成能力,降低其对宿主细胞的黏附能力,同时上调外分泌毒力因子链激酶的表达。在感染过程中,FasX可促进细菌由定植阶段向扩散阶段进展[41][42]。Klenk等[43]研究表明,Fasx能够通过影响细菌黏附、细胞因子基因的转录及释放、宿主细胞的凋亡来调控化脓性链球菌与喉上皮细胞的相互作用。sRNA Pel类似于金黄色葡萄球菌中sRNA RNAⅢ,具有双重功能,既能编码蛋白质,又对多种毒力因子具有调控作用。sRNA Pel能够在转录水平调控基因emm(编码M蛋白)、nga(编码NAD-糖水解酶)和sic(编码链球菌补体系统抑制剂),同时在转录后水平调控基因speB(编码半胱氨酸蛋白酶SpeB)[44]。sRNA RivX能够与调节蛋白RivR协同作用正性调控毒力相关基因的转录,包括基因emm、sic、speB、scpA(C5a肽酶)、fba(纤连蛋白结合蛋白)、scl(胶原蛋白样蛋白)及mga(转录调节因子Mga)。上述基因直接或间接被转录调节因子Mga所激活[45]

3. 口腔细菌中的sRNA

近年来,运用高通量RNA-seq测序技术结合生物信息学预测,在口腔相关致病菌中发现了大量sRNA,但仅有极少数sRNA的功能被阐明。变异链球菌是口腔生物膜中常见的致龋菌,已发现有多个sRNA[46][48],但其在转录后层面调节靶基因的表达机制尚不清楚。Koyanagi等研究[49]发现,反义sRNA在染色体的毒素-抗毒素(toxin-antitoxin,TA)系统中具有重要调节作用。变异链球菌存在由Fst样毒素(Fst-Sm)及顺式编码sRNA(srSm)组成的Ⅰ型TA系统(Fst-Sm/srSm),顺式编码的sRNA可通过与毒素mRNA的核糖体结合位点结合调控毒素的表达。变异链球菌细菌毒素的过表达可被共表达的sRNA抗毒素中和。通过基因工程手段过表达变异链球菌Fst-Sm/srSm系统可减少群落内耐受细胞壁合成抑制剂的细菌数量[49]。在牙龈卟啉单胞菌中也已发现多种sRNA[50][51]。Amarasinghe等[52]在伴放线菌聚集杆菌中发现4种受铁离子及转录因子Fur调控的sRNA,其中sRNA JA03过表达会引起细菌生物膜形成能力的下降。

尽管目前已发现上百种细菌sRNA,但仅有小部分sRNA的生物学功能得以阐释。进一步鉴定细菌sRNA的靶基因,阐明sRNA的激活途径、交互作用网络及其对靶基因的作用模式与机制将有助于全面深入理解细菌sRNA在转录后层面精细调控细菌生理功能的能力。随着高通量实施测序技术的发展,sRNA的调控机制及网络会得以更加深入地研究,有望为细菌毒力控制及细菌相关性感染性疾病的控制提供新的思路与模式。

Funding Statement

[基金项目] 国家自然科学基金(81200782,81371135);四川省科技厅基金(2013HH0009)

Supported by: The National Natural Science Foundation of China (81200782, 81371135); Science and Technology Department Fund of Sichuan Province (2013HH0009).

References

  • 1.Gottesman S, Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations[J] Cold Spring Harb Perspect Biol. 2011;3(12) doi: 10.1101/cshperspect.a003798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Romby P, Vandenesch F, Wagner EG. The role of RNAs in the regulation of virulence-gene expression[J] Curr Opin Microbiol. 2006;9(2):229–236. doi: 10.1016/j.mib.2006.02.005. [DOI] [PubMed] [Google Scholar]
  • 3.Papenfort K, Vogel J. Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level[J] Res Microbiol. 2009;160(4):278–287. doi: 10.1016/j.resmic.2009.03.004. [DOI] [PubMed] [Google Scholar]
  • 4.Papenfort K, Vogel J. Regulatory RNA in bacterial pathogens[J] Cell Host Microbe. 2010;8(1):116–127. doi: 10.1016/j.chom.2010.06.008. [DOI] [PubMed] [Google Scholar]
  • 5.Gripenland J, Netterling S, Loh E, et al. RNAs: regulators of bacterial virulence[J] Nat Rev Microbiol. 2010;8(12):857–866. doi: 10.1038/nrmicro2457. [DOI] [PubMed] [Google Scholar]
  • 6.Brantl S. Regulatory mechanisms employed by cis-encoded antisense RNAs[J] Curr Opin Microbiol. 2007;10(2):102–109. doi: 10.1016/j.mib.2007.03.012. [DOI] [PubMed] [Google Scholar]
  • 7.Thomason MK, Storz G. Bacterial antisense RNAs: how many are there, and what are they doing[J] Annu Rev Genet. 2010;44:167–188. doi: 10.1146/annurev-genet-102209-163523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Durand S, Gilet L, Condon C. The essential function of B. subtilis RNase Ⅲ is to silence foreign toxin genes[J] PLoS Genet. 2012;8(12):e1003181. doi: 10.1371/journal.pgen.1003181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Hoe CH, Raabe CA, Rozhdestvensky TS, et al. Bacterial sRNAs: regulation in stress[J] Int J Med Microbiol. 2013;303(5):217–229. doi: 10.1016/j.ijmm.2013.04.002. [DOI] [PubMed] [Google Scholar]
  • 10.Prevost K, Desnoyers G, Jacques JF, et al. Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage[J] Genes Dev. 2011;25(4):385–396. doi: 10.1101/gad.2001711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Prevost K, Salvail H, Desnoyers G, et al. The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis[J] Mol Microbiol. 2007;64(5):1260–1273. doi: 10.1111/j.1365-2958.2007.05733.x. [DOI] [PubMed] [Google Scholar]
  • 12.Van Assche E, Van Puyvelde S, Vanderleyden J, et al. RNA-binding proteins involved in post-transcriptional regulation in bacteria[J] Front Microbiol. 2015;6:141. doi: 10.3389/fmicb.2015.00141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers[J] Mol Cell. 2011;43(6):880–891. doi: 10.1016/j.molcel.2011.08.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Romeo T, Vakulskas CA, Babitzke P. Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems[J] Environ Microbiol. 2013;15(2):313–324. doi: 10.1111/j.1462-2920.2012.02794.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Vakulskas CA, Potts AH, Babitzke P, et al. Regulation of bacterial virulence by Csr (Rsm) systems[J] Microbiol Mol Biol Rev. 2015;79(2):193–224. doi: 10.1128/MMBR.00052-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Caswell CC, Oglesby-Sherrouse AG, Murphy ER. Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles[J] Front Cell Infect Microbiol. 2014;4:151. doi: 10.3389/fcimb.2014.00151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Himeno H, Kurita D, Muto A. tmRNA-mediated translation as the major ribosome rescue system in a bacterial cell[J] Front Genet. 2014;5:66. doi: 10.3389/fgene.2014.00066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Chen Z, Wang Y, Li Y, et al. Esre: a novel essential non-coding RNA in Escherichia coli[J] FEBS Lett. 2012;586(8):1195–1200. doi: 10.1016/j.febslet.2012.03.010. [DOI] [PubMed] [Google Scholar]
  • 19.Michaux C, Verneuil N, Hartke A, et al. Physiological roles of small RNA molecules[J] Microbiology. 2014;160(Pt 6):1007–1019. doi: 10.1099/mic.0.076208-0. [DOI] [PubMed] [Google Scholar]
  • 20.Porcheron G, Dozois CM. Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity[J] Vet Microbiol. 2015;179(1/2):2–14. doi: 10.1016/j.vetmic.2015.03.024. [DOI] [PubMed] [Google Scholar]
  • 21.Porcheron G, Habib R, Houle S, et al. The small RNA RyhB contributes to siderophore production and virulence of uropathogenic Escherichia coli[J] Infect Immun. 2014;82(12):5056–5068. doi: 10.1128/IAI.02287-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Gruber CC, Sperandio V. Global analysis of posttranscriptional regulation by GlmY and GlmZ in enterohemorrhagic Escherichia coli O157:H7[J] Infect Immun. 2015;83(4):1286–1295. doi: 10.1128/IAI.02918-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Toledo-Arana A, Repoila F, Cossart P. Small noncoding RNAs controlling pathogenesis[J] Curr Opin Microbiol. 2007;10(2):182–188. doi: 10.1016/j.mib.2007.03.004. [DOI] [PubMed] [Google Scholar]
  • 24.Romilly C, Caldelari I, Parmentier D, et al. Current knowledge on regulatory RNAs and their machineries in Staphylococcus aureus[J] RNA Biol. 2012;9(4):402–413. doi: 10.4161/rna.20103. [DOI] [PubMed] [Google Scholar]
  • 25.Tomasini A, Francois P, Howden BP, et al. The importance of regulatory RNAs in Staphylococcus aureus[J] Infect Genet Evol. 2014;21:616–626. doi: 10.1016/j.meegid.2013.11.016. [DOI] [PubMed] [Google Scholar]
  • 26.Chevalier C, Boisset S, Romilly C, et al. Staphylococcus aureus RNAⅢ binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation[J] PLoS Pathog. 2010;6(3):e1000809. doi: 10.1371/journal.ppat.1000809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Nielsen JS, Larsen MH, Lillebaek EM, et al. A small RNA controls expression of the chitinase ChiA in Listeria monocytogenes[J] PLoS One. 2011;6(4):e19019. doi: 10.1371/journal.pone.0019019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Chaudhuri S, Gantner BN, Ye RD, et al. The Listeria monocytogenes ChiA chitinase enhances virulence through suppression of host innate immunity[J] MBio. 2013;4(2):e00617. doi: 10.1128/mBio.00617-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Sievers S, Sternkopf Lillebaek EM, Jacobsen K, et al. A multicopy sRNA of Listeria monocytogenes regulates expression of the virulence adhesin LapB[J] Nucleic Acids Res. 2014;42(14):9383–9398. doi: 10.1093/nar/gku630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Mraheil MA, Billion A, Mohamed W, et al. The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages[J] Nucleic Acids Res. 2011;39(10):4235–4248. doi: 10.1093/nar/gkr033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Ohtani K, Hirakawa H, Tashiro K, et al. Identification of a two-component VirR/VirS regulon in Clostridium perfringens[J] Anaerobe. 2010;16(3):258–264. doi: 10.1016/j.anaerobe.2009.10.003. [DOI] [PubMed] [Google Scholar]
  • 32.Ohtani K, Shimizu T. Regulation of toxin gene expression in Clostridium perfringens[J] Res Microbiol. 2015;166(4):280–289. doi: 10.1016/j.resmic.2014.09.010. [DOI] [PubMed] [Google Scholar]
  • 33.Ohtani K, Bhowmik SK, Hayashi H, et al. Identification of a novel locus that regulates expression of toxin genes in Clostridium perfringens[J] FEMS Microbiol Lett. 2002;209(1):113–118. doi: 10.1111/j.1574-6968.2002.tb11118.x. [DOI] [PubMed] [Google Scholar]
  • 34.Sonnleitner E, Haas D. Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species[J] Appl Microbiol Biotechnol. 2011;91(1):63–79. doi: 10.1007/s00253-011-3332-1. [DOI] [PubMed] [Google Scholar]
  • 35.Brencic A, McFarland KA, McManus HR, et al. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs[J] Mol Microbiol. 2009;73(3):434–445. doi: 10.1111/j.1365-2958.2009.06782.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Heurlier K, Williams F, Heeb S, et al. Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1[J] J Bacteriol. 2004;186(10):2936–2945. doi: 10.1128/JB.186.10.2936-2945.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Mulcahy H, O'Callaghan J, O'Grady EP, et al. Pseudomonas aeruginosa RsmA plays an important role during murine infection by influencing colonization, virulence, persistence, and pulmonary inflammation[J] Infect Immun. 2008;76(2):632–638. doi: 10.1128/IAI.01132-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Wenner N, Maes A, Cotado-Sampayo M, et al. NrsZ: a novel, processed, nitrogen-dependent, small non-coding RNA that regulates Pseudomonas aeruginosa PAO1 virulence[J] Environ Microbiol. 2014;16(4):1053–1068. doi: 10.1111/1462-2920.12272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Grieshaber NA, Sager JB, Dooley CA, et al. Regulation of the Chlamydia trachomatis histone H1-like protein Hc2 is IspE dependent and IhtA independent[J] J Bacteriol. 2006;188(14):5289–5292. doi: 10.1128/JB.00526-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Grieshaber NA, Tattersall JS, Liguori J, et al. Identification of the base-pairing requirements for repression of hctA translation by the small RNA IhtA leads to the discovery of a New mRNA Target in Chlamydia trachomatis[J] PLoS One. 2015;10(3):e0116593. doi: 10.1371/journal.pone.0116593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Danger JL, Cao TN, Cao TH, et al. The small regulatory RNA FasX enhances group A Streptococcus virulence and inhibits pilus expression via serotype-specific targets[J] Mol Microbiol. 2015;96(2):249–262. doi: 10.1111/mmi.12935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Liu Z, Trevino J, Ramirez-Pena E, et al. The small regulatory RNA FasX controls pilus expression and adherence in the human bacterial pathogen group A Streptococcus[J] Mol Microbiol. 2012;86(1):140–154. doi: 10.1111/j.1365-2958.2012.08178.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Klenk M, Koczan D, Guthke R, et al. Global epithelial cell transcriptional responses reveal Streptococcus pyogenes Fas regulator activity association with bacterial aggressiveness[J] Cell Microbiol. 2005;7(9):1237–1250. doi: 10.1111/j.1462-5822.2005.00548.x. [DOI] [PubMed] [Google Scholar]
  • 44.Mangold M, Siller M, Roppenser B, et al. Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule[J] Mol Microbiol. 2004;53(5):1515–1527. doi: 10.1111/j.1365-2958.2004.04222.x. [DOI] [PubMed] [Google Scholar]
  • 45.Roberts SA, Scott JR. RivR and the small RNA RivX: the missing links between the CovR regulatory cascade and the Mga regulon[J] Mol Microbiol. 2007;66(6):1506–1522. doi: 10.1111/j.1365-2958.2007.06015.x. [DOI] [PubMed] [Google Scholar]
  • 46.Lee HJ, Hong SH. Analysis of microRNA-size, small RNAs in Streptococcus mutans by deep sequencing[J] FEMS Microbiol Lett. 2012;326(2):131–136. doi: 10.1111/j.1574-6968.2011.02441.x. [DOI] [PubMed] [Google Scholar]
  • 47.Xia L, Xia W, Li S, et al. Identification and expression of small non-coding RNA, L10-Leader, in different growth phases of Streptococcus mutans[J] Nucleic Acid Ther. 2012;22(3):177–186. doi: 10.1089/nat.2011.0339. [DOI] [PubMed] [Google Scholar]
  • 48.Zeng L, Choi SC, Danko CG, et al. Gene regulation by CcpA and catabolite repression explored by RNA-Seq in Streptococcus mutans[J] PLoS One. 2013;8(3):e60465. doi: 10.1371/journal.pone.0060465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Koyanagi S, Levesque CM. Characterization of a Streptococcus mutans intergenic region containing a small toxic peptide and its cis-encoded antisense small RNA antitoxin[J] PLoS One. 2013;8(1):e54291. doi: 10.1371/journal.pone.0054291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Phillips P, Progulske-Fox A, Grieshaber S, et al. Expression of Porphyromonas gingivalis small RNA in response to hemin availability identified using microarray and RNA-seq analysis[J] FEMS Microbiol Lett. 2014;351(2):202–208. doi: 10.1111/1574-6968.12320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Hirano T, Beck DA, Demuth DR, et al. Deep sequencing of Porphyromonas gingivalis and comparative transcriptome analysis of a LuxS mutant[J] Front Cell Infect Microbiol. 2012;2:79. doi: 10.3389/fcimb.2012.00079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Amarasinghe JJ, Connell TD, Scannapieco FA, et al. Novel iron-regulated and Fur-regulated small regulatory RNAs in Aggregatibacter actinomycetemcomitans[J] Mol Oral Microbiol. 2012;27(5):327–349. doi: 10.1111/j.2041-1014.2012.00645.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from West China Journal of Stomatology are provided here courtesy of Editorial Department of West China Journal of Stomatology

RESOURCES