Skip to main content
West China Journal of Stomatology logoLink to West China Journal of Stomatology
. 2016 Jun;34(3):312–316. [Article in Chinese] doi: 10.7518/hxkq.2016.03.019

BMAL1基因对骨髓间充质干细胞成骨分化的调控作用

BMAL1 gene regulates the osteogenic differentiation of bone marrow mesenchymal stem cells

Xiaoguang Li 1, Xiaolong Guo 1, Bin Guo 1,
Editor: 李 彩1
PMCID: PMC7030835  PMID: 27526460

Abstract

牙周炎是以牙周组织破坏为特征的感染性疾病,作为重要的牙周组织再生种子细胞,骨髓间充质干细胞在重构牙周组织结构和功能、促进牙周病好转乃至愈合方面具有重要作用,因此骨髓间充质干细胞的特性尤其是其成骨分化的相关调控机制是目前研究热点之一。BMAL1基因与骨髓间充质干细胞成骨分化等诸多生理行为的调控关系密切,有望成为牙周疾病新的治疗靶点。本文对BMAL1基因的特性以及调控骨髓间充质干细胞成骨分化的机制作一综述。

Keywords: BMAL1基因, 骨髓间充质干细胞, 成骨分化, 牙周炎


慢性牙周炎已成为最常见的口腔慢性疾病之一,牙周袋形成和牙槽骨吸收是慢性牙周炎的主要临床特征。牙槽骨的慢性丧失与机体成骨能力的退化密切相关,主要来源于骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)成骨向分化的成骨细胞是骨形成的重要细胞学基础,增龄、炎症等因素均可影响BMSCs的分化和增殖能力,使成骨细胞生成数量下降,最终导致骨形成显著减少[1][2],这也是糖尿病加速牙周炎发生发展的机制之一。BMAL1基因是近日节律基因的重要成员,BMAL1基因的活性与诸多基因表达和血糖代谢等生物行为活动的节律性密切相关,更与BMSCs的成骨分化直接相关[3],但是其调控机制尚不明确。因此,探究BMAL1基因调控BMSCs成骨分化的机制,并在此基础上逆向调控,促进BMSCs成骨分化,防止骨组织的退行性改变,促进慢性牙周炎的好转乃至愈合成为研究的热点。本文对BMAL1基因在骨髓间充质干细胞成骨分化过程中可能发挥的调控作用及机制作一综述。

1. BMSCs是牙周组织再生、促进慢性牙周炎愈合的基础

慢性牙周炎是以菌斑为始动因子,牙龈、牙槽骨、牙周膜等牙周组织破坏为特征的慢性炎症性疾病。尽管包括牙周基础治疗在内的牙周序列治疗可以有效地控制菌斑、消除炎症,但是只能延缓牙周组织的吸收破坏,难以修复已缺损的组织;而目前较流行的引导组织再生术,只能部分再生牙周组织,不能实现牙周组织的生理和功能性再生[4]。组织工程技术的出现为牙周组织再生和牙周疾病的治疗提供了新的研究思路,其核心要素是具有多向分化潜能的种子细胞。相较于牙周膜干细胞等牙源性干细胞,BMSCs在牙周组织再生治疗中具有独特的优势。研究[5]发现,BMSCs具有免疫调节功能,可减少炎性因子的产生和定向迁移,还可直接或间接发挥抗菌和保护组织的功能,最近还有研究[6]证实,炎性状态下BMSCs较牙周膜干细胞具有更强的成骨分化能力。因此,BMSCs是牙周组织再生技术中主要的干细胞来源,探索BMSCs成骨分化的调控机制,提高其成骨效率,促进牙槽骨结构和功能重建已成为研究的热点。

2. BMAL1基因是机体生理活动的重要调节因子

生物钟存在于机体大部分组织和细胞内,是调节体内能量平衡和代谢等生理活动的重要因素[7]。节律基因主要包括BMAL1基因、生物钟循环输出蛋白(circadian locomoter output cycle kaput,CLOCK)、周期基因家族(Period,Per,包括Per1、Per2和Per3)、隐花色素家族(Cryptochrome,Cry,包括Cry1和Cry2)、神经PAS结构域蛋白2等,其中BMAL1基因是机体生物钟的核心组件,在视交叉上核和外周组织如长骨、造血干细胞乃至整个骨髓中均有表达,其常与CLOCK基因形成二聚复合体后结合到Per或Cry基因的启动子上对其转录进行调控,而Per或Cry转录翻译后又反馈抑制BMAL1/CLOCK二聚体的形成,从而起到调控生物近日节律的作用[8]。BMAL1基因的节律性表达可以使执行其功能的BMAL1蛋白周期性表达[9],因此受其影响的下游基因也产生节律性表达,从而对体内的一系列生理生化反应产生影响。

机体节律的紊乱,特别是BMAL1基因表达水平的降低会导致肿瘤和代谢综合征的发生[10][11]。例如BMAL1基因与糖尿病的发生发展密切相关。BMAL1基因参与调节胰岛β细胞的节律性分泌[12],BMAL1基因缺失可以导致小鼠的昼夜节律完全丧失,体内血糖水平的节律性振荡发生紊乱甚至消失[13],从而导致糖尿病的发生或恶化。BMAL1基因突变会使小鼠胰岛中与细胞生长、突触囊泡装配相关的基因的转录发生变化,从而使小鼠表现出糖耐量受损、胰岛素分泌减少以及胰岛细胞形态和增殖异常等改变,并且随着年龄的增长,症状逐渐恶化[14]。近年来研究[15]证实,BMAL1-/-小鼠中BMAL1基因的靶基因抗氧化调节因子-核因子NF-E2相关因子(nuclear factor erythroid 2-related factor,Nrf2)表达减弱,胰岛β细胞中活性氧(reactive oxygen species,ROS)和顺向线粒体解偶联大量积累,细胞内氧化平衡被打破,胰岛素分泌减少。也有研究[16]认为,BMAL1-/-鼠中线粒体脱偶联蛋白2(uncoupling proteins,UCP2)增加,导致β细胞线粒体破坏,胰岛素分泌动力不足,从而导致糖尿病的发生。众所周知,糖尿病是慢性牙周炎的全身促进因素,糖尿病性牙周炎患者牙槽骨吸收速度快、病情严重,这可能与糖尿病环境下BMSCs的成骨分化能力受到明显抑制有关。研究[17]显示,糖尿病大鼠BMSCs的增殖和成骨分化能力明显下降。Kim等[18]将患有妊娠期糖尿病的孕妇与健康孕妇比较,发现妊娠期糖尿病患者脐周血BMSCs的活性和成骨分化能力受到明显抑制。这一现象与多种通路和因子有关,例如可能与受损的胰岛素和胰岛素生长因子1通路抑制BMSCs的增殖和成骨分化有关[19],也可能是因为糖尿病环境下细胞内ROS的大量堆积激活PI3K/Akt通路抑制BMSCs成骨分化[20],并且糖尿病患者经胰岛素治疗后可部分恢复BMSCs的成骨分化能力[21]。因此,BMAL1基因是血糖代谢调控和BMSCs成骨分化调控的结合点,而在糖尿病环境下BMAL1基因对BMSCs的增殖和成骨分化的调控机制尚没有明确结论,成为当前糖尿病性牙周炎研究的热点。

3. BMAL1基因是调控骨髓间充质干细胞成骨分化的重要因子

BMAL1基因在BMSCs成骨分化过程中发挥着重要作用。相较于野生型小鼠,BMAL1-/-小鼠过早表现出诸如BMSCs成骨能力下降、牙槽骨缺损等早熟现象,而提高BMAL1-/-小鼠中BMAL1基因的表达水平后,BMSCs的增殖和分化能力会得到一定程度的修复[22]。BMAL1基因可能通过两种方式影响骨的形成,一种方式是影响可分化为成骨细胞的BMSCs的增殖[23],另一种方式是直接作用于骨形成的某个阶段。随着BMSCs老化,其增殖分化能力和细胞中BMAL1基因的表达水平呈现出高度一致的下降趋势,BMSCs增殖和成骨分化能力的下降,最终会导致骨质流失[24][25];而人为抑制BMAL1基因正向调节因子视黄酸相关孤儿受体(retinoid-related orphan receptors,RORs)的活性,会导致牙本质基质蛋白和骨涎蛋白代谢的下降[26]

综上,BMAL1基因作用广泛,常与同家族的CLOCK基因形成复合体发挥作用,与多种细胞因子的代谢密切相关,并可通过多种机制调节BMSCs的成骨分化。

4. BMAL1基因调控BMSCs成骨分化的可能机制

4.1. 通过Wnt信号通路影响BMSCs成骨分化

Wnt通路是调控干细胞增殖和多向分化的关键途径,是目前已知的和BMSCs骨向分化关系最密切的信号通路之一。Wnt信号通路以是否有β连环蛋白(β-catenin)参与而分为经典Wnt信号通路和非经典信号通路。经典Wnt信号通路和非经典信号通路均在BMSCs骨向分化过程中发挥重要作用,并且两者之间还相互影响,例如Wnt3a对BMSCs增殖有促进作用,而Wnt5a可通过非经典途径拮抗Wnt3a的作用[27]。经典Wnt通路在BMSCs成骨分化过程中发挥着重要的作用,可通过上调成骨相关转录因子Runx2、Osterix等促进BMSCs向成骨细胞分化,还可以通过减少脂肪形成转录因子的表达抑制BMSCs的脂向分化[28]。针对非经典信号通路的研究还较少,研究发现非经典信号通路配体Wnt5可下调成脂标志物过氧化物酶体增殖受体的表达,从而促进干细胞由成脂向成骨分化转变[29]

BMAL1基因已被发现与Wnt信号通路的功能以及其成员的表达和代谢密切相关。在BMSCs成骨分化过程中,特别是在成骨诱导7 d后,BMAL1基因与Wnt信号通路发挥高度一致的协同作用[30]。目前针对经典Wnt信号通路的核心因子β-catenin与BMAL1基因的研究较多,但仍处于现象描述阶段,在BMSCs成骨分化过程中BMAL1基因调控β-catenin的可能机制还有待深入研究。Zhang等[31]证实,β-catenin的表达随着年龄增长逐渐下降,与BMAL1基因的变化规律相近。在BMAL1基因转染的细胞中,β-catenin的表达明显增强[32],但是其机制尚未明确,可能与减少β-catenin的降解有关[33][35]。关于BMAL1基因对β-catenin转录促进作用的研究很少,这是因为可能还有其他因素参与了BMAL1基因对β-catenin的表达调控[32],例如RORs在BMAL1基因促进β-catenin转录过程中可能发挥着至关重要的作用[26]。因此尽管已有研究[27]证明,β-catenin是BMAL1基因的靶基因,二者通过启动子上的一段顺式作用元件E-box结合而发挥作用,但在BMSC成骨分化过程中厘清二者相互作用的具体机制是研究的难点。针对BMAL1基因与Wnt通路其他成员(配体和受体)关系的研究还较少,Janich等[36]研究发现,BMAL1-/-鼠中包括Lef1和Wnt10a在内的多种Wnt相关基因的表达呈下降趋势,但是具体机制尚不明确,因此BMAL1基因如何调控Wnt配体或受体的表达需要进一步的研究。

4.2. 影响Runx2表达调控BMSCs成骨分化

Runx2是已知的骨形成过程中不可或缺的转录因子之一,具有引导BMSCs骨向分化、抑制其成软骨和成脂向分化的作用。Runx2敲除鼠可表现出明显的成骨分化异常,反之Runx2的过表达可促进BMSCs的成骨分化。Runx2以及若干下游靶基因在骨组织中呈现出具有昼夜节律性的表达特点,并且在骨生成以及BMSCs成骨分化过程中Runx2和以BMAL1基因为代表的节律基因之间具有密切的相互关系[37]。尽管有研究证实Runx2启动子上有一固定片段5-CACATG-3′是Myc家族的结合位点,且与BMAL1基因结合位点E-box片段(5′-CACGTG-3′)相近,但BMAL1基因是否通过该片段调控RUNX2的表达需要进一步的研究[38]。BMAL1基因除了直接调控Runx2的表达,还可以通过影响转化生长因子β(transforming growth factor β,TGF-β)等多种因子和通路间接调控Runx2的表达[39]。BMAL1基因与Runx2之间的关系还有待更深入的研究。

4.3. 通过p53/p21信号通路途径调控BMSCs成骨分化

牙槽骨增龄性萎缩与BMSCs凋亡和成骨分化能力的下降密切相关。BMSCs衰老和凋亡受到p53/p21信号通路的调控,并且该通路核心因子p53可以通过激活microRNA-34抑制Runx2的转录,从而影响BMSCs的成骨分化[40]。p53的表达受到BMAL1基因的调控,BMAL1基因表达降低会使中枢生物钟-交感神经-外周组织生物钟轴失调[41],而后者起到抑制p53表达的作用,由此可见BMAL1基因可通过影响p53的表达实现对BMSCs成骨分化的调控作用。

BMAL1基因还深度介入炎症免疫的调控,与单核细胞[42]、TGF-β[43]等多种炎症细胞和因子的增殖、表达密切相关,推测BMAL1基因可以通过对后者的调控间接实现对BMSCs成骨分化的影响。

目前对于BMAL1基因如何调控BMSCs成骨分化的研究较少,这可能是因为:1)BMAL1基因与多种生理或病理现象相关,并且参与多种信号通路,与若干因子形成了错综复杂的直接或间接影响BMSCs成骨分化的调控网络,因此厘清BMAL1基因调控BMSCs成骨分化的机制尚有一定的难度;2)BMAL1基因常与同家族的CLOCK基因形成二聚体后才发挥相应效应,这也在一定程度上阻碍了对BMAL1基因功能的认识。

以BMSCs为主要细胞来源的牙周组织再生技术在促进牙槽骨再生、加速牙周疾病的好转乃至愈合等方面发挥着独特的作用[44],为重建牙周组织正常结构创造了可能。BMAL1基因可能参与炎症免疫、血糖代谢和BMSCs成骨分化的调控,通过对BMAL1基因调控BMSCs成骨分化相关机制的研究,将为寻找牙周疾病治疗的新靶点、重建牙周组织的形态和功能提供新的途径。

Funding Statement

[基金项目] 国家自然科学基金(81470754)

Supported by: The National Natural Science Foundation of China (81470754).

References

  • 1.Zhou S, Greenberger JS, Epperly MW, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts[J] Aging Cell. 2008;7(3):335–343. doi: 10.1111/j.1474-9726.2008.00377.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Bouvet-Gerbettaz S, Boukhechba F, Balaguer T, et al. Adaptive immune response inhibits ectopic mature bone formation induced by BMSCs/BCP/plasma composite in immune-competent mice[J] Tissue Eng Part A. 2014;20(21/22):2950–2962. doi: 10.1089/ten.TEA.2013.0633. [DOI] [PubMed] [Google Scholar]
  • 3.Hirai T, Tanaka K, Togari A. β-adrenergic receptor signaling regulates Ptgs2 by driving circadian gene expression in osteoblasts[J] J Cell Sci. 2014;127(Pt 17):3711–3719. doi: 10.1242/jcs.148148. [DOI] [PubMed] [Google Scholar]
  • 4.Karring T, Nyman S, Gottlow J, et al. Development of the biological concept of guided tissue regeneration—animal and human studies[J] Periodontol 2000. 1993;1:26–35. [PubMed] [Google Scholar]
  • 5.Auletta JJ, Deans RJ, Bartholomew AM. Emerging roles for multipotent, bone marrow-derived stromal cells in host defense[J] Blood. 2012;119(8):1801–1809. doi: 10.1182/blood-2011-10-384354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Zhang J, Li ZG, Si YM, et al. The difference on the osteogenic differentiation between periodontal ligament stem cells and bone marrow mesenchymal stem cells under inflammatory microenviroments[J] Differentiation. 2014;88(4/5):97–105. doi: 10.1016/j.diff.2014.10.001. [DOI] [PubMed] [Google Scholar]
  • 7.Panda S, Antoch MP, Miller BH, et al. Coordinated transcription of key pathways in the mouse by the circadian clock[J] Cell. 2002;109(3):307–320. doi: 10.1016/s0092-8674(02)00722-5. [DOI] [PubMed] [Google Scholar]
  • 8.Fu L, Lee CC. The circadian clock: pacemaker and tumour suppressor[J] Nat Rev Cancer. 2003;3(5):350–361. doi: 10.1038/nrc1072. [DOI] [PubMed] [Google Scholar]
  • 9.左 晓虹, 蔡 彦宁, 李 宁, et al. 小鼠纹状体时钟基因表达的生后发育[J] 中华行为医学与脑科学杂志. 2009;18(5):385–387. [Google Scholar]; Zuo XH, Cai YN, Li N, et al. Postnatal ontogenesis of moleular clock genes in mouse striatum[J] Chin J Behav Med Brain Sci. 2009;18(5):385–387. [Google Scholar]
  • 10.Fu L, Pelicano H, Liu J, et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo[J] Cell. 2002;111(1):41–50. doi: 10.1016/s0092-8674(02)00961-3. [DOI] [PubMed] [Google Scholar]
  • 11.Rudic RD, McNamara P, Curtis AM, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis[J] PLoS Biol. 2004;2(11):e377. doi: 10.1371/journal.pbio.0020377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Pulimeno P, Mannic T, Sage D, et al. Autonomous and self-sustained circadian oscillators displayed in human islet cells[J] Diabetologia. 2013;56(3):497–507. doi: 10.1007/s00125-012-2779-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Kennaway DJ, Varcoe TJ, Voultsios A, et al. Global loss of BMAL1 expression alters adipose tissue hormones, gene expression and glucose metabolism[J] PLoS ONE. 2013;8(6):e65255. doi: 10.1371/journal.pone.0065255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Marcheva B, Ramsey KM, Buhr ED, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J] Nature. 2010;466(7306):627–631. doi: 10.1038/nature09253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Lee J, Moulik M, Fang Z, et al. BMAL1 and β-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced β-cell failure in mice[J] Mol Cell Biol. 2013;33(11):2327–2338. doi: 10.1128/MCB.01421-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Lee J, Kim MS, Li R, et al. Loss of BMAL1 leads to uncoupling and impaired glucose-stimulated insulin secretion in β-cells[J] Islets. 2011;3(6):381–388. doi: 10.4161/isl.3.6.18157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Jin P, Zhang X, Wu Y, et al. Streptozotocin-induced diabetic rat-derived bone marrow mesenchymal stem cells have impaired abilities in proliferation, paracrine, antiapoptosis, and myogenic differentiation[J] Transplant Proc. 2010;42(7):2745–2752. doi: 10.1016/j.transproceed.2010.05.145. [DOI] [PubMed] [Google Scholar]
  • 18.Kim J, Piao Y, Pak YK, et al. Umbilical cord mesenchymal stromal cells affected by gestational diabetes mellitus display premature aging and mitochondrial dysfunction[J] Stem Cells Dev. 2015;24(5):575–586. doi: 10.1089/scd.2014.0349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Zhao YF, Zeng DL, Xia LG, et al. Osteogenic potential of bone marrow stromal cells derived from streptozotocin-induced diabetic rats[J] Int J Mol Med. 2013;31(3):614–620. doi: 10.3892/ijmm.2013.1227. [DOI] [PubMed] [Google Scholar]
  • 20.Zhang Y, Yang JH. Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts[J] J Cell Biochem. 2013;114(11):2595–2602. doi: 10.1002/jcb.24607. [DOI] [PubMed] [Google Scholar]
  • 21.Gopalakrishnan V, Vignesh RC, Arunakaran J, et al. Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages[J] Biochem Cell Biol. 2006;84(1):93–101. doi: 10.1139/o05-163. [DOI] [PubMed] [Google Scholar]
  • 22.Kondratov RV, Kondratova AA, Gorbacheva VY, et al. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock[J] Genes Dev. 2006;20(14):1868–1873. doi: 10.1101/gad.1432206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Moerman EJ, Teng K, Lipschitz DA, et al. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways[J] Aging Cell. 2004;3(6):379–389. doi: 10.1111/j.1474-9728.2004.00127.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Tokalov SV, Grüner S, Schindler S, et al. Age-related changes in the frequency of mesenchymal stem cells in the bone marrow of rats[J] Stem Cells Dev. 2007;16(3):439–446. doi: 10.1089/scd.2006.0078. [DOI] [PubMed] [Google Scholar]
  • 25.Chen Y, Xu X, Tan Z, et al. Age-related BMAL1 change affects mouse bone marrow stromal cell proliferation and osteo-differentiation potential[J] Arch Med Sci. 2012;8(1):30–38. doi: 10.5114/aoms.2012.27277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Miyamoto S, Cooper L, Watanabe K, et al. Role of retinoic acid-related orphan receptor-alpha in differentiation of human mesenchymal stem cells along with osteoblastic lineage[J] Pathobiology. 2010;77(1):28–37. doi: 10.1159/000272952. [DOI] [PubMed] [Google Scholar]
  • 27.Ishitani T, Kishida S, Hyodo-Miura J, et al. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca2+ pathway to antagonize Wnt/beta-catenin signaling[J] Mol Cell Biol. 2003;23(1):131–139. doi: 10.1128/MCB.23.1.131-139.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Sethi JK, Vidal-Puig A. Wnt signalling and the control of cellular metabolism[J] Biochem J. 2010;427(1):1–17. doi: 10.1042/BJ20091866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Santos A, Bakker AD, de Blieck-Hogervorst JM, et al. WNT-5A induces osteogenic differentiation of human adipose stem cells via rho-associated kinase ROCK[J] Cytotherapy. 2010;12(7):924–932. doi: 10.3109/14653241003774011. [DOI] [PubMed] [Google Scholar]
  • 30.He Y, Chen Y, Zhao Q, et al. Roles of brain and muscle ARNT-like 1 and Wnt antagonist Dkk1 during osteogenesis of bone marrow stromal cells[J] Cell Prolif. 2013;46(6):644–653. doi: 10.1111/cpr.12075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Zhang H, Lu W, Zhao Y, et al. Adipocytes derived from human bone marrow mesenchymal stem cells exert inhibitory effects on osteoblastogenesis[J] Curr Mol Med. 2011;11(6):489–502. doi: 10.2174/156652411796268704. [DOI] [PubMed] [Google Scholar]
  • 32.Lin F, Chen Y, Li X, et al. Over-expression of circadian clock gene BMAL1 affects proliferation and the canonical Wnt pathway in NIH-3T3 cells[J] Cell Biochem Funct. 2013;31(2):166–172. doi: 10.1002/cbf.2871. [DOI] [PubMed] [Google Scholar]
  • 33.Sahar S, Zocchi L, Kinoshita C, et al. Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation[J] PLoS ONE. 2010;5(1):e8561. doi: 10.1371/journal.pone.0008561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Inestrosa NC, Varela-Nallar L, Grabowski CP, et al. Synaptotoxicity in Alzheimer's disease: the Wnt signaling pathway as a molecular target[J] IUBMB Life. 2007;59(4/5):316–321. doi: 10.1080/15216540701242490. [DOI] [PubMed] [Google Scholar]
  • 35.Coyle JT. What can a clock mutation in mice tell us about bipolar disorder[J] Proc Natl Acad Sci USA. 2007;104(15):6097–6098. doi: 10.1073/pnas.0701491104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Janich P, Pascual G, Merlos-Suárez A, et al. The circadian molecular clock creates epidermal stem cell heterogeneity[J] Nature. 2011;480(7376):209–214. doi: 10.1038/nature10649. [DOI] [PubMed] [Google Scholar]
  • 37.Karsenty G. Transcriptional control of skeletogenesis[J] Annu Rev Genomics Hum Genet. 2008;9:183–196. doi: 10.1146/annurev.genom.9.081307.164437. [DOI] [PubMed] [Google Scholar]
  • 38.Stock M, Otto F. Control of RUNX2 isoform expression: the role of promoters and enhancers[J] J Cell Biochem. 2005;95(3):506–517. doi: 10.1002/jcb.20471. [DOI] [PubMed] [Google Scholar]
  • 39.Fei C, Zhao Y, Guo J, et al. Senescence of bone marrow mesenchymal stromal cells is accompanied by activation of p53/p21 pathway in myelodysplastic syndromes[J] Eur J Haematol. 2014;93(6):476–486. doi: 10.1111/ejh.12385. [DOI] [PubMed] [Google Scholar]
  • 40.He Y, de Castro LF, Shin MH, et al. p53 loss increases the osteogenic differentiation of bone marrow stromal cells[J] Stem Cells. 2015;33(4):1304–1319. doi: 10.1002/stem.1925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Lee S, Donehower LA, Herron AJ, et al. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice[J] PLoS ONE. 2010;5(6):e10995. doi: 10.1371/journal.pone.0010995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Nguyen KD, Fentress SJ, Qiu Y, et al. Circadian gene BMAL1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes[J] Science. 2013;341(6153):1483–1488. doi: 10.1126/science.1240636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Sato F, Sato H, Jin D, et al. Smad3 and Snail show circadian expression in human gingival fibroblasts, human mesenchymal stem cell, and in mouse liver[J] Biochem Biophys Res Commun. 2012;419(2):441–446. doi: 10.1016/j.bbrc.2012.02.076. [DOI] [PubMed] [Google Scholar]
  • 44.Zhang L, Wang P, Mei S, et al. In vivo alveolar bone regeneration by bone marrow stem cells/fibrin glue composition[J] Arch Oral Biol. 2012;57(3):238–244. doi: 10.1016/j.archoralbio.2011.08.025. [DOI] [PubMed] [Google Scholar]

Articles from West China Journal of Stomatology are provided here courtesy of Editorial Department of West China Journal of Stomatology

RESOURCES