Skip to main content
PLOS One logoLink to PLOS One
. 2020 Feb 24;15(2):e0229363. doi: 10.1371/journal.pone.0229363

Identifying post-marital residence patterns in prehistory: A phylogenetic comparative analysis of dwelling size

Václav Hrnčíř 1,2,*,#, Pavel Duda 3,#, Gabriel Šaffa 3, Petr Květina 2, Jan Zrzavý 3
Editor: Peter F Biehl4
PMCID: PMC7039508  PMID: 32092129

Abstract

Post-marital residence patterns are an important aspect of human social organization. However, identifying such patterns in prehistoric societies is challenging since they leave almost no direct traces in archaeological records. Cross-cultural researchers have attempted to identify correlates of post-marital residence through the statistical analysis of ethnographic data. Several studies have demonstrated that, in agricultural societies, large dwellings (over ca. 65 m2) are associated with matrilocality (spouse resides with or near the wife’s family), whereas smaller dwellings are associated with patrilocality (spouse resides with or near the husband’s family). In the present study, we tested the association between post-marital residence and dwelling size (average house floor area) using phylogenetic comparative methods and a global sample of 86 pre-industrial societies, 22 of which were matrilocal. Our analysis included the presence of agriculture, sedentism, and durability of house construction material as additional explanatory variables. The results confirm a strong association between matrilocality and dwelling size, although very large dwellings (over ca. 200 m2) were found to be associated with all types of post-marital residence. The best model combined dwelling size, post-marital residence pattern, and sedentism, the latter being the single best predictor of house size. The effect of agriculture on dwelling size becomes insignificant once the fixity of settlement is taken into account. Our results indicate that post-marital residence and house size evolve in a correlated fashion, namely that matrilocality is a predictable response to an increase in dwelling size. As such, we suggest that reliable inferences about the social organization of prehistoric societies can be made from archaeological records.

Introduction

Post-marital residence rules specify where a person resides after marriage and, accordingly, influence social organization of human societies. In modern wage-based economies, most newlyweds tend to establish a new household separate from their respective families (neolocal residence). However, in traditional societies couples typically live with or near one’s parents [1]. About 71% of all societies listed in the Ethnographic Atlas [2] are predominantly patrilocal, while 11% are matrilocal. Ambilocality, multilocality, avunculocality, and neolocality are less frequent, together accounting for the remaining 18% of societies [3]. However, the same distribution does not apply to hunter-gatherer societies, which have a more flexible social organization, being most frequently ambi-/multilocal [4]. The decision regarding who will leave home after marriage and who will stay with their own kin affects many important aspects of social organization [1], including descent systems and kinship terminology [5], wealth inheritance rules [6], modes of marriage [3], community size [7], division of labor [8], migration [9], and warfare [10, 11]. Murdock argued that “when any social system undergoes change, such change regularly begins with a modification in the rule of residence” [5, p. 221]. This notion that a change of post-marital residence rule drives change in other aspects of social organization, not vice versa, has become known as “Main Sequence Theory”.

Exact definitions of post-marital residence patterns vary considerably [12]. Some scholars use “patrilocality” as a general term for residence with or near the husband’s family [e.g. ref. 1, 13], while others [e.g. ref. 14, 15] distinguish between “patrilocality” (residing in the husband’s father’s household) and “virilocality” (residing with the husband’s kin in a more general sense). The same applies to “matrilocality” and “uxorilocality”, referring to residence with or near the wife’s kin. “Ambilocality” refers to residence with or near the kin of either spouse, while “multilocality” refers to the situation where couples move between the households of both sets of parents. “Avunculocality” can be considered a special case of virilocality, when a couple lives with the husband’s maternal uncle. In this study, we use “patrilocality” for both patri- and virilocality and “matrilocality” for both matri- and uxorilocality, since they cannot be distinguished in prehistoric patterns by the currently available methods.

Scholars have employed various methods of identifying post-marital residence patterns in prehistoric societies from archaeological records. Primarily, they have focused on skeletal morphology, since inferring any kind of social organization from the variability or spatial distribution of material culture can be misleading [16, 17]. Traditionally, bioarchaeologists examined morphological variation in skeletal and dental traits to identify differences between males and females [for an extensive review of this approach see ref. 14]. According to the theory, the sex with the greater within-group morphological variability is assumed to be the more mobile one. For instance, greater female variability corresponds to greater female migration and thus could indicate patrilocality.

With more recent advances in scientific methods, the focus of bioarchaeologists has moved to isotopic and ancient DNA analyses. For example, researchers using strontium isotope analysis of human tooth enamel [18] found significantly more variance in the distribution of 87Sr/86Sr signatures among females than among males in early Neolithic Central Europe (5500–5000 BC), indicating patrilocality during this historical period [19]. The same residence pattern has also been proposed for the late Neolithic (2700–2400 BC) communities in Eulau [20], Bergrheinfeld and Lauda-Königshofen [21], and Early Bronze Age (2150–1700 BC) Lech River valley [22], all in Germany, where females fall outside the local strontium range, indicating that their place of birth (and childhood) was elsewhere. Similarly, but in the opposite direction, isotopic evidence suggests a possible transition to matrilocality during the second millennium BC in Thailand [23, 24]. Sex-biased mobility differences can also be inferred from ancient DNA sequences (specifically mtDNA and Y-chromosomal haplotypes). Patrilocal societies should have relatively lower Y-chromosomal diversity and larger mtDNA diversity within a population, while the opposite pattern is expected for matrilocal societies. This has been demonstrated in present-day patrilocal and matrilocal groups in northern Thailand [25] and also applied in archaeology, e.g. for suggesting that Neanderthals in Iberia (ca. 49,000 BP) were patrilocal [26], or that the prehistoric North American Hopewell community (100 BC to AD 400) was matrilocal [27]. However, more recent studies have shown that the association between DNA diversity and post-marital residence pattern is much less straightforward and not universal [2831]. Other attempts to infer past social organization are based on population genetic analyses. For example, an abrupt reduction in Y-chromosomal diversity (compared to mtDNA) inferred across several Old World populations around 8,000–4,000 BP [32], has been interpreted as evidence of predominant patrilineality and patrilocality during this period [33].

Anthropologists have applied phylogenetic comparative methods, adopted from evolutionary biology [34, 35], to reconstruct the evolution of cultural traits. Using language trees as a proxy for historical relationships between populations, the evolution of post-marital residence rules has been reconstructed in Austronesian [13, 36], Bantu [37], Indo-European [15, 36], and Tupi [38] language families. The results of these studies suggest that early Austronesians were matrilocal and matrilineal, the first Bantu were patrilocal and patrilineal, early Indo-Europeans practiced patrilocality and/or neolocality, and Tupi ancestors were matrilocal. Recently, Moravec et al. [39] modelled transitions in post-marital residence rules in five language families (Austronesian, Bantu, Indo-European, Pama-Nyungan, and Uto-Aztecan) and found that there is no universal pattern of evolution for post-marital residence rules, although patrilocality seems to be the most common state across space and time. Apart from reconstructing the history of various cultural practices, the phylogenetic comparative approach is useful for studying associations between cultural traits, while controlling for phylogeny. For example, Jordan [40] demonstrated that in Austronesian societies, changes in post-marital residence preceded changes in descent systems, whereas Opie et al. [37] found that in Bantu societies, a change in descent system was always followed by a shift away from the ancestral post-marital residence state. Surowiec et al. [41] found, using a worldwide sample of societies, that matrilineal descent emerges first, followed by a shift towards matrilocality, more often than vice versa, challenging Murdock’s [5] Main Sequence Theory. Walker et al. [42] demonstrated that the prevalent belief in partible paternity is associated with matrilocal residence in Carib, Macro-Je, Pano, and Tupi language families.

Cross-cultural researchers have attempted to identify correlates of post-marital residence patterns through statistical analysis of ethnographic data [43]. The association between average house floor area (AHFA) and post-marital residence (PMR) was first demonstrated by Ember [44]. In his seminal paper, he showed, using two cross-cultural samples, that AHFA in matrilocal societies is usually more than 51–56 m2, while the majority of patrilocal societies have smaller houses. (Note that we use “house” and “dwelling” interchangeably in this paper, both terms referring to residential building). Subsequent studies by Divale [45] and Brown [46] confirmed his findings. According to Divale [45], any archaeological site that had an AHFA less than 42.7 m2 could be inferred to have had patrilocal residence with 95% confidence. Conversely, an AHFA larger than 79.2 m2 indicates a matrilocal residence. Brown [46] did not suggest any cut-off value; nevertheless, his test confirmed the correlation. Mean AHFA values in his sample were 27.4 m2 for patrilocal societies and 78.4 m2 for matrilocal ones. Two decades later, Porčić [47] tested these findings. He combined all data from the previous studies into a larger sample of 80 societies and added a new variable into the analysis: the mode of subsistence. His results confirmed the association between AHFA and PMR, but the mode of subsistence had a significant effect on the correlation. The AHFA-PMR association was only significant in agricultural societies, improving the prediction rate by almost 25%, but not in foraging or pastoral societies. This finding was positively received by archaeologists, as dwelling size is usually easy to determine, and has been applied to various archaeological contexts, e.g. to historical northern Iroquoian groups (AD 500–1300; [48]), Chaco Canyon region (AD 900–1150; [4952]), Hohokam culture (AD 0–1450; [53, 54]) and Neolithic Greece (6600/6500–3300 BC; [55]).

In order to explain his findings, Ember [44] argued that matrilocal societies tended to have larger houses because married sisters find it easier to live together than non-sisters and thus these societies tend to form larger households. In Divale’s [45] opinion, larger matrilocal households enhance trust and cooperation between unrelated brothers-in-law who did not know each other before marrying into the community. In this respect, large matrilocal households serve a similar function as men’s houses, where men from different families eat, work and sleep together. According to Porčić [47], the absence of agriculture generally implies more mobile subsistence strategies such as foraging or pastoralism. People in mobile societies tend to spend less time and energy building houses and thus have smaller dwellings made of lighter materials, regardless of their post-marital residence rules.

However, these studies suffer from several methodological issues. First, they only considered two types of PMR: matrilocal and patrilocal. Neolocality was excluded from Ember’s original study because he found that it correlated with the presence of monetary exchange and markets [56]. Ambilocality and multilocality were also not considered because another cross-cultural study [57] found them to be associated with recent depopulation. Avunculocality was omitted simply because it is rare, present in less than five percent of world cultures [44].

Second, previous studies did not control for the non-independence of societies due to common ancestry. As Galton pointed out in the 19th century [see the discussion in ref. 58], societies cannot be treated as statistically independent. Similar cultural traits can reflect convergent adaptations to similar socio-ecological pressures as well as common ancestry. This realization later became known as “Galton’s problem”. Anthropologists have attempted to minimize Galton’s problem by using subsets of distantly related societies that were assumed to be effectively independent, such as the Standard Cross-Cultural Sample [59]. However, failure to take relatedness into account leads to elevated Type I and Type II error rates, even in the datasets designed for the purpose of mitigating Galton’s problem [60, 61]. Common ancestry can be accounted for with a use of phylogeny, which captures the expected covariance among societies. It allows not only to test for a correlation between AHFA and PMR while controlling for non-independence, but also to detect independent (convergent) changes in AHFA in response to changes in PMR or other aspects of social organization. Using phylogenetic comparative methods, we can determine whether large houses are a predictable response to matrilocality and whether AHFA can inform us about the social organization of prehistoric societies.

Moreover, except the presence of agriculture in Porčić’s study [47], other aspects that could impact AHFA were not considered. Although Porčić also assumed that house construction material and settlement patterns can significantly affect the house size, he did not include these variables into his analyses. Household wealth is another factor which is positively correlated with house size in many societies [for references see 62, S1 File]), indicating that large dwelling does not always mean more household members. Apart from residential and symbolic functions, exceptionally large dwellings could also serve other purposes, such as storage, meeting, defensive or ritual. The appearance and size of dwellings could be significantly influenced also by sociopolitical settings and colonialism. Some types of building materials and technologies could have made it possible to build larger houses, while intercultural contact could have led to change of architectural style.

In the present study, we re-examine the association between the AHFA and PMR using a different sample of societies, revised AHFA values, and a finer continuous variable that captures all types of PMR. Our analysis includes additional explanatory variables, specifically the presence of agriculture, fixity of settlement, and house construction material, while controlling for non-independence using a time-calibrated phylogenetic supertree of human populations based on genetic and linguistic data [63, 64].

Methods

Study variables

The AHFA data for 80 societies were taken from Porčić’s study [47], which were collected from three previous studies [4446]. We added 22 new populations for which the AHFA was reported by Brown [46] but not included in previous analyses because they were not (strictly) patrilocal or matrilocal (see S1 File). Where possible, we checked the data against their original sources (see S1 File). AHFA values were log-transformed to ensure a normal-like distribution of the data.

Data on post-marital residence rules, the presence of agriculture, fixity of settlement, and construction material were obtained from the open-access Database of Places, Language, Culture, and Environment (D-PLACE; [65]). All study variables are described in Table 1 (see also Table A in S1 File). The variable “Marital residence with kin: prevailing pattern [EA012]” was chosen as a proxy for post-marital residence because the same variable in the Ethnographic Atlas [2] was used in previous studies and it is more finely-resolved than the similar variable “Transfer of residence at marriage: prevailing pattern [EA011]”. Original categories were reduced to a five-point scale, which captures a tendency towards matrilocality.

Table 1. Description of study variables.

Name Original source Original scale Transformation
AHFA (ord) Ref. [47] or primary sources in S1 File Continuous measure between 0 and ∞ Log-transformed to ensure a normal-like distribution of the data
AHFA (bin) "As above" "As above" Dichotomized into small (< 65 m2) and large (> 65 m2)
PMR (ord) D-PLACE–Marital residence with kin: prevailing pattern [EA012] 1 = Avunculocal Reduced to five-state continuous trait indicating tendency towards matrilocality: 0 = 1, 4, 8, 10 on original scale
1 = 12
2 = 2, 3, 6, 7
3 = 11
4 = 5, 9
2 = Ambilocal
3 = Avuncu-uxorilocal
4 = Avuncu-virilocal
5 = Matrilocal
6 = Neolocal
7 = Separate
8 = Patrilocal
9 = Uxorilocal
10 = Virilocal
11 = Ambi-uxo
12 = Ambi-viri
PMR (bin) "As above" "As above" Dichotomized into non-matrilocal (1–4, 6–8, 10, 12 on original scale) and matrilocal (5, 9, 11)
Agriculture D-PLACE–Agriculture: intensity [EA028] 1 = No agriculture Dichotomized into agriculture not important (1–2 on original scale) and agriculture important (3–6)
2 = Casual agriculture
3 = Extensive or shifting agriculture
4 = Horticulture
5 = Intensive agriculture
6 = Intensive irrigated agriculture
Settlement D-PLACE–Settlement patterns [EA030] 1 = Nomadic bands Dichotomized into mobile (1–2 on original scale) and sedentary (3–8)
2 = Seminomadic communities
3 = Semisedentary communities
4 = Impermanent settlement
5 = Dispersed homesteads
6 = Hamlets
7 = Villages/towns
8 = Complex settlements
Material D-PLACE–House construction: wall material [EA081] or House construction: roofing materials [EA083]a 1 = Stone, stucco or brick Dichotomized into impermanent material (2,4,5,6,7,8,10 on original scale and 10 from variable EA083) and durable material (1,3,9 and 9 from variable EA083)
2 = Plaster, clay or similar
3 = Wood or bamboo
4 = Bark
5 = Hides or skins
6 = Fabric
7 = Mats
8 = Grass
9 = Adobe, clay or brick
10 = Open walls
9[EA083] = Earth or turf
10[EA083] = Ice or snow

aPopulations with a character state 11 = "walls indistinguishable from roof or merging into the latter" in variable [EA081] were scored based on variable [EA083].

Three additional explanatory variables were dichotomized: agriculture into “agriculture not important” and “agriculture important” according to Porčić [47]; settlement into “mobile” and “sedentary” indicating fixity of settlement; and material into “impermanent” and “durable” indicating durability of wall material of the prevailing type of dwelling.

AHFA and PMR were additionally dichotomized in order to test for correlated evolution (see Phylogenetic comparative analysis). AHFA was coded as “small” and “large”, with a cut-off value of 65 m2 as per Porčić [47]; PMR was coded as “non-matrilocal” and “matrilocal”.

Phylogenetic comparative analysis

To apply phylogenetic methods to our global sample of societies, we leveraged a time-calibrated supertree of human populations [63, 64]. This supertree (i.e. a tree of trees) was based on 388 genetic and linguistic phylogenies published between 1990 and 2017, and time-calibrated using 265 node-age constraints derived from genetic, linguistic, archaeological, historical, and epigraphic data. A subset tree of 86 populations (from a total of 102; the others were not included in the phylogeny) for which AHFA values were available was used as a phylogenetic control (Fig 1, Table A in S1 File). We measured phylogenetic signal of individual continuous and binary traits using Pagel’s λ [66] and Fritz and Purvis’s D [67], respectively. The λ values for each multistate trait were estimated using the phylosig function in the R package phytools [68]. D values for each trait in our sample were estimated using the phylo.d function in the R package caper [69]. The maximum likelihood (ML) reconstruction of ancestral states was performed using the fastAnc function and the resulting estimates were plotted using the contMap function in the R package phytools [68].

Fig 1. World map showing the distribution of the 86 sample societies.

Fig 1

Dot size corresponds to the average house floor area (AHFA); colors indicate the post-marital residence (PMR) pattern.

We modelled a probability that AHFA is a linear function of the explanatory variables, using phylogenetic generalized least squares (PGLS) regression as implemented in the pgls function of the R package caper [69], while simultaneously controlling for phylogenetic signal (as measured by the ML estimate of λ) in the residuals of each model. We assessed the explained variance by the model with an adjusted coefficient of determination (R2) and based our model selection on the Akaike information criterion (AIC).

We tested for correlated evolution between dichotomized (binary) versions of AHFA and PMR using Pagel’s [70] test for correlated evolution as implemented in the fitPagel function of the R package phytools [68]. Pagel’s method assumes a correlation between two binary traits when the dependent, eight-parameter model, in which the probability of change in one trait depends on the state of the other trait, fits the data better that the independent, four-parameter model, in which evolution in each character is independent of the state of the other character. A goodness-of-fit test based on a likelihood ratio was used to compare log likelihoods of the two models.

Results

All independent variables showed a relatively low but non-random phylogenetic signal (Table 2). The dependent variable AHFA displayed an effectively random phylogenetic structure (λ = 0.103, p = 0.269).

Table 2. Phylogenetic signal of study variables.

Variable Phylogenetic signal p-value
AHFA (ord) λ = 0.103 0.269
PMR (ord) λ = 0.139 0.031*
Agriculture D = 0.383 < 0.001*
Settlement D = 0.732 0.037*
Material D = 0.767 0.037*

Pagel’s λ for continuous variables (λ values are between 0 and 1, where 0 indicates no phylogenetic signal) and Fritz and Purvis’s D for binary variables (D values are also between 0 and 1, but with 1 indicating no phylogenetic signal.); p ≤ 0.05 indicates that we can reject the “random distribution” hypothesis.

The ML reconstruction of ancestral states (Fig 2) indicates that the last common ancestor of sample societies had very small houses (11.7 m2) and was patrilocal (point estimate 0.3 on a scale from 0 to 5). There is a general tendency towards an increase in AHFA. Dwelling size has decreased in only a few lineages (e.g. aboriginal Australians, populations of Patagonia and Tierra del Fuego, and Maori people in New Zealand; Fig 2A). The reconstruction indicates multiple independent increases in AHFA in societies that shifted towards a more flexible (ambi-/neolocal) post-marital residence pattern and towards matrilocality in North and South America and in East Asia (Fig 2B).

Fig 2.

Fig 2

The evolution of (A) AHFA and (B) PMR across the phylogeny. Colors of internal branches correspond to the inferred ancestral state based on maximum likelihood reconstruction of ancestral states in the R package phytools.

AHFA and PMR are significantly positively associated according to the PGLS analysis (Fig 3A, Table 3). The same result is obtained when a binary version of PMR is used, which is more comparable to the previous study by Porčić [47]; however, both p and adjusted R2 values are lower. The five-state continuous trait explains about 10% of the total variance in AHFA. AHFA also shows a positive association with agriculture, but only when the binary version of the trait is used (Table 3). The association between AHFA and agriculture loses significance once fixity of settlement is taken into account. The settlement is the single best predictor of AHFA (Fig 3B, Table 3), explaining about 16% of the total variance. The single best model (with highest R2 and lowest AIC) is the one that combines AHFA and PMR with settlement (Table 3). Construction material is not significantly associated with AHFA.

Fig 3.

Fig 3

The association between (A) AHFA and PMR and (B) AHFA and settlement. The color coding for PMR states corresponds to Fig 1.

Table 3. Model comparison for AHFA.

Models include different explanatory variables, differently coded variables, different combination of variables, and phylogenetic control.

Model p-value (F-statistic) Adjusted R2 AIC
AHFA~PMR (ord) 0.002* 0.097 275.8615
AHFA~PMR (bin) 0.004* 0.086 276.9319
AHFA~Agriculture (bin) 0.003* 0.085 275.8165
AHFA~Agriculture (ord) 0.328 0.000 283.4568
AHFA~Settlement < 0.001* 0.163 268.1564
AHFA~Material 0.091 0.022 281.5124
AHFA~PMR (ord) + Settlement < 0.001* 0.235 261.7224
AHFA~PMR (ord) + Settlement + Agriculture (bin) < 0.001* 0.235 263.4807
AHFA~PMR (ord) + Settlement + Material < 0.001* 0.239 263.0849
AHFA~PMR (ord) + Agriculture (bin) + Settlement + Material < 0.001* 0.231 264.8841

The test for correlated evolution indicates that AHFA and PMR are indeed correlated on phylogeny (p < 0.001). The model with PMR as a dependent variable provides the best fit to the data (Fig 4, S1 Table), indicating that the change in house size precedes the change in residence. The combination of small house and patrilocal residence is both the ancestral state and evolutionarily the most stable state. The combination of large houses and patrilocal residence as well as small houses with matrilocal residence are evolutionarily unstable, resulting in a change of house size or a change of post-marital residence rule. It is rare for a matrilocal society with large houses to transition directly to patrilocality; decreases of house size are more common in matrilocal societies and these are generally followed by the transition to patrilocal residence (Fig 4).

Fig 4. Transition rate matrix for the correlated evolution between AHFA (dependent variable) and PMR.

Fig 4

Widths of arrows are proportional to rates of change.

Discussion

Cross-cultural association between matrilocality and house size

Post-marital residence is not an isolated aspect of human social organization but is closely tied to other social structures. Societies with larger houses tend to be matrilocal (although very large dwellings can be associated with any type of residence pattern). The association remains significant even when the historical relatedness of sampled societies is controlled for and multiple explanatory variables are included in the model.

In contrast to previous studies [4447], we applied phylogenetic comparative methods. The previous sample compiled by Porčić [47] was geographically imbalanced, consisting mainly of closely related American societies that shared a common ancestor no more than 16,000 years ago [71]. Our results confirm that these societies are indeed not statistically independent. In our study, all variables except AHFA showed a non-random (although relatively low) phylogenetic signal.

In our sample, although AHFA had a globally random phylogenetic structure, a detailed view at the local level showed that closely related populations often built similar dwellings. For example, there were several regional architectonic traditions of large houses in North America. Longhouses were typical for Iroquoian cultural groups [72], circular earth-covered lodges were known from tribes of the Plains [73], and hardwood plankhouses could be found among hunter-gatherers on the Northwest Coast [74]. Three studied South American Tupi-Guaraní populations, namely Mundurucu [75], Tapirape [76], and Tupinamba [77], also lived in similar dwellings: large rectangular houses with walls made of bark or palm leaves, arranged around a central village plaza.

The single best predictor of AHFA is the fixity of settlement (Table 3, Fig 3B); mobile populations prefer to live in small, easy to build houses. Agriculture, when coded as a binary trait (“not important” or “important”), was found to have a positive association with AHFA, as has been previously documented [47], but this association loses significance once the fixity of settlement is included into the model. Although it is true that “the presence or absence of agriculture should be less difficult to infer archaeologically than mobility patterns” [47, p. 408], both traits are not in perfect correlation. While the majority of pastoralists and hunter-gatherers are indeed quite mobile, foragers subsisting predominantly on fishing are more sedentary [78], such as those of the northwest coast of North America living partially or fully sedentarily in large houses [79].

Construction material was not found to be significantly associated with AHFA. This can be partially explained by a less than ideal choice of variable to represent durability of house construction material in our study. For example, in houses with framed constructions, framing material is a much better indicator than wall material (e.g. long houses of Tupinamba, which were occupied for several years, were made of palm thatch on a wooden frame [77]). Unfortunately, framing material is not coded in Ethnographic Atlas [2] or D-PLACE [65]. Nevertheless, the architectural tradition of large houses might be influenced by the availability and quality of building materials. For example, “ironwood” was essential for longhouses of Borneo [80], cedar wood for Pacific Northwest plank houses [74], and the long leaves of the motacú palm for the simple but quite large dwellings of the Siriono people [81].

Previous studies [4447] documented the correlation between dwelling size and post-marital residence; our results are in support of their findings (Fig 3A). Large houses usually indicate large households and these might be preferentially occupied by married sisters rather than non-sisters [44]. This argument is based on the finding that in polygynous societies, sororal co-wives usually live together in the same house, while nonsororal co-wives tend to live in separate houses, or at least in separate apartments of the large dwelling [5, pp. 30–31]. Instability of households where brothers and their spouses co-reside (so-called patrilocal joint families) was also documented, for example, in India [82, p. 106] or pre-revolutionary China [83, pp. 402–403]. In both cases, co-resident nuclear families usually broke up after the death of the father; the division was often accelerated by quarrels between wives. On the other hand, even sisters are not immune to verbal and physical aggression towards each other. Cross-cultural survey found that sisters are often aggressive towards each other in eight percent of societies, and probably in additional eight percent of societies when they are co-wives, while aggression between sisters-in-law is not substantially higher, in 14 percent of societies [84].

Another, not necessary competing, explanation is that large households improve the integration of unrelated brothers-in-law into a matrilocal community [45]. It might also be true that traditional residence typologies do not reflect the true complexities of ethnographic variation (see below). In some of the so-called matrilocal societies, men and women spend more time with their kin at different community levels; for example, while men spend more time with kin at the village level, possibly to facilitate male alliances, women spend more time with kin at the extended household level, possibly to facilitate allomaternal care [85].

Notably, societies with very large AHFA (over ca. 200 m2) were not associated with any particular type of residence. There are seven such societies in our sample. Three of them are patrilocal or predominantly patrilocal (Aleut, Nootka, Yanomamo), three are matrilocal or predominantly matrilocal (Makitare, Mundurucu, Tupinamba), and one is ambilocal (Iban). All of these were sedentary populations, but with different subsistence economies. The majority of them practiced extensive or shifting agriculture, although Aleut and Nootka were hunter-fisher-gatherers. None of them kept cattle, and only the Iban kept pigs (but note the cattle-keeping Miskito with the eighth largest AHFA in the sample, just below the 200 m2 boundary). Except for Iban and Aleut, all societies with very large dwellings are from North or South America. Out of the 16 societies with known AHFA that were not included in the phylogeny (see Table A in S1 File), an additional four societies, all from North America, lived in dwellings with an AHFA of over 200 m2; three are matrilocal (Huron, Iroquois, Pawnee) and one is ambi-patrilocal (Bellacoola).

These examples show that the relationship between house size and post-marital residence is not straightforward and some other factors might influence household composition than those suggested above. In societies with very large houses, one household usually consisted of multiple families (e.g. up to 30 in Tupinamba [77], up to 40 in Aleut [86], or up to 50 in Iban [87]), and it can be assumed that such large units were more resistant to dissolution due to disputes between individuals, than smaller households consisting of only two or three families. In a larger household, there were more mediators and authorities who could settle a dispute. Moreover, leaving of one family did not led to disintegration of the entire household.

The best model combined AHFA, settlement and PMR (Table 3). Smaller houses are associated with a migratory lifestyle and patrilocal residence, while large houses are typical for matrilocal sedentary societies. However, it is difficult to establish causality. Does the transition to matrilocality lead to larger dwellings, or does the increase in dwelling size lead to changes in the rule of residence? Divale’s [45] argumentation, i.e. that the function of large households is to enhance trust and cooperation between unrelated brothers-in-law, suggests the former possibility. Ember [44] argues that large houses are preferentially occupied by women and their kin, indicating the latter. Our global phylogenetic analysis seems to support Ember’s argumentation. Pagel’s test for correlated evolution, based on binary traits, indicates that the increase of dwelling size is followed by transition to matrilocality, rather than vice versa (Fig 4). However, these results must be interpreted with caution. The dichotomization of continuous traits comes with a loss of information. The dependence of PMR on AHFA could be partially explained by the inability to reconstruct ancestral PMR unambiguously in deeper nodes. That said, the reconstruction of ancestral states based on continuous traits also indicates that the AHFA increased before multiple independent transitions to matrilocality occurred. The reconstruction indicates that the last common ancestor lived in very small houses (ca. 12 m2, close to dwelling size in African societies in our sample, such as Bemba, Fang, Masai, or Wolof). AHFA has increased steadily throughout history, regardless of social organization.

There is probably no universal explanation for the change in the dwellings size and/or in post-marital residence rules. It has been proposed that changes in post-marital residence rules can be initiated by migration [9], depopulation [57], or the emergence of commercialization [56]. A non-matrilocal residence is predicted by a very low female contribution to subsistence [8] or by internal (rather than purely external) warfare [10, 11]. Other crucial factors can include the presence of alienable property and paternity uncertainty [88]. Matrilineal and matrilocal social structures are negatively correlated with intensive agriculture [41, 89] and heritable forms of wealth (e.g. land, money, slaves or large domestic animals [5, 41, 89, 90]) in addition to lower levels of paternity confidence [91, 92]. Specifically, in lowland South American societies, matrilocality often co-occurs with belief in partible paternity, i.e. that more than one biological father can contribute to the formation of a fetus [42].

Reconstructing post-marital residence patterns in prehistoric societies: limitations of phylogenetic cross-cultural analyses

Our results suggest that average house floor area can be used as a proxy for post-marital residence pattern in prehistoric societies. However, before we start hypothesizing about post-marital residence in particular society, we must consider the limitations of cross-cultural studies.

This study, as well as previous analyses [4447], depend on data from ethnographic literature, which primary focus is usually not the size of dwellings or post-marital residence patterns. References to these cultural traits are often anecdotal and not resulting from empirical research. Data in large ethnographic databases (such as D-PLACE [65]) ordinarily capture each culture at a particular time (and location), making backward verification difficult. The sizes of dwellings can be re-examined archaeologically in some areas, but regarding post-marital residence, one must rely on the original ethnographic records. As the Goodenough-Fischer controversy on the Trukese marital residence demonstrated, ethnographers’ conclusions can be sometimes contradictory, even when researchers compile a house to house censuses [16].

Using AHFA as a predictor variable is practical from an analytical perspective, but it sometimes simplifies the real situation. The range of house floor area can be wide, especially among societies with large houses, e.g. 70–900 m2 among Aleut [93], 20–110 m2 (exceptionally more than 900 m2) among Garo [94, 95], and 100–500 m2 among Tucano [9698]. It is usually the case that no data are available on differences in household composition between the smallest and largest households in these societies, and it is not clear whether house size can affect post-marital residence within a population. It is also important to consider how much the size of a house reflects the size of a household. For example, a residential building does not necessarily represent a single space, whether in functional or social contexts. It can be divided into several apartments (e.g. in Iban longhouses [87]) or it can include non-residential parts (e.g. stables in German hall houses [99]). Some residential dwellings (e.g. those belonging to community leaders) can serve multiple functions, for example, as a storage area or as a venue for council meetings, feasts, ceremonies and other social gatherings. Furthermore, the house does not need to be inhabited by a nuclear or extended family members only. For example, among the Mundurucu, all post-pubescent men, single and married, relaxed and slept in the men’s house, while women and children resided in family dwellings [75].

Household wealth differences can also have a substantial impact on the dwelling size [62, 100]. Unfortunately, variables describing this factor are missing in ethnographic databases. Although some proxies such as “Social Stratification [SCCS158, SCCS1751]” or “Number of Rich People [SCCS1721]” are available in D-PLACE, for using household wealth as control variable in AHFA-PMR analysis, more relevant data based on the deeper review of ethnographic literature are necessary.

The traditional residence typologies [5] are also problematic and have been criticized [16, 85, 101]. Many studies, including ours, focus simply on the most frequent or “ideal” residence type of a population in question and ignore intra-community variation. This is useful in cross-cultural comparisons but can be misleading when reconstructing actual residence patterns of prehistoric societies. First, there are often considerable differences between residence rules and actual practices within a community [16, 102]. Secondly, a couple often changes residence during their marriage, especially after one or more children are born (resulting in temporary matrilocal residence). Taking primary and alternative residence in later years together with residence in the first years of the marriage into account, Marlowe [4] concluded that majority of foragers (74%), as well as non-foragers (61%), were multilocal in the strict sense. Thirdly, residential rules apply differently to different community members. For example, in many matrilocal societies in Amazonia, chiefs and their sons usually resided patrilocally [103], and thus lived with more close kin than non-headmen [101]. Similarly, among Garo living in northeastern India, multiple residence patterns were present, which were all vital to Garo social structure. As Burling [94, pp. 215–216] puts it: “Some men must move in with their wives’ families, while others must set up new households. Some men must move to their wives’ villages, while others must bring their wives to their own villages. […] Since it is not possible to say that any particular residence pattern is ‘preferred,’ it is unreasonable to demand that their custom be summed up by any such simple term as ‘matrilocal’.”

Lastly, with all cross-cultural studies based on ethnographic data, one needs to keep in mind that only a few studied societies were completely unaffected by colonialism or contact with modern civilization at the time of their description [104]. Most societies were exposed to various forms of cultural contact (e.g. epidemic diseases, the presence of missionaries, or trade with Westerners). These might have caused pacification, depopulation, changes in subsistence strategies or changes to social structure, including post-marital residence patterns or house size. It has been previously suggested that emergence of neolocality might have been caused by commercial exchange and industrialization [56], while ambilocality is often a result of depopulation [57]. On the other hand, neither prehistoric nor historical societies lived in complete isolation. Imported artefacts were common in almost every archaeological culture and recent evidence for plague in the Bronze Age in Eurasia [105] indicates that serious depopulations were not uncommon in pre-state societies.

Conclusion

Our analysis confirms the cross-cultural association between house size and post-marital residence. Societies with larger dwellings tend to be matrilocal (compared to societies with smaller dwellings tending towards patrilocality). This association applies to broad range of post-marital residence patterns (not only to strictly matrilocal or patrilocal residence) and remains significant after controlling for other explanatory variables (agriculture, fixity of settlement, and construction material) and phylogeny. The effect of agriculture on dwelling size seems to be a by-product of the effect of fixity of settlement.

Further research is needed to evaluate the effect of other factors on house size, such as differences in household wealth, sociopolitical organization, functional differences in dwelling use, or western influence. Future research could also focus on distinction between residence in the husband’s or the wife’s parents’ dwelling (patrilocal and matrilocal) and residence within the husband’s or the wife’s community (virilocal and uxorilocal). Comparing the dwelling size with other measures of residence, such as Helm's measure (i.e. the relative number of co-residing primary kin living with men versus women; [106]), could provide additional insight.

Our results suggest that average house floor area can be used as a material proxy for inferring post-marital residence patterns in prehistoric societies. That said, we agree with previous suggestions that “floor area alone should probably never be used as the sole index of residence” [45, p. 114] and that the correlations found “should only be used as working hypotheses to be tested with other lines of data” [47, p. 420]. Such data can be acquired using bioarchaeological methods (e.g. strontium and oxygen isotope or ancient DNA analyses) whose application in archaeological research has grown exponentially in recent years. Still, isotopic evidence must be interpreted with caution. Isotope analyses can distinguish mobility between different geological regions, but not within one community or between communities living in regions with similar isotopic signal [18]. Interpreting isotope results in the terms of post-marital mobility is not always straightforward, since other types of mobility could lead to the same signal [107]. The evidence from cross-cultural and bioarchaeological analyses can complement each other, providing a more elaborated interpretation of the past social reality.

Supporting information

S1 File. List of sample societies and changes to the original variables.

(DOCX)

S1 Table. Model comparison for the evolution of AHFA and PMR based on Pagel’s test for correlated evolution.

(XLSX)

Acknowledgments

We thank two anonymous reviewers for their comments and suggestions on improving the manuscript and to Alexander Barton for proofreading the text.

Data Availability

All relevant data are within the manuscript and its Supporting Information files.

Funding Statement

V.H, P.D., G.Š. and J.Z. were supported by the Czech Science Foundation (GACR) Grant 18- 23889S. P.K. was supported by the Czech Science Foundation (GACR) Grant 19-16304S. G.Š. was supported by GAJU project 048/2019/P. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Peoples J, Bailey G. Humanity: An Introduction to Cultural Anthropology, Ninth Edition Belmont, Canada: Cengage Learning; 2011. [Google Scholar]
  • 2.Murdock GP. Ethnographic atlas: a summary. Ethnology. 1967;6:109–236. [Google Scholar]
  • 3.Divale WT, Harris M. Population, Warfare, and the Male Supremacist Complex. American Anthropologist. 1976;78:521–38. [Google Scholar]
  • 4.Marlowe FM. Marital Residence among Foragers. Current Anthropology. 2004;45(2):277–84. [Google Scholar]
  • 5.Murdock GP. Social Structure. London: Macmillan Company; 1949. [Google Scholar]
  • 6.Agarwal B. Who sows? Who reaps? Women and land rights in India. The Journal of Peasant Studies. 1988;15(4):531–81. [Google Scholar]
  • 7.Korotayev A. Unilocal residence and unilineal descent: a reconsideration. World Cultures. 2004;15:79–110. [Google Scholar]
  • 8.Korotayev A. Division of Labor by Gender and Postmarital Residence in Cross-Cultural Perspective: A Reconsideration. Cross-Cultural Research. 2003;37(4):335–72. [Google Scholar]
  • 9.Divale WT. Migration, External Warfare, and Matrilocal Residence. Behavior Science Research. 1974;9(2):75–133. [Google Scholar]
  • 10.Ember M, Ember CR. The Conditions Favoring Matrilocal versus Patrilocal Residence. American Anthropologist. 1971;73(3):571–94. [Google Scholar]
  • 11.Ember CR. An Evaluation of Alternative Theories of Matrilocal Versus Patrilocal Residence. Behavior Science Research. 1974;9(2):135–49. [Google Scholar]
  • 12.Mattison SM, Shenk MK, Thompson ME, Mulder MB, Fortunato L. The evolution of female-biased kinship in humans and other mammals. Philosophical Transactions of the Royal Society B: Biological Sciences. 2019;374(1780):20190007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Jordan FM, Gray RD, Greenhill SJ, Mace R. Matrilocal residence is ancestral in Austronesian societies. Proceedings of the Royal Society of London B: Biological Sciences. 2009;276:1957–64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Stojanowski CM, Schillaci MA. Phenotypic approaches for understanding patterns of intracemetery biological variation. American Journal of Physical Anthropology. 2006;131(S43):49–88. [DOI] [PubMed] [Google Scholar]
  • 15.Fortunato L. Reconstructing the History of Residence Strategies in Indo-European—Speaking Societies: Neo-, Uxori-, and Virilocality. Human Biology. 2011;83(1):107–28. 10.3378/027.083.0107 [DOI] [PubMed] [Google Scholar]
  • 16.Allen WL, Richardson JB. The Reconstruction of Kinship from Archaeological Data: The Concepts, the Methods, and the Feasibility. American Antiquity. 1971;36(1):41–53. [Google Scholar]
  • 17.Dumond DE. Science in Archaeology: The Saints Go Marching in. American Antiquity. 1977;42(3):330–49. [Google Scholar]
  • 18.Bentley RA. Strontium Isotopes from the Earth to the Archaeological Skeleton: A Review. Journal of Archaeological Method and Theory. 2006;13(3):135–87. [Google Scholar]
  • 19.Bentley RA, Bickle P, Fibiger L, Nowell GM, Dale CW, Hedges REM, et al. Community differentiation and kinship among Europe’s first farmers. Proceedings of the National Academy of Sciences. 2012;109(24):9326–30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Haak W, Brandt G, Jong HNd, Meyer C, Ganslmeier R, Heyd V, et al. Ancient DNA, Strontium isotopes, and osteological analyses shed light on social and kinship organization of the Later Stone Age. Proceedings of the National Academy of Sciences. 2008;105(47):18226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Sjögren K-G, Price TD, Kristiansen K. Diet and Mobility in the Corded Ware of Central Europe. PloS one. 2016;11(5):e0155083 10.1371/journal.pone.0155083 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Mittnik A, Massy K, Knipper C, Wittenborn F, Friedrich R, Pfrengle S, et al. Kinship-based social inequality in Bronze Age Europe. Science. 2019;366(6466):731–34. 10.1126/science.aax6219 [DOI] [PubMed] [Google Scholar]
  • 23.Bentley RA, Pietrusewsky M, Douglas MT, Atkinson Tim C. Matrilocality during the prehistoric transition to agriculture in Thailand? Antiquity. 2005;79(306):865–81. [Google Scholar]
  • 24.Bentley RA, Tayles N, Higham C, Macpherson C, Atkinson Tim C. Shifting Gender Relations at Khok Phanom Di, Thailand: Isotopic Evidence from the Skeletons. Current Anthropology. 2007;48(2):301–14. [Google Scholar]
  • 25.Oota H, Settheetham-Ishida W, Tiwawech D, Ishida T, Stoneking M. Human mtDNA and Y-chromosome variation is correlated with matrilocal versus patrilocal residence. Nature Genetics. 2001;29:20–1. 10.1038/ng711 [DOI] [PubMed] [Google Scholar]
  • 26.Lalueza-Fox C, Rosas A, Estalrrich A, Gigli E, Campos PF, García-Tabernero A, et al. Genetic evidence for patrilocal mating behavior among Neandertal groups. Proceedings of the National Academy of Sciences. 2011;108(1):250–3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Bolnick DA, Smith DG. Migration and Social Structure among the Hopewell: Evidence from Ancient DNA. American Antiquity. 2007;72(4):627–44. [Google Scholar]
  • 28.Vigilant L, Langergraber KE. Inconclusive evidence for patrilocality in Neandertals. Proceedings of the National Academy of Sciences. 2011;108(18):E87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Kumar V, Langstieh BT, Madhavi KV, Naidu VM, Singh HP, Biswas S, et al. Global Patterns in Human Mitochondrial DNA and Y-Chromosome Variation Caused by Spatial Instability of the Local Cultural Processes. PLOS Genetics. 2006;2(4):e53 10.1371/journal.pgen.0020053 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Ly G, Alard B, Laurent R, Lafosse S, Toupance B, Monidarin C, et al. Residence rule flexibility and descent groups dynamics shape uniparental genetic diversities in South East Asia. American Journal of Physical Anthropology. 2018;165(3):480–91. 10.1002/ajpa.23374 [DOI] [PubMed] [Google Scholar]
  • 31.Gunnarsdóttir ED, Nandineni MR, Li M, Myles S, Gil D, Pakendorf B, et al. Larger mitochondrial DNA than Y-chromosome differences between matrilocal and patrilocal groups from Sumatra. Nature Communications. 2011;2:228 10.1038/ncomms1235 [DOI] [PubMed] [Google Scholar]
  • 32.Karmin M, Saag L, Vicente M, Sayres MAW, Järve M, Talas UG, et al. A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Research. 2015;25(4):459–66. 10.1101/gr.186684.114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Zeng TC, Aw AJ, Feldman MW. Cultural hitchhiking and competition between patrilineal kin groups explain the post-Neolithic Y-chromosome bottleneck. Nature Communications. 2018;9(1):2077 10.1038/s41467-018-04375-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Mace R, Pagel M. The Comparative Method in Anthropology. Current Anthropology. 1994;35(5):549–564. [Google Scholar]
  • 35.Nunn CL. The Comparative Approach in Evolutionary Anthropology and Biology. Chicago: University of Chicago Press; 2011. [Google Scholar]
  • 36.Fortunato L, Jordan F. Your place or mine? A phylogenetic comparative analysis of marital residence in Indo-European and Austronesian societies. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 2010;365:3913–22. 10.1098/rstb.2010.0017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Opie C, Shultz S, Atkinson QD, Currie T, Mace R. Phylogenetic reconstruction of Bantu kinship challenges Main Sequence Theory of human social evolution. Proceedings of the National Academy of Sciences. 2014;111:17414–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Walker RS, Wichmann S, Mailund T, Atkisson CJ. Cultural phylogenetics of the Tupi language family in lowland South America. PLOS ONE. 2012;7(4): e35025 10.1371/journal.pone.0035025 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Moravec JC, Atkinson Q, Bowern C, Greenhill SJ, Jordan FM, Ross RM, et al. Post-marital residence patterns show lineage-specific evolution. Evolution and Human Behavior. 2018;29(6):594–601. [Google Scholar]
  • 40.Jordan F. A comparative phylogenetic approach to Austronesian cultural evolution. Ph.D. Thesis, University College London. 2007. Available from: https://discovery.ucl.ac.uk/id/eprint/1446081/
  • 41.Surowiec A, Snyder KT, Creanza N. A worldwide view of matriliny: using cross-cultural analyses to shed light on human kinship systems. Philosophical Transactions of the Royal Society B: Biological Sciences. 2019;374(1780):20180077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Walker RS, Flinn MV, Hill KR. Evolutionary history of partible paternity in lowland South America. Proceedings of the National Academy of Sciences. 2010;107(45):19195–200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Ember CR, Ember M. Cross-Cultural Research Methods. Lanham: AltaMire Press; 2009. [Google Scholar]
  • 44.Ember M. An archaeological indicator of matrilocal versus patrilocal residence. American Antiquity. 1973;38(2):177–82. [Google Scholar]
  • 45.Divale WT. Living floor area and marital residence: A replication. Behavior Science Research. 1977;12(2):109–15. [Google Scholar]
  • 46.Brown BM. Population estimation from floor area: A restudy of “Naroll’s Constant”. Behavior Science Research. 1987;21:1–49. [Google Scholar]
  • 47.Porčić M. House Floor Area as a Correlate of Marital Residence Pattern: A Logistic Regression Approach. Cross-Cultural Research. 2010;44(4):405–24. [Google Scholar]
  • 48.Hart JP. Maize, Matrilocality, Migration, and Northern Iroquoian Evolution. Journal of Archaeological Method and Theory. 2001;8(2):151–82. [Google Scholar]
  • 49.Peregrine PN. Matrilocality, Corporate Strategy, and the Organization of Production in the Chacoan World. American Antiquity. 2001;66(1):36–46. [Google Scholar]
  • 50.Schillaci MA, Stojanowski CM. A Reassessment of Matrilocality in Chacoan Culture. American Antiquity. 2002;67(2):343–56. [Google Scholar]
  • 51.Peregrine PN, Ember M. Response to Schillaci and Stojanowski. American Antiquity. 2002;67(2):357–9. [Google Scholar]
  • 52.Schillaci MA, Stojanowski CM. Postmarital Residence and Biological Variation at Pueblo Bonito. American Journal of Physical Anthropology. 2003;120(1):1–15. 10.1002/ajpa.10147 [DOI] [PubMed] [Google Scholar]
  • 53.Ensor BE. The Archaeology of Kinship: Advancing Interpretation and Contributions to Theory. Tuscon: The University of Arizona Press; 2013. [Google Scholar]
  • 54.Ensor BE. Testing Ethnological Theories on Prehistoric Kinship. Cross-Cultural Research. 2017;51(3):1–29. [Google Scholar]
  • 55.Souvatzi S. Kinship and Social Archaeology. Cross-Cultural Research. 2017;51(2):172–95. [Google Scholar]
  • 56.Ember M. The Emergence of Neolocal Residence. New York Academy of Sciences, Transactions. 1967;30(2):291–302. [DOI] [PubMed] [Google Scholar]
  • 57.Ember CR, Ember M. The Conditions Favoring Multilocal Residence. Southwestern Journal of Anthropology. 1972;28(4):382–400. [Google Scholar]
  • 58.Tylor EB. On a Method of Investigating the Development of Institutions; Applied to Laws of Marriage and Descent. Journal of the Anthropological Institute of Great Britain and Ireland. 1889;18:245–72. [Google Scholar]
  • 59.Murdock GP, White DR. Standard Cross-Cultural Sample. Ethnology. 1969;8(4):329–69. [Google Scholar]
  • 60.Dow MM, Eff EA. Global, regional, and local network autocorrelation in the standard cross-cultural sample. Cross-Cultural Research. 2008;42(2):148–71. [Google Scholar]
  • 61.Minocher R, Duda P, Jaeggi AV. Explaining marriage patterns in a globally representative sample through socio-ecology and population history: A Bayesian phylogenetic analysis using a new supertree. Evol Hum Behav. 2019;40(2):176–87. [Google Scholar]
  • 62.Kohler TA, Smith ME, Bogaard A, Feinman GM, Peterson CE, Betzenhauser A, et al. Greater post-Neolithic wealth disparities in Eurasia than in North America and Mesoamerica. Nature. 2017;551(7682):619–22. 10.1038/nature24646 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Duda P, Zrzavý J. Human population history revealed by a supertree approach. Scientific Reports. 2016;6:10 10.1038/s41598-016-0003-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Duda P, Zrzavý J. Towards a global phylogeny of human populations based on genetic and linguistic data In: Sahle Y, Reyes-Centeno H, Bentz C, editors. Modern Human Origins and Dispersal. Words, Bones, Genes, Tools: DFG Center for Advanced Studies Series. 1 ed Tübingen: Kerns Verlag; 2019. p. 331–59. [Google Scholar]
  • 65.Kirby KR, Gray RD, Greenhill SJ, Jordan FM, Gomes-Ng S, Bibiko H-J, et al. D-PLACE: A Global Database of Cultural, Linguistic and Environmental Diversity. PloS one. 2016;11(7):e0158391 10.1371/journal.pone.0158391 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401:877–84. 10.1038/44766 [DOI] [PubMed] [Google Scholar]
  • 67.Fritz SA, Purvis A. Selectivity in Mammalian Extinction Risk and Threat Types: a New Measure of Phylogenetic Signal Strength in Binary Traits. Conservation Biology. 2010;24(4):1042–51. 10.1111/j.1523-1739.2010.01455.x [DOI] [PubMed] [Google Scholar]
  • 68.Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution. 2012;3(2):217–23. [Google Scholar]
  • 69.Orme D, Freckleton R, Thomas G, Petzoldt T. The caper package: comparative analysis of phylogenetics and evolution in R. R package version 5.2. 2013;1–36. [Google Scholar]
  • 70.Pagel M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society of London Series B: Biological Sciences. 1994;255(1342):37–45. [Google Scholar]
  • 71.Llamas B, Fehren-Schmitz L, Valverde G, Soubrier J, Mallick S, Rohland N, et al. Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas. Science Advances. 2016;2(4):e1501385 10.1126/sciadv.1501385 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Kapches M. The Iroquoian longhouse: architectural and cultural identity In: Kerber JE, editor. Archaeology of the Iroquois: Selected readings and research sources. Syracuse, NY: Syracuse University Press; 2007. p. 174–88. [Google Scholar]
  • 73.Linton R. The Origin of the Plains Earth Lodge. American Anthropologist. 1924;26(2):247–57. [Google Scholar]
  • 74.Stewart H. Cedar: Tree of Life to the Northwest Coast Indians. Vancouver: Douglas & Mclntyre; 1984. [Google Scholar]
  • 75.Murphy RF. Headhunter's heritage: social and economic change among the Mundurucú Indians. Berkley: University of California Press; 1960. [Google Scholar]
  • 76.Wagley C, Galvão E. The Tapirapé In: Steward JH, editor. Handbook of South American Indians, Vol 3, The Tropical Forest Tribes. Washington D.C.: Smithsonian Institute; 1948. p. 167–78. [Google Scholar]
  • 77.Métraux A. The Tupinamba In: Steward JH, editor. Handbook of South American Indians, Vol 3, The Tropical Forest Tribes. Washington D.C.: Smithsonian Institution; 1948. p. 95–133. [Google Scholar]
  • 78.Marlowe FW. Hunter-gatherers and human evolution. Evolutionary Anthropology: Issues, News, and Reviews. 2005;14(2):54–67. [Google Scholar]
  • 79.Ames KM. The Northwest Coast: Complex Hunter-Gatherers, Ecology, and Social Evolution. Annual Review of Anthropology. 1994;23:209–29. [Google Scholar]
  • 80.Metcalf P. The Life of the Longhouse: An Archaeology of Ethnicity. Cambridge: Cambridge University Press; 2010. [Google Scholar]
  • 81.Holmberg AR. Nomads of the Long Bow: The Siriono of Eastern Bolivia. Washington: U.S. Govt. Print. Off.; 1950. [Google Scholar]
  • 82.Lamphere L. Strategies, Cooperation, and Conflict Among Women in Domestic Groups In: Rosaldo MZ, Lamphere L, editors. Woman, Culture, and Society. Stanford: Stanford University Press; 1974. p. 97–112. [Google Scholar]
  • 83.Harrell S. Human Families: Social Change in Global Perspective. Boulder: Westview Press; 1999. [Google Scholar]
  • 84.Burbank VK. Female Aggression in Cross-Cultural Perspective. Behavior Science Research. 1987;21(1–4):70–100. [Google Scholar]
  • 85.Walker RS. Human Residence Patterns In: Scott RA, Kosslyn SM, editors. Emerging Trends in the Social and Behavioral Sciences. Hoboken: John Wiley & Sons; 2015. p. 1–8. [Google Scholar]
  • 86.Veniaminov I. Zapiski ob ostravach Unalaᘜkinskago otděla. St. Petersburg: Tip. Imp. Rossijskoj Akad.; 1840. [Google Scholar]
  • 87.Freeman D. The family system of the Iban of Borneo In: Goody J, editor. The developmental cycle in domestic groups. Cambridge: Cambridge University Press; 1958. p. 15–52. [Google Scholar]
  • 88.Holden CJ, Sear R, Mace R. Matriliny as daughter-biased investment. Evolution and Human Behavior. 2003;24(2):99–112. [Google Scholar]
  • 89.Aberlee DF. Matrilineal descent in cross-cultural perspective In: Schneider DM, Gough K, editors. Matrilineal Kinship. Berkley and Los Angeles: University of California Press; 1961. [Google Scholar]
  • 90.Holden CJ, Mace R. Spread of cattle led to the loss of matrilineal descent in Africa: a coevolutionary analysis. Proc Biol Sci. 2003;270(1532):2425–33. 10.1098/rspb.2003.2535 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Hartung J. Matrilineal inheritance: New theory and analysis. Behavioral and Brain Sciences. 1985;8(4):661–70. [Google Scholar]
  • 92.Flinn M. Uterine vs. agnatic kinship variability and associated cross-cousin marriage preferences: an evolutionary biological analysis In: Alexander RD, Tinkle DW, editors. Natural selection and social behavior. New York: Chiron Press; 1981. p. 439–75. [Google Scholar]
  • 93.Lantis M. The Aleut Social System: 1750 to 1810, from Early Historical Sources In: Lantis M, editor. Ethnohistory in Southwestern Alaska and the Southern Yukon: Method and Content. Lexington: University of Kentucky Press; 1970. p. 139–301. [Google Scholar]
  • 94.Burling R. Rengsanggri: Family and kinship in a Garo village. Philadelphia: University of Pennsylvania Press; 1963. [Google Scholar]
  • 95.Playfair A. The Garos. London: David Nutt; 1909. [Google Scholar]
  • 96.Fulop M. Aspectos de la Cultura Tukana: Cosmogonía. Revista Colombiana de Antropologia. 1954;3:97–137. [Google Scholar]
  • 97.Silva ABAd. A civilizaçao indigena do Uaupés. Sao Paulo: Centro de Pesquisas de Iauareté; 1962. [Google Scholar]
  • 98.Goldman I. The Cubeo: Indians of the Northwest Amazon. Urbana, Illinois: University of Illinois Press; 1963. [Google Scholar]
  • 99.Baumgarten K. Some Notes on the History of the German Hall House. Vernacular Architecture. 1976;7(1):15–20. [Google Scholar]
  • 100.Kohler TA, Smith ME, editors. Ten Thousand Years of Inequality: The Archaeology of Wealth Differences. Tuscon: The Univesity of Arizona Press; 2018. [Google Scholar]
  • 101.Walker RS, Beckerman S, Flinn MV, Gurven M, von Rueden CR, Kramer KL, et al. Living with Kin in Lowland Horticultural Societies. Current Anthropology. 2013;54(1):96–103. [Google Scholar]
  • 102.Barnes JA. Marriage and Residential Continuity. American Anthropologist. 1960;62(5):850–66. [Google Scholar]
  • 103.Castro EBVd. From the Enemy's Point of View: Humanity and Divinity in an Amazonian Society. Chicago: The University of Chicago Press; 1992. [Google Scholar]
  • 104.Ember M, Ember CR. Worldwide Cross-Cultural Studies and Their Relevance for Archaeology. Journal of Archaeological Research. 1995;3(1):87–111. [Google Scholar]
  • 105.Rasmussen S, Allentoft Morten E, Nielsen K, Orlando L, Sikora M, Sjögren K-G, et al. Early Divergent Strains of Yersinia pestis in Eurasia 5,000 Years Ago. Cell. 2015;163(3):571–82. 10.1016/j.cell.2015.10.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Helm J. Bilaterality in the Socio-Territorial Organization of the Arctic Drainage Dene. Ethnology. 1965;4(4):361–85. [Google Scholar]
  • 107.Furholt M. Translocal Communities –Exploring Mobility and Migration in Sedentary Societies of the European Neolithic and Early Bronze Age. Praehistorische Zeitschrift. 2017;92(2):304–21. [Google Scholar]

Decision Letter 0

Peter F Biehl

10 Dec 2019

PONE-D-19-29673

Identifying post-marital residence patterns in prehistory: A phylogenetic comparative analysis of dwelling size

PLOS ONE

Dear Mr. Hrncir,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

==============================

all comments have to be addressed before re-submission.

==============================

We would appreciate receiving your revised manuscript by Jan 24 2020 11:59PM. When you are ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter.

To enhance the reproducibility of your results, we recommend that if applicable you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). This letter should be uploaded as separate file and labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. This file should be uploaded as separate file and labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. This file should be uploaded as separate file and labeled 'Manuscript'.

Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out.

We look forward to receiving your revised manuscript.

Kind regards,

Peter F. Biehl, PhD

Academic Editor

PLOS ONE

Journal Requirements:

When submitting your revision, we need you to address these additional requirements:

Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at http://www.plosone.org/attachments/PLOSOne_formatting_sample_main_body.pdf and http://www.plosone.org/attachments/PLOSOne_formatting_sample_title_authors_affiliations.pdf

Additional Editor Comments (if provided):

Your manuscript has now been seen by two referees, whose comments are appended below. You will see from these comments that while the referees find your work of potential interest, they have raised substantial concerns that must be addressed. In light of these comments, we cannot accept the manuscript for publication, but would be interested in considering a revised version that addresses these serious concerns.

We hope you will find the referees' comments useful as you decide how to proceed. Should presentation of further data and analysis allow you to address these criticisms, we would be happy to look at a substantially revised manuscript. However, please bear in mind that we will be reluctant to approach the referees again in the absence of major revisions.

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Yes

**********

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: Yes

**********

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

**********

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: This is a very thorough, well written, clear, methodologically sound investigation of correlations between post-marital residence patterns and other aspects of social life, including stability of settlement and dwelling size. To judge the value of the paper there are some aspects do differentiate. One aspect is to investigate the argument, often used in anthropology and archaeology, that there is a systematic, or even causal relationship between matrilocality vs patrilocality and house sizes. What the authors do well is to improve the parameters of analyses, and to be more critical with the results, showing that there are more factors at play between the two targeted. What is not very clear is how that result helps prehistoric archaeology, beyond the fact that we need to be more cautious towards cross-cultural generalisations. That is surely a good point, but then the authors leave many problems inherent to the statistical, cross-cultural approach unexplored.

To judge the merits of the papers, I will argue on two levels. Level one is that I think the whole Idea of using this cross-cultural approach for archaeology is misleading. It makes, to me, absolutely no sense to take the results of this study and say, for example, the Early Neolithic LBK in Central Europe had large houses, thus we are to assume with a high probability that they had matrilocal marriage patterns. Even apart from the fact that – as the authors rightly state, Stable Isotope studies indicate the opposite, this is just not a good way of using anthropological models. However, I acknowledge that there are different views upon the merits of such a kind of approach, so I will review the paper putting aside my general disagreement.

If we look at what the authors are doing, the contribution is a valuable addition to the anthropological question about general relationships between postmarital residence patterns and house sizes. Especially, to move away from the binary opposition between matrilocality vs. patrilocality makes sense, including a wider array of models. Especially the control for dependencies between the case studies included is a step forward, and the phylogenetic approach to study the data points out some important caveats. It is important that they point out that the more important factor for house size is the stability of settlement. Also, using the phylogenetic approach, their observations about higher or lower stability of patterns (e.g. small houses and patrilocality is a more stable combination over time than others), helps clarify the significance of their findings. The explanations for these patterns do concern me, however. Arguments about general relations between married sisters, or unrelated brothers in law and how they would or would not thrive in larger or smaller houses seem very simplistic, at least it will not help win over sceptics (like me). As the authors are stating this with reference to the literature, maybe a little more nuanced, critical discussion would help. The main problem I have with the approach is the fact that they take two or three factors (house size, residence patterns and stability of settlement), and then discuss the question of causality between these. To me it seems that it would be very easy to miss other factors which could stand behind the correlations, but which are naturally excluded from the analyses because of the overall approach taken. The authors do discuss possible biases in the data. So a suggestion would be to put a little more thoughts into caveats. Could the oberservers bias be even more problematic? For example, the idea that ‘one society’ has basically one residence pattern could be a problematic assumption, maybe imposed by wertern observers? What other socio-economic factors could result in the correlation observed. What about the influence of colonialism? I do not recommend to change the argument, but in order to convince people like me, who value historical context more than cross-cultural statistical patterns, such a more exhaustive discussion would surely benefit the paper.

Apart from that I have only minor comments:

Page 2 of the main text, after mentioning Eulau and the Lech River examples, also Sjögren et al. 2016 Diet and Mobility in the Corded Ware of Central Europe, PLOS ONE

On the same page, after references 27-30: Maybe mention and briefly discuss the issue of the world-wide phenomenon of reduction of male haplogroups (y-haplogroups), discussed in Zeng et al., Cultural hitchhiking and competition between patrilineal kin groups explain the post-Neolithic Y-chromosome bottleneck, Nature Comm. 2018

Page 3: The Greek Neolithic does not start at 6800, but rather 6600/6500 BC

Page 4: The section Methods is immediately followed by the subheader Data description. This sounds illogical. Also, what follows is not acutally a description of the data, but a discussion about how to best represent the data, how to use data as proxy. That makes totally sense within the method chapter, so best change the subheader into something that makes it clear we deal with proxy definition, or data representation, which makes more sense in the Methods chapter than description.

In the Conclusion the authors very briefly hints at the new possibility of actually studying prehistorc residence patterns and their relation to house sizes, through Isotopes and aDNA. This is a good point, and maybe worth expanding more. Because this really brings home the relevance of the paper apart from the question whether the statistical inferences made have any relevance for individual archaeological case studies.

So, overall, putting aside my own ideological differences with the approach, I would think that within the framework set, this paper is well written and methodologically sound, and I recommend accept with minor revisions.

Reviewer #2: This paper presents a cross-cultural study of dwelling size from the archaeological and ethnographic records to make inferences about post-marital residence (PMR) patterns. The study heavily builds on previous research, and presents additional data and a phylogenetic comparative analysis as original contributions.

Overall, the paper is clearly organized, with some redundancies particularly between the Introduction, Discussion, and Conclusion sections. The Introduction is an excellent overview of the past and recent research on PMR. However, limitations of PMR studies, especially as they relate to the archaeological record, should be summarized here, then discussed in relation to the results of the current study in the Discussion sections.

This latter structural change would be important for several reasons, reflecting also some shortcomings of the manuscript. Most importantly, as noted by the authors briefly on Page 2 (“…changes in AHFA in response to changes in PMR or other aspects of social organization”) and discussed to some extent on Pages 8 and 10, PMR is only one of the potential variables that could impact dwelling size. Sufficient to say, in recent, cross-cultural studies dwelling size is used as a proxy for household wealth, and thus, the number of household members does not definitely positively correlate with the physical extent of the dwellings (see e.g., Kohler et al. 2017: doi: 10.1038/nature24646; Kohler and Smith (eds.) 2018: https://uapress.arizona.edu/book/ten-thousand-years-of-inequality). For other perspectives, including functional differences in residential use as they relate to dwelling size and organization, see Coupland and Banning (eds.) 1996 (https://www.amazon.com/People-Who-Lived-Houses-Archaeological/dp/1881094154) and Burke (ed.) 2016 (https://journals.openedition.org/palethnologie/476). In addition, as the authors also note in the Discussion section, the use of average house floor area derived from regional scale datasets, being archaeological or ethnographic, necessarily eradicates variability at the local scale as well as ignores the high degree of heterogeneity in cultural practices. These aspects might largely account for some inconclusive patterns in the figures and the ambiguity of the interpretation of the statistical data.

Finally, the authors compare societies with fundamentally different sociopolitical settings, from hunting-gatherer bands to state-level societies. Although I clearly understand that this is out of the scope of the current manuscript, sociopolitical organization could be considered as an analytical variable to improve PMR studies in the future.

To sum up, this paper is an important contribution to PMR studies and, by considering the proposed additions and changes, it has the potential to serve as a starting point to study dwelling size as a proxy for cultural, social, and economic settings from a more integrative point of view. Therefore, I recommend the manuscript for publication with minor changes.

Minor issues:

Throughout the paper: `nomadic` frequently is mistakenly used instead of `mobile` or `non-sedentary`

Throughout the paper: consider using `permanency of settlement` instead of `stability of settlement`

Page 2: “In this study, we use “patrilocality” for both patri- and virilocality and “matrilocality” for both matri- and uxorilocality, since they cannot be distinguished in prehistoric patterns by the currently available methods.” Since the study focuses on residence in the husband’s father’s or the wife’s kin’s dwellings, virilocality and uxorilocality must be out of scope.

Table 1, Page 5, Settlement column: the ‘Original scale’ classification scheme and terms must be reconsidered, especially 1-4 and 5-6.

Figure 3: reconsider color coding. Based on Figures 1 and 2 (as indicated in the caption), the interpretation is difficult.

**********

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files to be viewed.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org. Please note that Supporting Information files do not need this step.

PLoS One. 2020 Feb 24;15(2):e0229363. doi: 10.1371/journal.pone.0229363.r002

Author response to Decision Letter 0


13 Jan 2020

We thank the reviewers for their comments and suggestions on the manuscript. We have addressed each of these comments below and in the revised manuscript. We have highlighted (using gray highlight) all sections of the manuscript that have been revised.

Reviewer #1: One aspect is to investigate the argument, often used in anthropology and archaeology, that there is a systematic, or even causal relationship between matrilocality vs patrilocality and house sizes. What the authors do well is to improve the parameters of analyses, and to be more critical with the results, showing that there are more factors at play between the two targeted. What is not very clear is how that result helps prehistoric archaeology, beyond the fact that we need to be more cautious towards cross-cultural generalisations. That is surely a good point, but then the authors leave many problems inherent to the statistical, cross-cultural approach unexplored. To judge the merits of the papers, I will argue on two levels. Level one is that I think the whole Idea of using this cross-cultural approach for archaeology is misleading. It makes, to me, absolutely no sense to take the results of this study and say, for example, the Early Neolithic LBK in Central Europe had large houses, thus we are to assume with a high probability that they had matrilocal marriage patterns. Even apart from the fact that – as the authors rightly state, Stable Isotope studies indicate the opposite, this is just not a good way of using anthropological models. However, I acknowledge that there are different views upon the merits of such a kind of approach, so I will review the paper putting aside my general disagreement.

- We do not share Reviewer 1 skepticism towards applicability of cross-cultural approach in archaeology. In our study we see the potential to draw attention to the complexity of kinship systems (with PMR being a part of it). There is not a single way in which archaic societies infer family ties. We see potentially dangerous efforts to view bioarchaeological data (e.g., Sr isotopes) as direct and only indicators of the PMR and kinship system (see for example Furholt 2017; https://doi.org/10.1515/pz-2017-0024). If the cross-cultural trend shows different result than the bioarchaeological analysis, this does not necessarily mean one of the approaches is misleading. Conversely, this may lead to a more elaborate interpretation of the past social reality (e.g. Early Neolithic society in Central Europe).

Reviewer #1: The explanations for these patterns do concern me, however. Arguments about general relations between married sisters, or unrelated brothers in law and how they would or would not thrive in larger or smaller houses seem very simplistic, at least it will not help win over sceptics (like me). As the authors are stating this with reference to the literature, maybe a little more nuanced, critical discussion would help.

- The arguments have been expanded and discussed more critically (p. 9-10).

Reviewer #1: The main problem I have with the approach is the fact that they take two or three factors (house size, residence patterns and stability of settlement), and then discuss the question of causality between these. To me it seems that it would be very easy to miss other factors which could stand behind the correlations, but which are naturally excluded from the analyses because of the overall approach taken. The authors do discuss possible biases in the data. So a suggestion would be to put a little more thoughts into caveats. Could the oberservers bias be even more problematic? For example, the idea that ‘one society’ has basically one residence pattern could be a problematic assumption, maybe imposed by wertern observers? What other socio-economic factors could result in the correlation observed. What about the influence of colonialism? I do not recommend to change the argument, but in order to convince people like me, who value historical context more than cross-cultural statistical patterns, such a more exhaustive discussion would surely benefit the paper.

- The issues of observers bias (one society = one residence pattern) and similarity of cultures due to colonialism have been mentioned in the discussion (p. 11-12.) That said, the role of similarity of societies due to contact with western cultures might be exaggerated. A recent cross-cultural study, which sought to explain variance in daily foodsharing norms across societies (Ringen et al. 2019, https://doi.org/10.1016/j.evolhumbehav.2019.04.003) has controlled for both the phylogeny and non-independence due to the time at which data were collected (the ‘ethnographic present’), assuming that the longer the societies were exposed to western influence, the more similar they became to each other. While the phylogeny explained moderate amount of variance in food sharing norms, ethnographic present did not, suggesting that this is not the case, at least for some cultural characteristics of the societies.

Reviewer #2: The Introduction is an excellent overview of the past and recent research on PMR. However, limitations of PMR studies, especially as they relate to the archaeological record, should be summarized here, then discussed in relation to the results of the current study in the Discussion sections.

- We thank the reviewer for this assessment of the Introduction section. The main goal of our study is to investigate the AHFA-PMR correlation found by previous cross-cultural studies. That is why we describe methodological limitations of this type of studies in the Introduction. We feel that the flow of the ideas throughout the paper is better when we discuss other limitations of PMR studies in light of our results in the discussion section. This way we avoid unnecessary repetition from having all the limitations described in the Introduction.

Reviewer #2: This latter structural change would be important for several reasons, reflecting also some shortcomings of the manuscript. Most importantly, as noted by the authors briefly on Page 2 (“…changes in AHFA in response to changes in PMR or other aspects of social organization”) and discussed to some extent on Pages 8 and 10, PMR is only one of the potential variables that could impact dwelling size. Sufficient to say, in recent, cross-cultural studies dwelling size is used as a proxy for household wealth, and thus, the number of household members does not definitely positively correlate with the physical extent of the dwellings (see e.g., Kohler et al. 2017: doi: 10.1038/nature24646; Kohler and Smith (eds.) 2018: https://uapress.arizona.edu/book/ten-thousand-years-of-inequality). For other perspectives, including functional differences in residential use as they relate to dwelling size and organization, see Coupland and Banning (eds.) 1996 (https://www.amazon.com/People-Who-Lived-Houses-Archaeological/dp/1881094154) and Burke (ed.) 2016 (https://journals.openedition.org/palethnologie/476). In addition, as the authors also note in the Discussion section, the use of average house floor area derived from regional scale datasets, being archaeological or ethnographic, necessarily eradicates variability at the local scale as well as ignores the high degree of heterogeneity in cultural practices. These aspects might largely account for some inconclusive patterns in the figures and the ambiguity of the interpretation of the statistical data.

Reviewer #2: Finally, the authors compare societies with fundamentally different sociopolitical settings, from hunting-gatherer bands to state-level societies. Although I clearly understand that this is out of the scope of the current manuscript, sociopolitical organization could be considered as an analytical variable to improve PMR studies in the future.

- We have incorporated these suggestions and additional references into the Introduction and (primarily) the Discussion section, while keeping the general structure of the manuscript intact.

There is no doubt a strong link between AHFA or generally household size and household wealth. However, this relationship manifests itself mainly in intra-societal level, where there is a difference between larger houses of the rich and smaller houses of the poor. We have studied societies where large houses are a standard part of material culture. Such societies were then compared among themselves. The variability of the size of houses within societies was beyond the focus of our study.

Reviewer #1: Page 2 of the main text, after mentioning Eulau and the Lech River examples, also Sjögren et al. 2016 Diet and Mobility in the Corded Ware of Central Europe, PLOS ONE

- The reference has been added (p. 2).

Reviewer #1: On the same page, after references 27-30: Maybe mention and briefly discuss the issue of the world-wide phenomenon of reduction of male haplogroups (y-haplogroups), discussed in Zeng et al., Cultural hitchhiking and competition between patrilineal kin groups explain the post-Neolithic Y-chromosome bottleneck, Nature Comm. 2018

- This issue has been mentioned in the Introduction section (p. 2).

Reviewer #1: Page 3: The Greek Neolithic does not start at 6800, but rather 6600/6500 BC

- The dating has been changed accordingly (p. 3).

Reviewer #1: Page 4: The section Methods is immediately followed by the subheader Data description. This sounds illogical. Also, what follows is not acutally a description of the data, but a discussion about how to best represent the data, how to use data as proxy. That makes totally sense within the method chapter, so best change the subheader into something that makes it clear we deal with proxy definition, or data representation, which makes more sense in the Methods chapter than description.

- The subheader has been changed (p. 4).

Reviewer #1: In the Conclusion the authors very briefly hints at the new possibility of actually studying prehistorc residence patterns and their relation to house sizes, through Isotopes and aDNA. This is a good point, and maybe worth expanding more. Because this really brings home the relevance of the paper apart from the question whether the statistical inferences made have any relevance for individual archaeological case studies.

- The application of isotopes and DNA for studying prehistoric residence patterns has been mentioned in the Introduction section (p. 2). We have expanded the Conclusion section, where we touch upon some limitations of these methods (especially isotopes), arguing for multidisciplinary approach (p. 12).

Reviewer #2: Throughout the paper: `nomadic` frequently is mistakenly used instead of `mobile` or `non-sedentary`

- The term `nomadic` has been changed to `mobile` throughout the paper.

Reviewer #2: Throughout the paper: consider using `permanency of settlement` instead of `stability of settlement`

- Throughout the paper, we use `permanency` in relation to building material. To avoid confusion, we changed `stability of settlement` to `fixity of settlement`.

Reviewer #2: Page 2: “In this study, we use “patrilocality” for both patri- and virilocality and “matrilocality” for both matri- and uxorilocality, since they cannot be distinguished in prehistoric patterns by the currently available methods.” Since the study focuses on residence in the husband’s father’s or the wife’s kin’s dwellings, virilocality and uxorilocality must be out of scope.

- It is true that the two suggested explanations relate specifically to patrilocality and matrilocality (residence in the husband’s father’s or the wife’s kin’s dwellings). On the other hand, we did not limit our analyses only to patrilocal or matrilocal societies. We also included virilocal and uxorilocal societies, among others, to measure the tendency towards matrilocality. Besides, PMR is not properly distinguished in original data source (D-PLACE). Although both states (patrilocality and virilocality) are present, they have somewhat different definitions here than in the paper. In the expanded conclusion section, we suggest that future research could focus on finer distinction between patrilocal and virilocal societies.

Reviewer #2: Table 1, Page 5, Settlement column: the ‘Original scale’ classification scheme and terms must be reconsidered, especially 1-4 and 5-6.

- Column ‘Original scale’ describes trait states as described in the original source (D-PLACE). Therefore, this classification scheme and terms should not be changed.

Reviewer #2: Figure 3: reconsider color coding. Based on Figures 1 and 2 (as indicated in the caption), the interpretation is difficult.

- We believe that the color coding in Fig 3A which correspond to Fig 1 and reflects PMR states is appropriately chosen. In Fig 2, the colors reflect reconstructed ancestral states. We agree that this is confusing and have changed the caption accordingly (p. 7). In Fig. 3B, an explanatory variable is settlement, which is not included in Fig. 1. Therefore, no color coding has been assigned. We believe that adding color coding to Fig 3B would confuse the audience, rather than facilitate interpretation of the figure.

Attachment

Submitted filename: Response to Reviewers.docx

Decision Letter 1

Peter F Biehl

5 Feb 2020

Identifying post-marital residence patterns in prehistory: A phylogenetic comparative analysis of dwelling size

PONE-D-19-29673R1

Dear Dr. Hrncir,

We are pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it complies with all outstanding technical requirements.

Within one week, you will receive an e-mail containing information on the amendments required prior to publication. When all required modifications have been addressed, you will receive a formal acceptance letter and your manuscript will proceed to our production department and be scheduled for publication.

Shortly after the formal acceptance letter is sent, an invoice for payment will follow. To ensure an efficient production and billing process, please log into Editorial Manager at https://www.editorialmanager.com/pone/, click the "Update My Information" link at the top of the page, and update your user information. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to enable them to help maximize its impact. If they will be preparing press materials for this manuscript, you must inform our press team as soon as possible and no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

With kind regards,

Peter F. Biehl, PhD

Academic Editor

PLOS ONE

Additional Editor Comments (optional):

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. If the authors have adequately addressed your comments raised in a previous round of review and you feel that this manuscript is now acceptable for publication, you may indicate that here to bypass the “Comments to the Author” section, enter your conflict of interest statement in the “Confidential to Editor” section, and submit your "Accept" recommendation.

Reviewer #1: All comments have been addressed

Reviewer #2: All comments have been addressed

**********

2. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Yes

**********

3. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: I Don't Know

Reviewer #2: Yes

**********

4. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

6. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: (No Response)

Reviewer #2: The comments have been addressed and the manuscript has been improved.

I suggest an additional, minor change: in Table 1 'nomadic' and `seminomadic' should be changed to 'mobile' and 'semi-sedentary', respectively.

Other than that, I recommend the manuscript for publication without further modifications.

**********

7. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: Yes: Martin Furholt

Reviewer #2: No

Acceptance letter

Peter F Biehl

11 Feb 2020

PONE-D-19-29673R1

Identifying post-marital residence patterns in prehistory: A phylogenetic comparative analysis of dwelling size

Dear Dr. Hrncir:

I am pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please notify them about your upcoming paper at this point, to enable them to help maximize its impact. If they will be preparing press materials for this manuscript, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

For any other questions or concerns, please email plosone@plos.org.

Thank you for submitting your work to PLOS ONE.

With kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Dr. Peter F. Biehl

Academic Editor

PLOS ONE

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 File. List of sample societies and changes to the original variables.

    (DOCX)

    S1 Table. Model comparison for the evolution of AHFA and PMR based on Pagel’s test for correlated evolution.

    (XLSX)

    Attachment

    Submitted filename: Response to Reviewers.docx

    Data Availability Statement

    All relevant data are within the manuscript and its Supporting Information files.


    Articles from PLoS ONE are provided here courtesy of PLOS

    RESOURCES