Skip to main content
West China Journal of Stomatology logoLink to West China Journal of Stomatology
. 2014 Aug;32(4):400–403. [Article in Chinese] doi: 10.7518/hxkq.2014.04.019

口腔鳞状细胞癌组织中差异微小RNA/mRNA表达谱的对接研究

Differential expression profiles of microRNAs/mRNA and docking study in oral squamous cell carcinoma

Siyu Liu 1,2, Long Xie 1,2, Bing Qi 3, Changyan Ma 4, Lei Sang 1,2, Hongwei Li 1,2,
Editor: 杜 冰
PMCID: PMC7041071  PMID: 25241546

Abstract

Objective

To construct and analyze the differential expression profiles of microRNAs (miRNA) and mRNA in oral squamous cell carcinoma (OSCC). To explore the miRNA and mRNA of OSCC development and progression.

Methods

The differential expression profiles of miRNA and mRNA were built by high-throughput deep sequencing technology. Using Gene Ontology (GO) enrichment analysis, the roles of differentially expressed miRNA and mRNA in cell cycle, cell proliferation, cell differentiation and cell apoptosis were analyzed.

Results

Seventy-seven differentially expressed miRNA and 1 298 differentially expressed mRNAs were identified in OSCC. GO analysis showed that 73 miRNA had found target mRNA in cell cycle, cell proliferation, cell differentiation and cell apoptosis of OSCC. Moreover, a miRNA could regulate multiple mRNA.

Conclusion

The differential expression profiles of miRNA and mRNA have close relationship with the development and progression of OSCC.

Keywords: oral squamous cell carcinoma, microRNAs, mRNA, high-throughput deep sequencing


口腔鳞状细胞癌(oral squamous cell carcinomas,OSCC)是头颈部恶性肿瘤中发病率最高的恶性肿瘤,其易发生细胞侵袭和转移,患者预后较差,术后5年的存活率低于50%[1]。研究[2]发现:OSCC的发生和发展受基因水平的调控,基因表达受DNA水平、转录水平、转录后水平及蛋白水平等多层面调控,过程复杂。近年来,微小RNA(microRNAs,miRNA)在转录后水平对基因表达的精细调控备受关注。大量研究[3][4]表明miRNA既可作为原癌基因参与恶性肿瘤的发生和发展过程,又可作为抑癌基因参与抑制恶性肿瘤的形成,其在肿瘤细胞的增殖、分化、凋亡及机体发育、代谢等基本生命活动过程中发挥重要作用,并可以作为OSCC早期诊断和治疗的生物标志物[5]

据估计,人类基因组中miRNA的种类约有1 000多种,其在基因转录后通过抑制靶mRNA的翻译或降解mRNA调控近30%的人类基因[6]。因此,了解OSCC发生和发展相关的遗传过程及参与的生物学通路,为疾病的分级、早期诊断及治疗提供重要的信息,对新药的开发也有很大帮助[7][8]。因此,OSCC中差异miRNA/mRNA表达谱的对接研究显得尤为重要。

1. 材料和方法

1.1. 组织样本

选取10对冻存OSCC组织和配对癌旁正常组织作为研究对象,样本来源于2011年11月—2012年2月期间在江苏省口腔医院颌面外科接受手术治疗的OSCC患者,术前已经专业病理人员确诊为OSCC,且所有患者并未接受过任何放化疗或其他抗癌治疗,并获得每位患者书面同意。癌旁正常组织定义为病灶周围病理检查未见OSCC细胞的组织。样本经手术切除后立即于−80 °C冻存收集。

1.2. 构建差异miRNA表达谱

从OSCC样本和配对癌旁的样本中分别提取总RNA,回收18~30 nt大小的片段,通过逆转录聚合酶链反应(reverse transcription-polymerase chain reaction,RT-PCR)构建两组样本的cDNA文库。运用Illumina HiSeq 2000第二代高通量测序技术对两组样本的miRNA进行测序,通过去接头、去低质量、去污染等过程完成数据的处理,得到最终数据。参照miRNA数据库,比对已知miRNA,构建OSCC组织和配对癌旁组织的miRNA表达谱。将两个样本的miRNA表达量归一化到同一个量级,然后使用标准化后的结果比较分析两组样本中显著差异表达的miRNA,显著差异表达的miRNA定义为Fold-change(log2鳞癌/癌旁)>1或者Fold-change(log2鳞癌/癌旁)<−1,并且P<0.01。

1.3. 构建差异mRNA表达谱

OSCC组织和配对癌旁组织的mRNA表达谱的构建方法同miRNA表达谱。差异基因的检测方法参照文献[9],显著差异表达基因定义为Fold-change(log2鳞癌/癌旁)≥1或Fold-change(log2鳞癌/癌旁)≤−1,且发现错误率(false discovery rate,FDR)≤0.001。

1.4. OSCC和癌旁组织中差异表达miRNA/mRNA对接

运用Gene Ontology功能富集分析,将1.2和1.3的结果进行对接分析,预测与OSCC细胞周期、凋亡、增殖及分化相关性较高的miRNA和mRNA。

2. 结果

2.1. OSCC和癌旁组织中差异miRNA表达谱

2.1.1. 已知miRNA的统计

与人类miRNA数据库中的miRNA前体进行比对发现,在OSCC组织中,共检测到1 554个已知miRNA,包括255个miRNA成熟体,304个miRNA-3p,283个miRNA-5p,712个miRNA前体;在癌旁组织中,共检测到1 496个已知miRNA,其中有247个miRNA成熟体,297个miRNA-3p,268个miRNA-5p和684个miRNA前体。

2.1.2. OSCC和癌旁组织中差异表达的miRNA

对照OSCC和癌旁组织中已知的miRNA,共有77个miRNA显著性差异表达,其中53个显著性上调,24个显著性下调。上调表达最显著的10个miRNA分别为hsa-miR-448、hsa-miR-1269b、hsa-miR-184、hsa-miR-411-3p、hsa-miR-1269a、hsa-miR-542-5p、hsa-miR-10b-3p、hsa-miR-129-1-3p、hsa-miR-450b-5p、hsa-miR-409-5p,Fold-change(log2鳞癌/癌旁)分别为10.746 02、8.070 44、7.807 41、6.707 91、4.891 40、3.980 21、3.680 66、3.439 63、2.838 23、2.565 21;下调表达最显著的10个miRNA分别为hsa-miR-135a-5p、hsa-miR-96-3p、hsa-miR-676-3p、hsa-miR-375、hsa-miR-99a-3p、hsa-miR-4776-5p、hsa-miR-202-5p、hsa-miR-1246、hsa-miR-211-5p、hsa-miR-1323,Fold-change(log2鳞癌/癌旁)分别为−8.007 87、−6.920 41、−6.727 78、−3.751 05、−2.967 36、−2.958 51、−2.720 37、−2.341 79、−2.064 27、−1.894 38。

2.2. OSCC和癌旁组织中差异mRNA表达谱

在OSCC组织和癌旁组织中共发现1 298个mRNA差异表达,根据筛选标准,发现1 120个mRNA显著性上调,178个mRNA显著性下调。上调表达最显著的10个mRNA分别为MAGE-A11、PHACTR3、COL10A1、PPAPDC1A、EMR1、FAM132A、CHRNA1、LRRC17、ODZ3、BAALC,Fold-change(log2鳞癌/癌旁)分别为10.252 66、9.930 73、9.837 62、9.738 09、9.686 50、9.686 50、9.686 50、9.631 17、9.455 32、9.324 18;下调表达最显著的10个mRNA分别为TCHH、SYTL4、EPHX3、KRT33B、CTTNBP2、ESYT3、NCRNA-00162、SYTL5、CACNB4、CRTAC1,Fold-change(log2鳞癌/癌旁)分别−10.759 88、−9.607 33、−9.377 21、−8.939 57、−8.851 74、−8.758 22、−8.758 22、−8.758 22、−8.758 22、−8.661 77。

2.3. OSCC组织中差异表达miRNA/mRNA的对接研究

除了上调表达中的miR-1537、miR-20a-5p和下调表达中的miR-23b-5p、hsa-miR-210未寻找到相应调控的靶mRNA外,其余73个miRNA都在OSCC细胞周期、增殖、分化及凋亡过程中相应地调控一个或多个靶mRNA。

3. 讨论

高通量测序技术堪称测序技术发展历程的一个里程碑,该技术可以对数百万个遗传分子同时进行测序,这使得对一个物种的转录组和基因组进行细致全貌的分析成为可能。近年来,以Illumina公司的Solexa技术、ABI公司的SOLiD技术和Roche公司的454技术为代表的新一代高通量RNA测序(RNA Sequencing,RNA-seq)技术得到飞速发展[10][11],与基因芯片技术相比,RNA-seq无需设计探针,能在全基因组范围内以单碱基分辨率检测和量化转录片段,并能应用于基因组图谱尚未完成的物种,具有信噪比高、分辨率高、应用范围广等优势[12]。此技术已在肝癌、膀胱癌等常见癌的表达谱构建方面得到广泛应用[13][14],但在OSCC表达谱构建方面的报道鲜见。本研究首次构建了OSCC的差异miRNA和mRNA表达谱,在该领域内具有先进性。

肿瘤细胞的周期改变、增殖、分化以及凋亡与肿瘤的发生发展密切相关,受到基因水平的调控,OSCC也同样如此。如S100A14的过表达,中止了OSCC细胞在G1期的有丝分裂,从而抑制了肿瘤的生长[15];PLAU的高表达与OSCC的细胞增殖相关,已成为OSCC预后诊断的指标[16];与凋亡相关的基因BCL2L12,与鳞癌的发生和发展密切相关[17]

从对接研究结果来看,在细胞周期、增殖、分化和凋亡4个阶段,一个miRNA可以调控多个mRNA,如上调表达的miR-377-3p、miR-450a-3p、miR-424-5p等和下调表达的miR-96-3p、let-7c、miR-548h-5p等。同样,也发现一个mRNA被多个miRNA调控,预测这些差异表达的miRNA在OSCC的发生和发展过程中可能发挥一定的作用。如miRNA-184在舌鳞癌患者中表达上调,手术切除后明显减少[18];miRNA-10b在口腔癌中高表达,其可促进肿瘤细胞的迁移和侵袭[19];miR-9在头颈部鳞癌中高表达,其通过抑制肿瘤细胞的增殖发挥抑癌作用[20];在OSCC中下调表达的miRNA-99a同肿瘤的生长密切相关[21];下调表达的miR-125b在OSCC的发生和发展过程中发挥着作用[22];miR-375在头颈部鳞癌中低表达[23]

miRNA-21、miRNA-31等一些已报道的口腔鳞癌相关miRNA[24][25],在研究中虽然也表现出一定的差异性,但是并不是很显著。此现象出现可能因选取的检测方法较以往研究不同,本研究采用高通量测序技术,获得庞大而详实的OSCC差异miRNA表达谱,较前可能会存在一定差异;其次可能因本研究的样本量偏少,导致结果有一些细微偏差,但并不影响整体的实验结果,笔者会在后续的研究中继续增加样本数量。

通过对OSCC和癌旁组织中miRNA和mRNA的对接研究,对miRNA与mRNA在OSCC中的相关关系有了更加深入的认识:单个miRNA可调控多个mRNA,一个mRNA同时又可受到多个miRNA的调控,它们相互交织、相互合作,形成精密、复杂的网络参与转录后的基因表达调控,在OSCC的发生和发展过程中发挥着重要的作用。随着OSCC中特异性miRNA的不断发现,通过生物信息技术,预测与之对应的靶基因,并对参与OSCC信号转导通路中的靶基因进行验证,对OSCC早期诊断和治疗提出了一些新的思路和方法。

Funding Statement

[基金项目] 江苏高校优势学科建设工程基金资助项目(2014-37)

References

  • 1.Brocklehurst PR, Baker SR, Speight PM. Oral cancer screening: what have we learnt and what is there still to achieve[J] Future Oncol. 2010;6(2):299–304. doi: 10.2217/fon.09.163. [DOI] [PubMed] [Google Scholar]
  • 2.Williams HK. Molecular pathogenesis of oral squamous carcinoma[J] Mol Pathol. 2000;53(4):165–172. doi: 10.1136/mp.53.4.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Kong YW, Ferland-McCollough D, Jackson TJ, et al. micro-RNAs in cancer management[J] Lancet Oncol. 2012;13(6):e249–e258. doi: 10.1016/S1470-2045(12)70073-6. [DOI] [PubMed] [Google Scholar]
  • 4.Lopez-Camarillo C, Marchat LA, Arechaga-Ocampo E, et al. MetastamiRs: non-coding microRNAs driving cancer invasion and metastasis[J] Int J Mol Sci. 2012;13(2):1347–1379. doi: 10.3390/ijms13021347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Heneghan HM, Miller N, Kerin MJ. MiRNAs as biomarkers and therapeutic targets in cancer[J] Curr Opin Pharmacol. 2010;10(5):543–550. doi: 10.1016/j.coph.2010.05.010. [DOI] [PubMed] [Google Scholar]
  • 6.Visone R, Croce CM. MiRNAs and cancer[J] Am J Pathol. 2009;174(4):1131–1138. doi: 10.2353/ajpath.2009.080794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Nagpal JK, Das BR. Oral cancer: reviewing the present understanding of its molecular mechanism and exploring the future directions for its effective management[J] Oral Oncol. 2003;39(3):213–221. doi: 10.1016/s1368-8375(02)00162-8. [DOI] [PubMed] [Google Scholar]
  • 8.Reibel J. Prognosis of oral pre-malignant lesions: significance of clinical, histopathological, and molecular biological characteristics[J] Crit Rev Oral Biol Med. 2003;14(1):47–62. doi: 10.1177/154411130301400105. [DOI] [PubMed] [Google Scholar]
  • 9.Bos CL, van Baarsen LG, Timmer TC, et al. Molecular subtypes of systemic sclerosis in association with anti-centromere antibodies and digital ulcers[J] Genes Immun. 2009;10(3):210–218. doi: 10.1038/gene.2008.98. [DOI] [PubMed] [Google Scholar]
  • 10.Metzker ML. Sequencing technologies-the next generation[J] Nat Rev Genet. 2010;11(1):31–46. doi: 10.1038/nrg2626. [DOI] [PubMed] [Google Scholar]
  • 11.Marioni JC, Mason CE, Mane SM, et al. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays[J] Genome Res. 2008;18(9):1509–1517. doi: 10.1101/gr.079558.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Birzele F, Schaub J, Rust W, et al. Into the unknown: expression profiling without genome sequence information in CHO by next generation sequencing[J] Nucleic Acids Res. 2010;38(12):3999–4010. doi: 10.1093/nar/gkq116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Zhu J, Jiang Z, Gao F, et al. A systematic analysis on DNA methylation and the expression of both mRNA and micro-RNA in bladder cancer[J] PLoS ONE. 2011;6(11):e28223. doi: 10.1371/journal.pone.0028223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Li X, Chen J, Hu X, et al. Comparative mRNA and micro-RNA expression profiling of three genitourinary cancers reveals common hallmarks and cancer-specific molecular events[J] PLoS ONE. 2011;6(7):e22570. doi: 10.1371/journal.pone.0022570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Sapkota D, Costea DE, Blø M, et al. S100A14 inhibits proliferation of oral carcinoma derived cells through G1-arrest[J] Oral Oncol. 2012;48(3):219–225. doi: 10.1016/j.oraloncology.2011.10.001. [DOI] [PubMed] [Google Scholar]
  • 16.Hundsdorfer B, Zeilhofer HF, Bock KP, et al. Tumour-associated urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1 in normal and neoplastic tissues of patients with squamous cell cancer of the oral cavity-clinical relevance and prognostic value[J] J Craniomaxillofac Surg. 2005;33(3):191–196. doi: 10.1016/j.jcms.2004.12.005. [DOI] [PubMed] [Google Scholar]
  • 17.Geomela PA, Kontos CK, Yiotakis I, et al. Quantitative expression analysis of the apoptosis-related gene, BCL2L12, in head and neck squamous cell carcinoma[J] J Oral Pathol Med. 2013;42(2):154–161. doi: 10.1111/j.1600-0714.2012.01190.x. [DOI] [PubMed] [Google Scholar]
  • 18.Wong TS, Liu XB, Wong BY, et al. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue[J] Clin Cancer Res. 2008;14(9):2588–2592. doi: 10.1158/1078-0432.CCR-07-0666. [DOI] [PubMed] [Google Scholar]
  • 19.Lu YC, Chen YJ, Wang HM, et al. Oncogenic function and early detection potential of miRNA-10b in oral cancer as identified by microRNA profiling[J] Cancer Prev Res: Phila. 2012;5(4):665–674. doi: 10.1158/1940-6207.CAPR-11-0358. [DOI] [PubMed] [Google Scholar]
  • 20.Minor J, Wang X, Zhang F, et al. Methylation of micro-RNA-9 is a specific and sensitive biomarker for oral and oropharyngeal squamous cell carcinomas[J] Oral Oncol. 2012;48(1):73–78. doi: 10.1016/j.oraloncology.2011.11.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Yan B, Fu Q, Lai L, et al. Downregulation of microRNA 99a in oral squamous cell carcinomas contributes to the growth and survival of oral cancer cells[J] Mol Med Rep. 2012;6(3):675–681. doi: 10.3892/mmr.2012.971. [DOI] [PubMed] [Google Scholar]
  • 22.Henson BJ, Bhattacharjee S, O'Dee DM, et al. Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy[J] Genes Chromosomes Cancer. 2009;48(7):569–582. doi: 10.1002/gcc.20666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Harris T, Jimenez L, Kawachi N, et al. Low-level expression of miR-375 correlates with poor outcome and metastasis while altering the invasive properties of head and neck squamous cell carcinomas[J] Am J Pathol. 2012;180(3):917–928. doi: 10.1016/j.ajpath.2011.12.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Wang W, Songlin P, Sun Y, et al. miR-21 inhibitor sensitizes human OSCC cells to cisplatin[J] Mol Biol Rep. 2012;39(5):5481–5485. doi: 10.1007/s11033-011-1350-9. [DOI] [PubMed] [Google Scholar]
  • 25.Liu CJ, Lin SC, Yang CC, et al. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma[J] Head Neck. 2012;34(2):219–224. doi: 10.1002/hed.21713. [DOI] [PubMed] [Google Scholar]

Articles from West China Journal of Stomatology are provided here courtesy of Editorial Department of West China Journal of Stomatology

RESOURCES