Abstract
Far-infrared ray (FIR) is an electromagnetic wave that produces various health benefits against pathophysiological conditions, such as diabetes mellitus, renocardiovascular disorders, stress, and depression etc. However, the therapeutic ap-plication on the FIR-mediated protective potentials remains to be further extended. To achieve better understanding on FIR-mediated therapeutic potentials, we summarized additional findings in the present study that exposure to FIR ameliorates stressful condition, memory impairments, drug dependence, and mitochondrial dysfunction in the central nervous system. In this review, we underlined that FIR requires modulations of janus kinase 2 / signal transducer and activator of transcription 3 (JAK2/STAT3), nuclear factor E2-related factor 2 (Nrf-2), muscarinic M1 acetylcholine receptor (M1 mAChR), dopamine D1 receptor, protein kinase C δ gene, and glutathione peroxidase-1 gene for exerting the protective potentials in response to neuropsychotoxic conditions
Keywords: Far-infrared ray, nuclear factor E2-related factor 2, glutathione peroxidase-1, JAK2/STAT3, M1 mAChR, dopamine D1 receptor, protein kinase C δ gene, neuropsychotoxic conditions
1. INTRODUCTION
1.1. Preview of Far-infrared ray
Infrared ray is an invisible spectrum of an electromagnetic wave used for the treatment of several discomforts. Infrared ray spectrum has a longer wavelength than visible radiation, which ranges from 750nm-1000µm [1]. According to the International Commission on Illumination infrared ray has been classified into three different bands based on their wavelength, i.e., near-infrared ray (NIR) (0.7–1.4 µm), middle infrared ray (MIR) (1.4–3 µm), and far-infrared ray (FIR) (3–1000 µm) [1, 2]. Among them, FIR is widely accepted as a therapeutic tool for biomedical and healthcare applications [3, 4], because of its ability to evenly transfer energy in the form of heat [5, 6]. However, beneficial effects of NIR were also recognized in diverse fields such as agricultural/food, fuel industry, textile industry, and biomedical usage [7, 8]. Although NIR is absorbed at skin level and enhanced the temperature [9], FIR penetrates deep into the tissues and regulates molecular mechanism via resonating water molecules [1, 10]. Moreover, FIR therapy uses longer wavelengths than NIR therapy [10], FIR is absorbed by and emitted by the body as a black body radiation (i.e., FIR absorber; 3-50 µm with an output peak at 9.4 µm) [1]. Additionally, it has been suggested that FIR therapy may not cause side effects. Therefore, it has been widely used to potentiate beneficial health effects [11, 12].
In 1989, thermal therapy was developed by using FIR dry sauna. Since this differs from the traditional sauna, Tei et al. (2007) changed the name from “thermal therapy” to “Waon therapy” that uniformly maintained the temperature at 60°C. “Wa” means soothing, and “On” means warmth, hence Waon or “soothing warmth” [13, 14]. Under Waon therapy, patients were exposed to FIR for 15 min, which steadily and uniformly warm the body, after which patients were allowed to rest outside the sauna under the blanket to maintain warmth for additional 30 min [14].
There are three main therapeutic techniques used to convey FIR [1]: i) FIR saunas; they are frequently used in Japan as “Woan therapy”, in this light is placed to create and transfer heat purely as a radiant heat, i.e., without using air as a medium [1, 15], ii) FIR devices; consist of electrified ceramic plates, placed at 20-30cm above patient [16] and iii) FIR emitting ceramics and fabrics; they work as a perfect absorber of heat from skin and then transfer heat back to the skin [1, 17]. Moreover, under standard experimental condition animals were exposed to FIR by using FIR emitting panel positioned at 40cm above the animal, and emit FIR ranging from wavelength 5-20 µm with controlled surface temperature, i.e., 40 °C [18-22]. Importantly, bioceramics including FIR emitters, increased nitric oxide (NO) production [1, 11], and facilitated microcirculation [23, 24]. FIR emitted by tourmaline powder has been shown to enhance blood flow in skin [25, 26]. In addition, bioceramic belts are readily used for attenuating renal disorder [16]. Bioceramic socks are used to treat chronic foot pain in diabetic neuropathy [27]. Soccer players have used FIR emitting clothing to relieve muscle pain [28]. In addition, several commercial centers are available that sell beds made of jades that convert light from helium projector bulbs into FIR [9].
Therapeutic effects of FIR have well-recognized against several pathophysiological conditions [1, 11, 29, 30], such as diabetes mellitus [11], chronic heart failure [11, 31], chronic kidney disease [11, 16, 32], stress [21], and depression [33]. Exposure to FIR stimulates oxygenation and sweating within the body [1, 34], which might be essential for detoxification and elimination of impurities. FIR therapy also helps in reducing body weight [35, 36], and life-style related diseases (such as, hypertension, hyperlipidemia, and smoking) [36]. Therefore, the purpose of the review is to summarize the possible underlying mechanisms of FIR-mediated therapeutic potentials against cardiovascular and psychotoxic disorder (Table 1).
Table 1. Protective potentials of FIR against pathophysiological conditions.
| Model | Protective Effect | Underlying Molecular Parameters | Refs. | |
|---|---|---|---|---|
| Ischemia | Hind limb (mouse) | Angiogenesis, vasculogenesis, and antioxidant potential |
• eNOS ↑ • EPCs ↑ • HO-1 ↑ |
[67, 69] |
| Ischemia | Testicular (rat) | Attenuate I/R injury, decreases apoptosis | • HO-1 ↑ | [65] |
| Cardiovascular disorder | Human | Improve endothelial function, antioxidant potential |
• eNOS ↑ • NO ↑ • EPCs ↑ • miRNA-31 ↑ • miRNA-720 ↑ • Lipid peroxidation ↑ |
[41, 43, 44, 50] |
| Diabetes mellitus | Mouse and human | Antioxidant potentials | • Peripheral blood circulation↑ • Cortisol ↓ • Lipid peroxidation ↓ |
[51, 58-60, 62] |
I/R injury; ischemia reperfusion injury, eNOS; endothelial nitric oxide synthase, HO-1; heme oxygenase-1, EPCs; endothelial progenitor cells, NO; nitric oxide.
Cardiovascular disease (CVD) is a combination of heart and blood vessels disorders, including coronary heart disease, cerebrovascular disease, renal vascular disease, and congenital heart diseases [37, 38]. Because of its severity, CVD is a leading cause of mortality globally. Hypertension, atherosclerosis, diabetes, smoking, and obesity are some of the consistent risk factors for CVD [39, 40]. Clinical studies revealed that FIR therapy protects against CVD. In particular, it was demonstrated that FIR-dry sauna improves endothelial functions in patients with CVD risk factors [41]. Escalating evidence suggested that endothelial nitric oxide synthase (eNOS) plays a critical role in FIR-mediated protective potentials against CVD risk factors [11, 41]. eNOS catalyzes the conversion of L-arginine into L-citrulline with the release of nitric NO, a crucial vasodilator molecule, which prevents atherosclerosis via vasodilation and inhibition of platelet aggregation [42]. It has been suggested that FIR therapy upregulate eNOS gene expression, and eventually generate NO [43]. Moreover, Ca2+/calmodulin-dependent protein kinase II (CaMKII) is important for FIR-mediated induction of eNOS [44]. Increased peripheral blood flow by FIR therapy shears stress, which further induces eNOS and NO production.
Asahara et al. (1997) demonstrated that vasculogenesis involves bone marrow-derived endothelial progenitor cells (EPCs) [45], while CVD risk factors impair EPCs mediated functions [46]. miRNAs recognized as a potential biomarker for CVD [47]. Although it has been demonstrated that the decrease in miRNA alters the angiogenic process [48], miRNA-positively regulates eNOS activity and generates NO [49]. Exposure to FIR positively regulates miRNA in endothelial cells [50]. In particular, exposure to FIR attenuates vasculogenic abnormalities via up-regulation of miRNA-31 and miRNA-720, which may be essential for normalization of circulating EPCs expression and function [50]. In addition, Masuda et al. (2004) demonstrated that exposure to FIR significantly decreased the urinary lipid peroxidation marker (i.e., 8-epi-prostaglandin F2α) in CVD risk factors patients [51], suggesting that exposure to FIR exhibits antioxidant potentials against CVD. Combined, these studies indicate that exposure to FIR can improve CVD via induction of eNOS, miRNA expression, and antioxidant activity.
The end-stage renal disease progressively leads to chronic renal failure and requires hemodialysis (HD) or kidney transplantation [52]. It has been demonstrated that exposure to FIR improve progressive renal dysfunction by increasing the access flow (Qa), while decreasing the malfunction of incidence and relative incidence of arteriovenous fistulas (AVFs) in HD patients [16]. Impaired growth of vascular smooth muscle cells might cause vascular stenosis. Moreover, failure of AVF maturation causes dysfunction of newly formed AVFs in patients with chronic kidney disease [53]. Exposure to FIR significantly improves AVFs maturation via attenuation of vascular restenosis in end-stage renal disease [11, 16, 53]. Additionally, it was demonstrated that exposure to FIR attenuates cisplatin-induced nephrotoxicity via inactivation of caspase-3 in HK-2 cells [54].
It has been demonstrated that FIR transmits thermal energy and improve AVF via vasodilation, while non-thermal effect includes antioxidant and anti-inflammatory potentials. Exposure to FIR attenuates TNFα-induced adhesion molecule E-selectin, vascular cell adhesion protein-1, and monocyte chemoattractant protein-1 [55]. Recently, it was reported that exposure to FIR inhibits IL-6 and TNF-α, while activates eNOS expression and vascular endothelial function [56]. In addition, Chen et al. (2016) showed that FIR-mediated induction of eNOS is essential for improving endothelial function, which is essential for increases in Qa and AVFs [12, 55]. These studies suggest that FIR therapy might be a potential therapeutic tool against end-stage renal disease.
Most common symptoms of diabetes mellitus (DM) are excessive thirst, hunger, urination, weakness, fatigue, nausea, and vomiting [57]. Importantly, FIR sauna therapy protects against DM and associated oxidative stress [51, 58]. Moreover, it has been reported that FIR-mediated leg hyperthermia attenuates oxidative stress in patients with type 2 DM [59]. Wang et al. (2016) demonstrated that high glucose may induce endothelial cell dysfunction, and that exposure to FIR attenuates this phenomenon in DM patients [60]. In addition, exposure to FIR attenuated advanced glycation end product (an oxidative parameter)-induced injury in vascular endothelial cells via activation of promyelocytic leukemia zinc finger protein [61].
In addition, FIR sauna therapy improved the quality of life in patients suffering from type 2 DM [62]. For example, FIR sauna significantly improved stress, fatigue, and pain in type 2 DM patients [62]. Importantly, it has been demonstrated that downregulation of eNOS causes oxidative damage in insulin-resistant skeletal muscle [63], and that eNOS is essential for the regulation of insulin sensitivity [64]. Therefore, it is plausible that FIR-mediated induction of eNOS might be involved in the protective mechanism against type 2 DM.
Ischemia is a restriction of blood supply to the tissues, results in energy deprivation because of unavailability of oxygen and glucose. It has been demonstrated that exposure to FIR alleviates ischemia-reperfusion injury in rat testes via induction of heme oxygenase-1 (HO-1) [65], a rate-limiting enzyme of that catalyzes the catabolism of heme to produce biliverdin and carbon monoxide [29]. Biliverdin further catabolized to a potent antioxidant, bilirubin [66], suggesting that HO-1 is a critical target for FIR mediated anti-ischemic potentials.
In addition, induction of eNOS is also essential for FIR-mediated anti-ischemic potentials. Akasaki et al. (2006) demonstrated that FIR sauna therapy alleviates hindlimb ischemia via induction of angiogenesis through eNOS [67]. Furthermore, L-NG-nitroarginine methyl ester (L-NAME; an eNOS inhibitor), or genetic depletion of eNOS counteracted the FIR-mediated protective potentials in response to the ischemic model [67]. Therefore, it is possible that FIR exerts anti-ischemic effects via inductions of HO-1 and eNOS.
Yue et al. (2011) suggested that the possible relation between circulating EPCs level and vasoconstriction is noted in patients with type 2 DM [68]. Furthermore, exposure to FIR increased bone marrow-derived EPCs, and therefore, exhibited antioxidative activity [69]. In addition, exposure to FIR potentiated vasculogenesis in hindlimb ischemia via antioxidant activity and induction of EPCs in mice [69].
It is well-recognized that revascularization in ischemia is essential for enhancing blood supply and consequently attenuates tissue damage [70]. Pericytes play a vital role for the maintenance of endothelial cells and microvasculature during angiogenesis [71], and relaxation of pericytes increases blood flow [72]. Thus, it may be speculated that exposure to FIR may modulate recruitment and relaxation of pericytes at the site of ischemia. To extend our knowledge, we summarized in this review on the possible underlying mechanism for FIR-mediated neuroprotective potentials against psychotoxic conditions (Table 2).
Table 2. Protective potentials of FIR against diverse neuropsychotoxic conditions.
| Model | Protective Mechanisms | Molecular Parameters | Refs. | |
|---|---|---|---|---|
| Sleep disorder | Mouse and human | Sleep modulatory action | Possible thermal effect: • Peripheral blood circulation ↑ • Chemical-messenger system ↑ |
[76, 77] |
| Depressive disorder | Human | N/A | N/A | [87] |
| Depression | Insomnia (Human) Loss-appetite (Mouse) |
Anti-depressive efficacy, antioxidant potential, psychosomatic relaxation | • Serotonin ↑ • MDA ↓ • Plasma ghrelin ↓ |
[91, 92] |
| Stress | Psychological-stress (rat and frog) | normalize heart rate, and blood pressure |
• Oxidative stress ↓ • Adrenaline ↓ |
[101] |
| Stress | Acute-restraint stress | Anti-stressful efficacy, and antioxidant potentials | • c-Fos ↓ • JAK2/STAT3 ↓ • Oxidative parameters ↓ • GPx-1gene ↑ |
[21] |
| Behavioral sensitization |
Methamphetamine (mouse) |
Attenuates Behavioral sensitization via antioxidant potentials and recovery of mitochondrial function | • c-Fos ↓ • Dopamine D1 receptor ↓ • Oxidative parameters ↓ • GPx-1gene ↑ |
[18] |
| Memory impairment |
Methamphetamine (mouse) |
Memory enhancing activity, antioxidant potentials | • Nrf2-dependent GSH system ↑ • M1 mAChR ↑ • p-ERK ↑ • PKCδ/p-PKCδ ↓ |
[19, 20] |
Abbreviations: M1 mAChR; Muscarinic acetylcholine receptors, PKC; protein kinase C, Nrf2, nuclear factor E2-related factor 2; GSH; reduced glutathione, N/A; not available, GPx; glutathione peroxidase, JAK2; Janus kinase 2, STAT3; Signal transducer and activator of transcription3.
2. FIR THERAPY IN RESPONSE TO NEURO- PSYCHOTOXIC CONDITIONS
2.1. FIR Therapy Attenuates Sleep Disorder and Depression
Sleeping disorder is characterized by less sleep, difficulty in sleeping, circadian rhythm disorders, and insomnia. Chronic insomnia might be a risk factor for neuropsychiatric problems such as, depression, anxiety, and substance abuse [73, 74], and could be a major cause of morbidity. Elderly people suffer from inadequate sleep because of less melatonin levels [75], which may further consequently increase the risk of sleep disorder.
It has been reported that exposure to FIR modulates sleep-waking pattern in freely moving rats and physical condition via facilitating blood circulation [76]. At present, little is known about the underlying mechanism on sleep enhancing potentials of FIR other than the tissue-warming efficacy. However, it is known that exposure to FIR improves peripheral blood circulation, and hence increases the metabolism in tissues [77]. In addition, FIR penetrates deep into the tissue up to 4 cm in depth [78], and resonates with water and other organic molecules in the body, which might generate thermal reactions, and optimally increases body temperature [3]. Moreover, studies on neuroimaging and magnetic resonance showed that exposure to FIR increases the motility of water molecules [77], which may further stimulate the penetration of water molecules into various tissues [41], and might cause an alteration in molecular mechanism responsible for sleep.
Depression is a major psychiatric disorder that reduces the quality of life and might cause insomnia [79-81], and emotional distress [82]. Depression is associated with alterations in cerebral blood flow [83], neurogenesis [84], endogenous antioxidant levels [85], and neurotransmitters [86]. Monoamine neurotransmitters (i.e., serotonin, norepinephrine, and dopamine) play a major role in the progression of the depressive disorder and are involved in physiological functions, such as, sleep, suicidal attempt, cognition, and reward [87-89].
Exposure to FIR modulated serotonin levels in depressive patients with insomnia, and also decreased lipid peroxidation marker (i.e., malondialdehyde) in serum. It has been proposed that oxidative stress might be responsible for mood disorders [90]. Therefore, it may be plausible that antioxidant activity might be involved in FIR-mediated anti-depressive effects [91]. In addition, Salehpour et al. (2017) demonstrated that transcranial photobiomodulation (PBM; consist of low-power lasers and light-emitting diodes in the far-red to near-infrared optical region) therapy is efficacious with negligible adverse effects against depressive disorder [87]. Furthermore, Masuda et al. (2005) reported that FIR sauna therapy is effective on depression and depression-induced lost appetite [92], and that FIR sauna therapy might protect against somatic and mental complaints via psychosomatic relaxation [92]. In addition, exposure to FIR alleviated fatigue, headache, and myalgia [58], although underlying mechanism remains to be determined.
2.2. Anti-stress Efficacy of FIR
Stress is ubiquitously present in our daily life, leading to severe health problems, such as cardiovascular disease [93], obesity [94], and neuropsychiatric disorders [95]. Stressful condition can increase the risk of high blood pressure and myocardiac infraction [96] and also enhances sympathetic control, while reduces parasympathetic control [97]. Stress can stimulate the activation of the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system, which is critical for stress-induced responses [98]. Stressful condition stimulates “fight-or-flight” response, which increases adrenaline release via activation of sympathetic nervous system [99]. Stress mediates oxidative stress via stimulation of several biological pathways. It has been demonstrated that hydrogen peroxide (H2O2) decreases antioxidant system, and alters contractile force in the myocardium [100]. In contrast, Leung et al. (2012) showed that BIOCERAMIC (a far infrared ray emitter) protects against psychological stress-induced cardiac arrest and myocardiac infraction via normalizing the blood pressure and antioxidant activity by decrease in the adrenaline release [101].
Moreover, it was demonstrated that restraint stress induces oxidative burdens [18, 33, 102]. Cecatelli et al. (1989) showed that stressors activate c-Fos-immunoreactivity (c-Fos-IR) in neurons in the paraventricular nucleus of the hypothalamus (PVN) [103]. Consistently, we demonstrated that acute restraint stress (ARS) induces c-Fos-IR in PVN. Recently, we demonstrated that exposure to FIR significantly attenuates ARS-induced c-Fos-IR in PVN [21]. Importantly, we and others suggested that restraint stress significantly decreases the glutathione peroxidase (GPx) activity in the brain [21, 104]. Although GPx is a major antioxidant enzyme in the brain for detoxification of peroxides, the depletion reduced glutathione (GSH) causes downregulation of GPx [21, 105, 106]. Furthermore, a decrease in intracellular GSH causes an increase in oxidative parameters [i.e., reactive oxygen species (ROS), lipid peroxidation, and protein oxidation]. Thus, we proposed that exposure to FIR protects against ARS-induced oxidative damage via induction of GPx-1 gene [21].
In addition, it was recognized that janus kinase 2 / signal transducer and activator of transcription 3 (JAK2/STAT3) signal pathway might play a role in inducing oxidative stress [107]. We showed that ARS significantly upregulated JAK2/STAT3 signal pathway, and hence produces oxidative burdens [21]. In contrast, exposure to FIR inactivates the JAK2/STAT3, but not NFkB, signaling pathway against ARS. These positive potentials of FIR against ARS were comparable to those mediated by genetic overexpression of GPx-1 [107]. Moreover, exposure to FIR-mediated eNOS induction might cause recovery of autonomic nervous activity [108]. Oelze et al. (2014) demonstrated that GPx-1 deficiency results in endothelial and vascular dysfunction [109]. Consistently, Ullrich and Kissner (2006) reported that positive modulation of eNOS requires activation of GPx-1 [110]. However, FIR-mediated increase in eNOS and GPx-1 levels against stressful condition needs to be elucidated. Here, we propose that FIR attenuates ARS-induced oxidative burdens via inhibition of JAK2/STAT3 and induction of GPx-1 gene.
2.3. FIR Therapy Attenuates Methamphetamine (MA)-induced Behavioral Sensitization
Escalating evidence suggested that repeated stressful condition enhances abusive potentials [111-113]. In particular, restraint stress facilitates MA-induced drug dependence via excitotoxicity and oxidative stress [112, 114, 115]. MA, a derivative of amphetamine, is a highly consumed illicit psychostimulant after cannabis [116]. MA is more addictive than amphetamine because of its long-lasting action. MA is highly lipid soluble and readily cross blood-brain barrier [117]. MA drug abuse is contributable to neurotoxicity, and psychosis including cognitive impairment. Symptoms of MA-induced psychosis are similar to those of schizophrenia, such as hallucination and delusion [118, 119]. Repeated low doses of MA cause behavioral sensitization [120, 121], whereas higher doses cause neurotoxicity [106, 122]. It is well-recognized that repeated MA treatment induces behavioral sensitization following withdrawal period [123-125]. Interestingly, aripiprazole (a well-known antipsychotic) protects against MA-induced behavioral sensitization [124, 126]. Consistently, exposure to FIR significantly attenuates MA-induced behavioral sensitization in mice [18].
MA treatment stimulates dopamine release, which might cause euphoria, enhanced mental acuity, and positive mood [127, 128]. It is well-recognized the essential role of dopamine in MA psychosis and behavioral sensitization [129, 130]. MA induces hypodopaminergic condition via depletion of presynaptic dopamine causes negative symptoms [131], this may cause recurrence of psychosis in response to MA. Furthermore, excessive dopamine oxidized to H2O2 by monoamine oxidases [132]. H2O2 further detoxified by mitochondrial GPx to produce H2O [133]. Additionally, impaired homeostasis in enzymatic antioxidants between GPx and superoxide dismutase (SOD) might also cause behavioral sensitization because of increased oxidative stress [134]. In addition, we demonstrated that MA treatment increases SOD activity, which might be responsible for the accumulation of H2O2, and finally potentiates oxidative stress [122]. In our recent study, we demonstrated that repeated MA treatment leads to behavioral sensitization via upregulation of dopamine D1 receptor and down-regulation of GPx-1 gene. Importantly, exposure to FIR significantly attenuates MA-induced SOD activity, while inducing GPx level [18].
Protective potentials of dopamine D1 or D2 receptor antagonists against MA-induced behavioral sensitization have been well recognized [135, 136]. Genetic depletion of dopamine D2 receptor attenuates MA-induced sensitization [137]. In addition, it has been demonstrated that genetic depletion of adenylyl cyclase 1 and 8 subtypes inhibits MA-induced behavioral sensitization and activation of ‘dopamine and cAMP-regulated phosphoprotein-32 (DARPP-32)’ indicating that activation of cAMP/PKA system is important for the behavioral sensitization [138]. Exposure to FIR protects against MA-induced behavioral sensitization via downregulation of dopamine D1 receptor and induction of GPx-1 gene [18]. However, the effect of FIR on activation of cAMP/PKA system and DARPP-32 remains to be determined.
In addition, we and others reported that MA abuse results in mitochondrial dysfunction related to behavioral sensitization [18, 139]. It has been demonstrated that dopamine alters mitochondrial oxidative phosphorylation via inhibition of complex 1, finally results in oxidative damage [140, 141]. Moreover, MA-induced mitochondrial dysfunction requires activation of dopamine D1 receptor [142]. We demonstrated that exposure to FIR significantly attenuated intramitochondrial accumulation of Ca2+ and decreased mitochondrial membrane potential in response to MA, that positive effects mediated by FIR against MA are comparable to those by D1 receptor antagonist, SCH23390, suggesting that exposure to FIR might recover mitochondrial function via inhibition of dopamine D1 receptor and by induction of mitochondrial antioxidant system [18]. Furthermore, FIR exhibit protective effects on a neurodegenerative cell model of spinocerebellar ataxia type 3 via improvement in mitochondrial respiratory function [143]. Taken together, these studies suggested that recovery of mitochondrial function is important for FIR-mediated protective potentials.
2.4. Memory Enhancing Effects of FIR in Response to MA
MA abusers exhibit poorer memory recall than non-users [144]. Additionally, MA abuse leads to the dysfunction of the prefrontal cortex, and causes cognitive impairment [145-147]. Previously, we demonstrated that repeated MA treatment causes memory impairments in mice [125, 148]. Likewise, clinical reports suggested that MA causes cognitive impairment in abusive individuals [149]. Recently, we demonstrated the crucial role of protein kinase C (PKC) in MA-induced memory impairment and oxidative stress [19]. The PKC family consists of 12 isoforms [150, 151], which are further subdivided into three groups according to the regulatory domain and activator domain, e.g., PKCs (cPKCs) α, βI, and βII; novel PKCs (nPKCs) δ, ε, η, and θ; and atypical PKCs (aPKCs) ζ, and λ [152]. In particular, repeated treatment with MA significantly and selectively induces PKCδ, in association with memory impairment [20, 148, 153] In contrast, exposure to FIR attenuates MA-induced phosphorylation of PKCδ, and improves MA-induced memory impairments [20]. Moreover, the memory-enhancing activity by FIR is comparable to that of genetic depletion of PKCδ [19, 20, 148]. We also found that PKC activator, bryostatin-1, significantly counteracts FIR-mediated memory enhancing effects in response to MA [19]. In addition, it was demonstrated that inhibition of PKCδ modulates eNOS [154, 155] and GSH system [156, 157]. Therefore, it may be speculated that FIR might induce eNOS and GSH, which might be crucial for FIR-mediated memory enhancing potentials [18-20].
MA treatment induced endoplasmic reticulum stress, which might cause depletion of GSH [158, 159], in turn, induce GSH biosynthesis via Nrf-2/antioxidant responsive element (ARE) signaling. Nrf2 transcription factor is essential for the induction of c-glutamylcysteine ligase modifier subunit (GCLm), c-glutamylcysteine ligase catalytic subunit (GCLc), GPx, and reduced glutathione (GSH) [160]. Recently, we demonstrated that up-regulation of Nrf2-dependent system might be critical for FIR-mediated antioxidative potential and memory enhancing activity against MA [19].
Muscarinic acetylcholine receptors (mAChRs) are G-protein coupled receptors that consist of five subunits (i.e., M1-M5) [161]. Repeated treatment with MA selectively downregulated M1 mAChR, and resulted in the recognition memory impairment [19]. It was demonstrated that up-regulation of M1 mAChR signaling is essential for memory function in rodents [162, 163]. Consistently, we demonstrated that exposure to FIR protects from MA-induced downregulation of M1 mAChR and associated cognitive dysfunction [19]. Consistently, dicyclomine, a selective M1 mAChR antagonist, counteracted FIR-mediated protective potentials against MA [19]. Moreover, mAChR family activates ERK1/2 signaling, which might be responsible for mammalian-associative learning [164, 165], and also might be involved in psychostimulant-induced neuronal plasticity [166, 167]. We reported that MA-induced memory impairment requires downregulation of ERK1/2 signaling in prefrontal cortex. In addition, exposure to FIR up-regulates ERK1/2 signaling by the interactive modulation between M1 mAChR and Nrf-2 transcription factor, and leads to attenuation against MA-induced memory dysfunction [19]. Consistently, pharmacological inhibitor of ERK, i.e., U0126, counteracted the FIR-mediated effects, suggesting that activation of ERK1/2 signaling is crucial for FIR-mediated memory enhancing activity [19]. Interestingly, protective potentials mediated by FIR are comparable to those by clozapine an antipsychotic, and by genetic depletion of PKCδ [19, 20, 125, 148], indicating that FIR can be a potential therapeutic tool in response to MA-induced psychotoxicity.
CONCLUSION
As shown in “1. Preview section”, therapeutic potentials of FIR have been well-recognized in diverse pathological conditions. Here, we extended additional findings in this review on the potential therapeutic intervention mediated by FIR. Exposure to FIR ameliorated neuropsychiatric disorders via inducing antioxidant-, anti-inflammatory-, antidopaminergic-, and cholinergic-potentials via modulating signalings mediated by GPx-1, eNOS, JAK2/STAT3, Nrf-2, PKCδ, dopamine D1 receptor, M1 mAChR, and ERK1/2 Fig. (1) and Graphic abstract).
Fig. (1).

Schematic depiction on the protective mechanism mediated by FIR. Exposure to FIR inhibits PKC delta, while potentiates Nrf-2-dependent GSH induction, followed by ERK-dependent M1 mAChR up-regulation. The signaling process is important for protecting memory loss induced by MA (A). We showed that exposure to FIR enhances antioxidant efficacy via induction of GPx-1. This antioxidant potential is helpful for attenuating mitochondrial dysfunction and down-regulation of dopamine D1 receptor, and finally recovery of mitochondrial function and inactivation of D1 receptor are important for protecting behavioral sensitization induced by MA (B). In addition, GPx-1-related antioxidant potential attenuates JAK2/STAT3 signaling process. This signaling process is critical for attenuation of acute restraint stress (C). Exposure to FIR enhances antioxidant activity and EPCs function via induction e-NOS followed by facilitation blood flow, and finally protects from renocardiovascular disorders (D). Furthermore, FIR-induced e-NOS stimulates HO-1 level. This mechanism can facilitate anti-ischemic potentials in testis, and hindlimb (E).
ACKNOWLEDGEMENTS
HCK designed this review, NS mainly wrote the review article. EHC, SYN, and NHK provided valuable informations on the FIR. EJS, JHJ, BTN, and CGJ provided helpful discussion and HCK finally revised this manuscript. HCK and NS arranged this manuscript via full communications with all co-authors. All authors have read and finally approved this submission.
LIST OF ABBREVIATIONS
- AVF
Arteriovenous Fistulas
- eNOS
Endothelial Nitric Oxide Synthase
- EPCs
Endothelial Progenitor Cells
- GPx
Glutathione Peroxidase
- GSH
Reduced Glutathione
- HO-1
Heme Oxygenase-1
- I/R injury
Ischemia Reperfusion Injury
- IL-6
Interleukin-6
- JAK2
Janus Kinase 2
- mAChR
Muscarinic Acetylcholine Receptors
- N/A
Not Available
- NO
Nitric Oxide
- Nrf2
Nuclear factor E2-related factor 2
- PKC
Protein kinase C
- STAT3
Signal Transducer and Activator of Transcription3
- TNF α
Tumor Necrosis Factor α
CONSENT FOR PUBLICATION
Not applicable.
FUNDING
This study was supported by a grant from Forestry Technology Projects (provided by the Korea Forest Service Project, No. S111415L020100), by grant from the Korea Food and Drug Administration (14182MFDS979), and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, Republic of Korea (#NRF-2017R1A2B1003346 and #NRF-2016R1A1A1A05005201). Naveen Sharma was supported by the BK21 PLUS program.
CONFLICT OF INTEREST
The authors declare no conflict of interest, financial or otherwise.
REFERENCES
- 1.Vatansever F., Hamblin M.R. Far infrared radiation (FIR): its biological effects and medical applications. Photonics Lasers Med. 2012;4:255–266. doi: 10.1515/plm-2012-0034. [http://dx.doi.org/10.1515/plm-2012-0034]. [PMID: 23833705]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Toyokawa H., Matsui Y., Uhara J., Tsuchiya H., Teshima S., Nakanishi H., Kwon A.H., Azuma Y., Nagaoka T., Ogawa T., Kamiyama Y. Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp. Biol. Med. (Maywood) 2003;228(6):724–729. doi: 10.1177/153537020322800612. [http://dx.doi.org/10.1177/153537020322800612]. [PMID: 12773705]. [DOI] [PubMed] [Google Scholar]
- 3.Li K., Xia L., Liu N.F., Nicoli F., Constantinides J., D’Ambrosia C., Lazzeri D., Tremp M., Zhang J.F., Zhang Y.X. Far infrared ray (FIR) therapy: An effective and oncological safe treatment modality for breast cancer related lymphedema. J. Photochem. Photobiol. B. 2017;172:95–101. doi: 10.1016/j.jphotobiol.2017.05.011. [http://dx.doi.org/10.1016/j.jphotobiol.2017.05.011]. [PMID: 28535427]. [DOI] [PubMed] [Google Scholar]
- 4.Eells J.T., Wong-Riley M.T., VerHoeve J., Henry M., Buchman E.V., Kane M.P., Gould L.J., Das R., Jett M., Hodgson B.D., Margolis D., Whelan H.T. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004;4(5-6):559–567. doi: 10.1016/j.mito.2004.07.033. [http://dx.doi.org/10.1016/j.mito.2004.07.033]. [PMID: 16120414]. [DOI] [PubMed] [Google Scholar]
- 5.Plaghki L., Decruynaere C., Van Dooren P., Le Bars D. The fine tuning of pain thresholds: a sophisticated double alarm system. PLoS One. 2010;5(4):e10269. doi: 10.1371/journal.pone.0010269. [http://dx.doi.org/10.1371/journal.pone.0010269]. [PMID: 20428245]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Niwa Y., Miyachi Y., Ishimoto K., Kanoh T. Why are natural plant medicinal products effective in some patients and not in others with the same disease? Planta Med. 1991;57(4):299–304. doi: 10.1055/s-2006-960102. [http://dx.doi.org/10.1055/s-2006-960102]. [PMID: 1775568]. [DOI] [PubMed] [Google Scholar]
- 7.Escobedo R., Miranda R., Martínez J. Infrared Irradiation: Toward Green Chemistry, a Review. Int. J. Mol. Sci. 2016;17(4):453. doi: 10.3390/ijms17040453. [http://dx.doi.org/10.3390/ijms17040453]. [PMID: 27023535]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Pasquini C. Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc. 2003;14:198–219. [http://dx.doi.org/10.1590/S0103-50532003000200006]. [Google Scholar]
- 9.Habib M.E., Punnoose T., Thomas C. Deep burns caused by far-infrared rays in a chiropractic sales centre. Ann. Burns Fire Disasters. 2007;20(2):104–106. [PMID: 21991078]. [PMC free article] [PubMed] [Google Scholar]
- 10.Karu T.I., Pyatibrat L.V., Kolyakov S.F., Afanasyeva N.I. Absorption measurements of cell monolayers relevant to mechanisms of laser phototherapy: reduction or oxidation of cytochrome c oxidase under laser radiation at 632.8 nm. Photomed. Laser Surg. 2008;26(6):593–599. doi: 10.1089/pho.2008.2246. [http://dx.doi.org/10.1089/pho.2008.2246]. [PMID: 19099388]. [DOI] [PubMed] [Google Scholar]
- 11.Shui S., Wang X., Chiang J.Y., Zheng L. Far-infrared therapy for cardiovascular, autoimmune, and other chronic health problems: A systematic review. Exp. Biol. Med. (Maywood) 2015;240(10):1257–1265. doi: 10.1177/1535370215573391. [http://dx.doi.org/10.1177/1535370215573391]. [PMID: 25716016]. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 12.Yu S.Y., Chiu J.H., Yang S.D., Hsu Y.C., Lui W.Y., Wu C.W. Biological effect of far-infrared therapy on increasing skin microcirculation in rats. Photodermatol. Photoimmunol. Photomed. 2006;22(2):78–86. doi: 10.1111/j.1600-0781.2006.00208.x. [http://dx.doi.org/10.1111/j.1600-0781.2006.00208.x]. [PMID: 16606412]. [DOI] [PubMed] [Google Scholar]
- 13.Tei C. Waon therapy: soothing warmth therapy. J. Cardiol. 2007;49(6):301–304. [PMID: 17633566]. [PubMed] [Google Scholar]
- 14.Tei C., Horikiri Y., Park J.C., Jeong J.W., Chang K.S., Toyama Y., Tanaka N. Acute hemodynamic improvement by thermal vasodilation in congestive heart failure. Circulation. 1995;91(10):2582–2590. doi: 10.1161/01.cir.91.10.2582. [http://dx.doi.org/10.1161/01.CIR.91.10.2582]. [PMID: 7743620]. [DOI] [PubMed] [Google Scholar]
- 15.Ishi K., Shibata Y., Takahashi T., Mishiro H., Ohsaka T., Ikezawa M., Kondo Y., Nakazato T., Urasawa S., Niimura N., Kato R., Shibasaki Y., Oyamada M. Spectrum of coherent synchrotron radiation in the far-infrared region. Phys. Rev. A. 1991;43(10):5597–5604. doi: 10.1103/physreva.43.5597. [http://dx.doi.org/10.1103/PhysRevA.43.5597]. [PMID: 9904873]. [DOI] [PubMed] [Google Scholar]
- 16.Lin C.C., Chang C.F., Lai M.Y., Chen T.W., Lee P.C., Yang W.C. Far-infrared therapy: a novel treatment to improve access blood flow and unassisted patency of arteriovenous fistula in hemodialysis patients. J. Am. Soc. Nephrol. 2007;18(3):985–992. doi: 10.1681/ASN.2006050534. [http://dx.doi.org/10.1681/ASN.2006050534]. [PMID: 17267744]. [DOI] [PubMed] [Google Scholar]
- 17.Ko G.D., Berbrayer D. Effect of ceramic-impregnated “thermoflow” gloves on patients with Raynaud’s syndrome: randomized, placebo-controlled study. Altern. Med. Rev. 2002;7(4):328–335. [PMID: 12197784]. [PubMed] [Google Scholar]
- 18.Mai H.N., Sharma N., Shin E.J., Nguyen B.T., Jeong J.H., Jang C.G., Cho E.H., Nah S.Y., Kim N.H., Nabeshima T., Kim H.C. Exposure to far infrared ray protects methamphetamine-induced behavioral sensitization in glutathione peroxidase-1 knockout mice via attenuating mitochondrial burdens and dopamine D1 receptor activation. Neurochem. Res. 2018;43(5):1118–1135. doi: 10.1007/s11064-018-2528-5. [http://dx.doi.org/10.1007/s11064-018-2528-5]. [PMID: 29687308]. [DOI] [PubMed] [Google Scholar]
- 19.Mai H.N., Sharma N., Shin E.J., Nguyen B.T., Nguyen P.T., Jeong J.H., Jang C.G., Cho E.H., Nah S.Y., Kim N.H., Nabeshima T., Kim H.C. Exposure to far-infrared rays attenuates methamphetamine-induced recognition memory impairment via modulation of the muscarinic M1 receptor, Nrf2, and PKC. Neurochem. Int. 2018;116:63–76. doi: 10.1016/j.neuint.2018.03.009. [http://dx.doi.org/10.1016/j.neuint.2018.03.009]. [PMID: 29572053]. [DOI] [PubMed] [Google Scholar]
- 20.Mai H.N., Sharma N., Shin E.J., Nguyen B.T., Nguyen P.T., Jeong J.H., Cho E.H., Lee Y.J., Kim N.H., Jang C.G., Nabeshima T., Kim H.C. Exposure to far-infrared ray attenuates methamphetamine-induced impairment in recognition memory through inhibition of protein kinase C δ in male mice: Comparison with the antipsychotic clozapine. J. Neurosci. Res. 2018;96(7):1294–1310. doi: 10.1002/jnr.24228. [http://dx.doi.org/10.1002/jnr.24228]. [PMID: 29476655]. [DOI] [PubMed] [Google Scholar]
- 21.Tran T.H., Mai H.N., Shin E.J., Nam Y., Nguyen B.T., Lee Y.J., Jeong J.H., Tran H.Y., Cho E.H., Nah S.Y., Lei X.G., Nabeshima T., Kim N.H., Kim H.C. Repeated exposure to far infrared ray attenuates acute restraint stress in mice via inhibition of JAK2/STAT3 signaling pathway by induction of glutathione peroxidase-1. Neurochem. Int. 2016;94:9–22. doi: 10.1016/j.neuint.2016.02.001. [http://dx.doi.org/10.1016/j.neuint.2016.02.001]. [PMID: 26850477]. [DOI] [PubMed] [Google Scholar]
- 22.Udagawa Y., Nagasawa H. Effects of far-infrared ray on reproduction, growth, behaviour and some physiological parameters in mice. In Vivo. 2000;14(2):321–326. [PMID: 10836204]. [PubMed] [Google Scholar]
- 23.Zhang L., Chan P., Liu Z.M., Hwang L.L., Lin K.C., Chan W.P., Leung T.K., Choy C.S. The effect of photoluminescence of bioceramic irradiation on middle cerebral arterial occlusion in rats. Evid. Based Complement. Alternat. Med. 2016;2016:7230962. doi: 10.1155/2016/7230962. [http://dx.doi.org/10.1155/2016/7230962]. [PMID: 27375765]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Leung T.K. In vitro and in vivo studies of the biological effects of bioceramic (a material of emitting high performance far-infrared ray) irradiation. Chin. J. Physiol. 2015;58(3):147–155. doi: 10.4077/CJP.2015.BAD294. [http://dx.doi.org/10.4077/CJP.2015.BAD294]. [PMID: 26014120]. [DOI] [PubMed] [Google Scholar]
- 25.Meng J., Jin W., Liang J., Ding Y., Gan K., Yuan Y. Effects of particle size on far infrared emission properties of tourmaline superfine powders. J. Nanosci. Nanotechnol. 2010;10(3):2083–2087. doi: 10.1166/jnn.2010.2072. [http://dx.doi.org/10.1166/jnn.2010.2072]. [PMID: 20355631]. [DOI] [PubMed] [Google Scholar]
- 26.Yoo B.H., Park C.M., Oh T.J., Han S.H., Kang H.H., Chang I.S. Investigation of jewelry powders radiating far-infrared rays and the biological effects on human skin. J. Cosmet. Sci. 2002;53(3):175–184. [PMID: 12053208]. [PubMed] [Google Scholar]
- 27.Rao J., Paabo K.E., Goldman M.P. A double-blinded randomized trial testing the tolerability and efficacy of a novel topical agent with and without occlusion for the treatment of cellulite: a study and review of the literature. J. Drugs Dermatol. 2004;3(4):417–425. [PMID: 15303786]. [PubMed] [Google Scholar]
- 28.Loturco I., Abad C., Nakamura F.Y., Ramos S.P., Kobal R., Gil S., Pereira L.A., Burini F., Roschel H., Ugrinowitsch C., Tricoli V. Effects of far infrared rays emitting clothing on recovery after an intense plyometric exercise bout applied to elite soccer players: a randomized double-blind placebo-controlled trial. Biol. Sport. 2016;33(3):277–283. doi: 10.5604/20831862.1208479. [http://dx.doi.org/10.5604/20831862.1208479]. [PMID: 27601783]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Lin C.C., Liu X.M., Peyton K., Wang H., Yang W.C., Lin S.J., Durante W. Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme oxygenase-1. Arterioscler. Thromb. Vasc. Biol. 2008;28(4):739–745. doi: 10.1161/ATVBAHA.107.160085. [http://dx.doi.org/10.1161/ATVBAHA.107.160085]. [PMID: 18202320]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Nagasawa H., Udagawa Y., Kiyokawa S. Evidence that irradiation of far-infrared rays inhibits mammary tumour growth in SHN mice. Anticancer Res. 1999;19(3A):1797–1800. [PMID: 10470118]. [PubMed] [Google Scholar]
- 31.Miyata M., Tei C. Waon therapy for cardiovascular disease: innovative therapy for the 21st century. Circ. J. 2010;74(4):617–621. doi: 10.1253/circj.cj-09-0939. [http://dx.doi.org/10.1253/circj.CJ-09-0939]. [PMID: 20154403]. [DOI] [PubMed] [Google Scholar]
- 32.Lai C.C., Fang H.C., Mar G.Y., Liou J.C., Tseng C.J., Liu C.P. Post-angioplasty far infrared radiation therapy improves 1-year angioplasty-free hemodialysis access patency of recurrent obstructive lesions. Eur. J. Vasc. Endovasc. Surg. 2013;46(6):726–732. doi: 10.1016/j.ejvs.2013.09.018. [http://dx.doi.org/10.1016/j.ejvs.2013.09.018]. [PMID: 24119468]. [DOI] [PubMed] [Google Scholar]
- 33.Tsai J.F., Hsiao S., Wang S.Y. Infrared irradiation has potential antidepressant effect. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2007;31(7):1397–1400. doi: 10.1016/j.pnpbp.2007.06.006. [http://dx.doi.org/10.1016/j.pnpbp.2007.06.006]. [PMID: 17618028]. [DOI] [PubMed] [Google Scholar]
- 34.Chiang C., Romero L. Cutaneous lymphoid hyperplasia (pseudolymphoma) in a tattoo after far infrared light. Dermatol. Surg. 2009;35(9):1434–1438. doi: 10.1111/j.1524-4725.2009.01254.x. [http://dx.doi.org/10.1111/j.1524-4725.2009.01254.x]. [PMID: 19549070]. [DOI] [PubMed] [Google Scholar]
- 35.Conrado L.A., Munin E. Reduction in body measurements after use of a garment made with synthetic fibers embedded with ceramic nanoparticles. J. Cosmet. Dermatol. 2011;10(1):30–35. doi: 10.1111/j.1473-2165.2010.00537.x. [http://dx.doi.org/10.1111/j.1473-2165.2010.00537.x]. [PMID: 21332913]. [DOI] [PubMed] [Google Scholar]
- 36.Biro S., Masuda A., Kihara T., Tei C. Clinical implications of thermal therapy in lifestyle-related diseases. Exp. Biol. Med. (Maywood) 2003;228(10):1245–1249. doi: 10.1177/153537020322801023. [http://dx.doi.org/10.1177/153537020322801023]. [PMID: 14610268]. [DOI] [PubMed] [Google Scholar]
- 37.Stewart J., Manmathan G., Wilkinson P. Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc. Dis. 2017:62048004016687211. doi: 10.1177/2048004016687211. [http://dx.doi.org/10.1177/2048004016687211]. [PMID: 28286646]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Fuster V., Kelly B.B. In promoting cardiovascular health in the developing world: a critical challenge to achieve global health. 2010. [PubMed] [Google Scholar]
- 39.Dantas A.P., Jiménez-Altayó F., Vila E. Vascular aging: facts and factors. Front. Physiol. 2012;3:325. doi: 10.3389/fphys.2012.00325. [http://dx.doi.org/10.3389/fphys.2012.00325]. [PMID: 22934073]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Yusuf S., Hawken S., Ounpuu S., Dans T., Avezum A., Lanas F., McQueen M., Budaj A., Pais P., Varigos J., Lisheng L. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–952. doi: 10.1016/S0140-6736(04)17018-9. [http://dx.doi.org/10.1016/S0140-6736(04)17018-9]. [PMID: 15364185]. [DOI] [PubMed] [Google Scholar]
- 41.Imamura M., Biro S., Kihara T., Yoshifuku S., Takasaki K., Otsuji Y., Minagoe S., Toyama Y., Tei C. Repeated thermal therapy improves impaired vascular endothelial function in patients with coronary risk factors. J. Am. Coll. Cardiol. 2001;38(4):1083–1088. doi: 10.1016/s0735-1097(01)01467-x. [http://dx.doi.org/10.1016/S0735-1097(01)01467-X]. [PMID: 11583886]. [DOI] [PubMed] [Google Scholar]
- 42.Anggård E. Nitric oxide: mediator, murderer, and medicine. Lancet. 1994;343(8907):1199–1206. doi: 10.1016/s0140-6736(94)92405-8. [http://dx.doi.org/10.1016/S0140-6736(94)92405-8]. [PMID: 7909873]. [DOI] [PubMed] [Google Scholar]
- 43.Ikeda Y., Biro S., Kamogawa Y., Yoshifuku S., Eto H., Orihara K., Yu B., Kihara T., Miyata M., Hamasaki S., Otsuji Y., Minagoe S., Tei C. Repeated sauna therapy increases arterial endothelial nitric oxide synthase expression and nitric oxide production in cardiomyopathic hamsters. Circ. J. 2005;69(6):722–729. doi: 10.1253/circj.69.722. [http://dx.doi.org/10.1253/circj.69.722]. [PMID: 15914953]. [DOI] [PubMed] [Google Scholar]
- 44.Park J.H., Lee S., Cho D.H., Park Y.M., Kang D.H., Jo I. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179. Biochem. Biophys. Res. Commun. 2013;436(4):601–606. doi: 10.1016/j.bbrc.2013.06.003. [http://dx.doi.org/10.1016/j.bbrc.2013.06.003]. [PMID: 23756809]. [DOI] [PubMed] [Google Scholar]
- 45.Asahara T., Murohara T., Sullivan A., Silver M., van der Zee R., Li T., Witzenbichler B., Schatteman G., Isner J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–967. doi: 10.1126/science.275.5302.964. [http://dx.doi.org/10.1126/science.275.5302.964]. [PMID: 9020076]. [DOI] [PubMed] [Google Scholar]
- 46.Vasa M., Fichtlscherer S., Aicher A., Adler K., Urbich C., Martin H., Zeiher A.M., Dimmeler S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res. 2001;89(1):E1–E7. doi: 10.1161/hh1301.093953. [http://dx.doi.org/10.1161/hh1301.093953]. [PMID: 11440984]. [DOI] [PubMed] [Google Scholar]
- 47.Di Stefano V., Zaccagnini G., Capogrossi M.C., Martelli F. microRNAs as peripheral blood biomarkers of cardiovascular disease. Vascul. Pharmacol. 2011;55(4):111–118. doi: 10.1016/j.vph.2011.08.001. [http://dx.doi.org/10.1016/j.vph.2011.08.001]. [PMID: 21846509]. [DOI] [PubMed] [Google Scholar]
- 48.Kuehbacher A., Urbich C., Zeiher A.M., Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ. Res. 2007;101(1):59–68. doi: 10.1161/CIRCRESAHA.107.153916. [http://dx.doi.org/10.1161/CIRCRESAHA.107.153916]. [PMID: 17540974]. [DOI] [PubMed] [Google Scholar]
- 49.Weber M., Baker M.B., Moore J.P., Searles C.D. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem. Biophys. Res. Commun. 2010;393(4):643–648. doi: 10.1016/j.bbrc.2010.02.045. [http://dx.doi.org/10.1016/j.bbrc.2010.02.045]. [PMID: 20153722]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Ni C.W., Qiu H., Jo H. MicroRNA-663 upregulated by oscillatory shear stress plays a role in inflammatory response of endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2011;300(5):H1762–H1769. doi: 10.1152/ajpheart.00829.2010. [http://dx.doi.org/10.1152/ajpheart.00829.2010]. [PMID: 21378144]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Masuda A., Miyata M., Kihara T., Minagoe S., Tei C. Repeated sauna therapy reduces urinary 8-epi-prostaglandin F(2alpha). Jpn. Heart J. 2004;45(2):297–303. doi: 10.1536/jhj.45.297. [http://dx.doi.org/10.1536/jhj.45.297]. [PMID: 15090706]. [DOI] [PubMed] [Google Scholar]
- 52.Lin C.H., Lee L.S., Su L.H., Huang T.C., Liu C.F. Thermal therapy in dialysis patients - a randomized trial. Am. J. Chin. Med. 2011;39(5):839–851. doi: 10.1142/S0192415X1100924X. [http://dx.doi.org/10.1142/S0192415X1100924X]. [PMID: 21905276]. [DOI] [PubMed] [Google Scholar]
- 53.Dember L.M., Beck G.J., Allon M., Delmez J.A., Dixon B.S., Greenberg A., Himmelfarb J., Vazquez M.A., Gassman J.J., Greene T., Radeva M.K., Braden G.L., Ikizler T.A., Rocco M.V., Davidson I.J., Kaufman J.S., Meyers C.M., Kusek J.W., Feldman H.I. Effect of clopidogrel on early failure of arteriovenous fistulas for hemodialysis: a randomized controlled trial. JAMA. 2008;299(18):2164–2171. doi: 10.1001/jama.299.18.2164. [http://dx.doi.org/10.1001/jama.299.18.2164]. [PMID: 18477783]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Chiang I.N., Pu Y.S., Huang C.Y., Young T.H. Far infrared radiation promotes rabbit renal proximal tubule cell proliferation and functional characteristics, and protects against cisplatin-induced nephrotoxicity. PLoS One. 2017;12(7):e0180872. doi: 10.1371/journal.pone.0180872. [http://dx.doi.org/10.1371/journal.pone.0180872]. [PMID: 28715443]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Chen C.F., Yang W.C., Lin C.C. An update of the effect of far infrared therapy on arteriovenous access in end-stage renal disease patients. J. Vasc. Access. 2016;17(4):293–298. doi: 10.5301/jva.5000561. [http://dx.doi.org/10.5301/jva.5000561]. [PMID: 27312759]. [DOI] [PubMed] [Google Scholar]
- 56.Chang Y. The effect of far infrared radiation therapy on inflammation regulation in lipopolysaccharide-induced peritonitis in mice. SAGE Open Med. 2018;6:2050312118798941. doi: 10.1177/2050312118798941. [http://dx.doi.org/10.1177/2050312118798941]. [PMID: 30210795]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl. 1):S62–S69. doi: 10.2337/dc10-S062. [http://dx.doi.org/10.2337/dc10-S062]. [PMID: 20042775]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Masuda A., Kihara T., Fukudome T., Shinsato T., Minagoe S., Tei C. The effects of repeated thermal therapy for two patients with chronic fatigue syndrome. J. Psychosom. Res. 2005;58(4):383–387. doi: 10.1016/j.jpsychores.2004.11.005. [http://dx.doi.org/10.1016/j.jpsychores.2004.11.005]. [PMID: 15992574]. [DOI] [PubMed] [Google Scholar]
- 59.Kawaura A., Tanida N., Kamitani M., Akiyama J., Mizutani M., Tsugawa N., Okano T., Takeda E. The effect of leg hyperthermia using far infrared rays in bedridden subjects with type 2 diabetes mellitus. Acta Med. Okayama. 2010;64(2):143–147. doi: 10.18926/AMO/32849. [PMID: 20424670]. [DOI] [PubMed] [Google Scholar]
- 60.Wang H.W., Su S.H., Wang Y.L., Chang S.T., Liao K.H., Lo H.H., Chiu Y.L., Hsieh T.H., Huang T.S., Lin C.S., Cheng S.M., Cheng C.C. MicroRNA-134 contributes to glucose-induced endothelial cell dysfunction and this effect can be reversed by far-infrared irradiation. PLoS One. 2016;11(1):e0147067. doi: 10.1371/journal.pone.0147067. [http://dx.doi.org/10.1371/journal.pone.0147067]. [PMID: 26799933]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Chen C.H., Chen T.H., Wu M.Y., Chou T.C., Chen J.R., Wei M.J., Lee S.L., Hong L.Y., Zheng C.M., Chiu I.J., Lin Y.F., Hsu C.M., Hsu Y.H. Far-infrared protects vascular endothelial cells from advanced glycation end products-induced injury via PLZF-mediated autophagy in diabetic mice. Sci. Rep. 2017;7:40442. doi: 10.1038/srep40442. [http://dx.doi.org/10.1038/srep40442]. [PMID: 28071754]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Beever R. The effects of repeated thermal therapy on quality of life in patients with type II diabetes mellitus. J. Altern. Complement. Med. 2010;16(6):677–681. doi: 10.1089/acm.2009.0358. [http://dx.doi.org/10.1089/acm.2009.0358]. [PMID: 20569036]. [DOI] [PubMed] [Google Scholar]
- 63.Guzik T.J., West N.E., Black E., McDonald D., Ratnatunga C., Pillai R., Channon K.M. Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ. Res. 2000;86(9):E85–E90. doi: 10.1161/01.res.86.9.e85. [http://dx.doi.org/10.1161/01.RES.86.9.e85]. [PMID: 10807876]. [DOI] [PubMed] [Google Scholar]
- 64.Duplain H., Burcelin R., Sartori C., Cook S., Egli M., Lepori M., Vollenweider P., Pedrazzini T., Nicod P., Thorens B., Scherrer U. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation. 2001;104(3):342–345. doi: 10.1161/01.cir.104.3.342. [http://dx.doi.org/10.1161/01.CIR.104.3.342]. [PMID: 11457755]. [DOI] [PubMed] [Google Scholar]
- 65.Tu Y.P., Chen S.C., Liu Y.H., Chen C.F., Hour T.C. Postconditioning with far-infrared irradiation increases heme oxygenase-1 expression and protects against ischemia/reperfusion injury in rat testis. Life Sci. 2013;92(1):35–41. doi: 10.1016/j.lfs.2012.10.019. [http://dx.doi.org/10.1016/j.lfs.2012.10.019]. [PMID: 23142244]. [DOI] [PubMed] [Google Scholar]
- 66.Stocker R., Glazer A.N., Ames B.N. Antioxidant activity of albumin-bound bilirubin. Proc. Natl. Acad. Sci. USA. 1987;84(16):5918–5922. doi: 10.1073/pnas.84.16.5918. [http://dx.doi.org/10.1073/pnas.84.16.5918]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Akasaki Y., Miyata M., Eto H., Shirasawa T., Hamada N., Ikeda Y., Biro S., Otsuji Y., Tei C. Repeated thermal therapy up-regulates endothelial nitric oxide synthase and augments angiogenesis in a mouse model of hindlimb ischemia. Circ. J. 2006;70(4):463–470. doi: 10.1253/circj.70.463. [http://dx.doi.org/10.1253/circj.70.463]. [PMID: 16565566]. [DOI] [PubMed] [Google Scholar]
- 68.Yue W.S., Lau K.K., Siu C.W., Wang M., Yan G.H., Yiu K.H., Tse H.F. Impact of glycemic control on circulating endothelial progenitor cells and arterial stiffness in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2011;10:113. doi: 10.1186/1475-2840-10-113. [http://dx.doi.org/10.1186/1475-2840-10-113]. [PMID: 22185563]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Huang P.H., Chen J.W., Lin C.P., Chen Y.H., Wang C.H., Leu H.B., Lin S.J. Far infra-red therapy promotes ischemia-induced angiogenesis in diabetic mice and restores high glucose-suppressed endothelial progenitor cell functions. Cardiovasc. Diabetol. 2012;11:99. doi: 10.1186/1475-2840-11-99. [http://dx.doi.org/10.1186/1475-2840-11-99]. [PMID: 22894755]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Hayashi T., Noshita N., Sugawara T., Chan P.H. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J. Cereb. Blood Flow Metab. 2003;23(2):166–180. doi: 10.1097/01.WCB.0000041283.53351.CB. [http://dx.doi.org/10.1097/01.WCB.0000041283.53351.CB]. [PMID: 12571448]. [DOI] [PubMed] [Google Scholar]
- 71.Kokovay E., Li L., Cunningham L.A. Angiogenic recruitment of pericytes from bone marrow after stroke. J. Cereb. Blood Flow Metab. 2006;26(4):545–555. doi: 10.1038/sj.jcbfm.9600214. [http://dx.doi.org/10.1038/sj.jcbfm.9600214]. [PMID: 16121128]. [DOI] [PubMed] [Google Scholar]
- 72.Hall C.N., Reynell C., Gesslein B., Hamilton N.B., Mishra A., Sutherland B.A., O’Farrell F.M., Buchan A.M., Lauritzen M., Attwell D. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55–60. doi: 10.1038/nature13165. [http://dx.doi.org/10.1038/nature13165]. [PMID: 24670647]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Xie Z., Chen F., Li W.A., Geng X., Li C., Meng X., Feng Y., Liu W., Yu F. A review of sleep disorders and melatonin. Neurol. Res. 2017;39(6):559–565. doi: 10.1080/01616412.2017.1315864. [http://dx.doi.org/10.1080/01616412.2017.1315864]. [PMID: 28460563]. [DOI] [PubMed] [Google Scholar]
- 74.Amihăesei I.C., Mungiu O.C. Main neuroendocrine features and therapy in primary sleep troubles. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2012;116(3):862–866. [PMID: 23272543]. [PubMed] [Google Scholar]
- 75.Leger D., Laudon M., Zisapel N. Nocturnal 6-sulfatoxymelatonin excretion in insomnia and its relation to the response to melatonin replacement therapy. Am. J. Med. 2004;116(2):91–95. doi: 10.1016/j.amjmed.2003.07.017. [http://dx.doi.org/10.1016/j.amjmed.2003.07.017]. [PMID: 14715322]. [DOI] [PubMed] [Google Scholar]
- 76.Honda K., Inoué S. Sleep-enhancing effects of far-infrared radiation in rats. Int. J. Biometeorol. 1988;32(2):92–94. doi: 10.1007/BF01044900. [http://dx.doi.org/10.1007/BF01044900]. [PMID: 3410585]. [DOI] [PubMed] [Google Scholar]
- 77.Inoué S., Kabaya M. Biological activities caused by far-infrared radiation. Int. J. Biometeorol. 1989;33(3):145–150. doi: 10.1007/BF01084598. [http://dx.doi.org/10.1007/BF01084598]. [PMID: 2689357]. [DOI] [PubMed] [Google Scholar]
- 78.Dominguez-Vidal A., Kaun N., Ayora-Cañada M.J., Lendl B. Probing intermolecular interactions in water/ionic liquid mixtures by far-infrared spectroscopy. J. Phys. Chem. B. 2007;111(17):4446–4452. doi: 10.1021/jp068777n. [http://dx.doi.org/10.1021/jp068777n]. [PMID: 17408256]. [DOI] [PubMed] [Google Scholar]
- 79.Carney C.E., Edinger J.D., Kuchibhatla M., Lachowski A.M., Bogouslavsky O., Krystal A.D., Shapiro C.M. Cognitive behavioral insomnia therapy for those with insomnia and depression: a randomized controlled clinical trial. Sleep (Basel) 2017;40(4) doi: 10.1093/sleep/zsx019. [http://dx.doi.org/10.1093/sleep/zsx019]. [PMID: 28199710]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Tsuno N., Besset A., Ritchie K. Sleep and depression. J. Clin. Psychiatry. 2005;66(10):1254–1269. doi: 10.4088/jcp.v66n1008. [http://dx.doi.org/10.4088/JCP.v66n1008]. [PMID: 16259539]. [DOI] [PubMed] [Google Scholar]
- 81.Thase M.E. Summary: defining remission in patients treated with antidepressants. J. Clin. Psychiatry. 1999;60(Suppl. 22):35–36. [PMID: 10634354]. [PubMed] [Google Scholar]
- 82.Belmaker R.H., Agam G. Major depressive disorder. N. Engl. J. Med. 2008;358(1):55–68. doi: 10.1056/NEJMra073096. [http://dx.doi.org/10.1056/NEJMra073096]. [PMID: 18172175]. [DOI] [PubMed] [Google Scholar]
- 83.Videbech P. PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr. Scand. 2000;101(1):11–20. doi: 10.1034/j.1600-0447.2000.101001011.x. [http://dx.doi.org/10.1034/j.1600-0447.2000.101001011.x]. [PMID: 10674946]. [DOI] [PubMed] [Google Scholar]
- 84.Sahay A., Hen R. Adult hippocampal neurogenesis in depression. Nat. Neurosci. 2007;10(9):1110–1115. doi: 10.1038/nn1969. [http://dx.doi.org/10.1038/nn1969]. [PMID: 17726477]. [DOI] [PubMed] [Google Scholar]
- 85.Gawryluk J.W., Wang J.F., Andreazza A.C., Shao L., Young L.T. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int. J. Neuropsychopharmacol. 2011;14(1):123–130. doi: 10.1017/S1461145710000805. [http://dx.doi.org/10.1017/S1461145710000805]. [PMID: 20633320]. [DOI] [PubMed] [Google Scholar]
- 86.Hamon M., Blier P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2013;45:54–63. doi: 10.1016/j.pnpbp.2013.04.009. [http://dx.doi.org/10.1016/j.pnpbp.2013.04.009]. [PMID: 23602950]. [DOI] [PubMed] [Google Scholar]
- 87.Salehpour F., Rasta S.H. The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder. Rev. Neurosci. 2017;28(4):441–453. doi: 10.1515/revneuro-2016-0087. [http://dx.doi.org/10.1515/revneuro-2016-0087]. [PMID: 28231069]. [DOI] [PubMed] [Google Scholar]
- 88.Mechan A.O., Fowler A., Seifert N., Rieger H., Wöhrle T., Etheve S., Wyss A., Schüler G., Colletto B., Kilpert C., Aston J., Elliott J.M., Goralczyk R., Mohajeri M.H. Monoamine reuptake inhibition and mood-enhancing potential of a specified oregano extract. Br. J. Nutr. 2011;105(8):1150–1163. doi: 10.1017/S0007114510004940. [http://dx.doi.org/10.1017/S0007114510004940]. [PMID: 21205415]. [DOI] [PubMed] [Google Scholar]
- 89.Elhwuegi A.S. Central monoamines and their role in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2004;28(3):435–451. doi: 10.1016/j.pnpbp.2003.11.018. [http://dx.doi.org/10.1016/j.pnpbp.2003.11.018]. [PMID: 15093950]. [DOI] [PubMed] [Google Scholar]
- 90.Ozcan M.E., Gulec M., Ozerol E., Polat R., Akyol O. Antioxidant enzyme activities and oxidative stress in affective disorders. Int. Clin. Psychopharmacol. 2004;19(2):89–95. doi: 10.1097/00004850-200403000-00006. [http://dx.doi.org/10.1097/00004850-200403000-00006]. [PMID: 15076017]. [DOI] [PubMed] [Google Scholar]
- 91.Chang Y., Liu Y.P., Liu C.F. The effect on serotonin and MDA levels in depressed patients with insomnia when far-infrared rays are applied to acupoints. Am. J. Chin. Med. 2009;37(5):837–842. doi: 10.1142/S0192415X09007272. [http://dx.doi.org/10.1142/S0192415X09007272]. [PMID: 19885944]. [DOI] [PubMed] [Google Scholar]
- 92.Masuda A., Nakazato M., Kihara T., Minagoe S., Tei C. Repeated thermal therapy diminishes appetite loss and subjective complaints in mildly depressed patients. Psychosom. Med. 2005;67(4):643–647. doi: 10.1097/01.psy.0000171812.67767.8f. [http://dx.doi.org/10.1097/01.psy.0000171812.67767.8f]. [PMID: 16046381]. [DOI] [PubMed] [Google Scholar]
- 93.Rozanski A., Blumenthal J.A., Kaplan J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation. 1999;99(16):2192–2217. doi: 10.1161/01.cir.99.16.2192. [http://dx.doi.org/10.1161/01.CIR.99.16.2192]. [PMID: 10217662]. [DOI] [PubMed] [Google Scholar]
- 94.Scott K.A., Melhorn S.J., Sakai R.R. Effects of chronic social stress on cbesity. Curr. Obes. Rep. 2012;1(1):16–25. doi: 10.1007/s13679-011-0006-3. [http://dx.doi.org/10.1007/s13679-011-0006-3]. [PMID: 22943039]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Keynejad R.C., Frodl T., Kanaan R., Pariante C., Reuber M., Nicholson T.R. Stress and functional neurological disorders: mechanistic insights. J. Neurol. Neurosurg. Psychiatry. 2018:318297. doi: 10.1136/jnnp-2018-318297. [http://dx.doi.org/10.1136/jnnp-2018-318297] [PMID: 30409887] [DOI] [PubMed] [Google Scholar]
- 96.Culić V., Silić N., Mirić D. Triggering of ventricular ectopic beats by emotional, physical, and meteorologic stress: role of age, sex, medications, and chronic risk factors. Croat. Med. J. 2005;46(6):894–906. [PMID: 16342342]. [PubMed] [Google Scholar]
- 97.Whalen E.J., Johnson A.K., Lewis S.J. Effects of nitric oxide synthase inhibition on sympathetically-mediated tachycardia. Eur. J. Pharmacol. 1999;365(2-3):217–223. doi: 10.1016/s0014-2999(98)00853-x. [http://dx.doi.org/10.1016/S0014-2999(98)00853-X]. [PMID: 9988105]. [DOI] [PubMed] [Google Scholar]
- 98.Crane J.W., French K.R., Buller K.M. Patterns of neuronal activation in the rat brain and spinal cord in response to increasing durations of restraint stress. Stress. 2005;8(3):199–211. doi: 10.1080/10253890500333817. [http://dx.doi.org/10.1080/10253890500333817]. [PMID: 16236624]. [DOI] [PubMed] [Google Scholar]
- 99.Bajić D., Loncar-Turukalo T., Stojicić S., Sarenac O., Bojić T., Murphy D., Paton J.F., Japundzić-Zigon N. Temporal analysis of the spontaneous baroreceptor reflex during mild emotional stress in the rat. Stress. 2010;13(2):142–154. doi: 10.3109/10253890903089842. [http://dx.doi.org/10.3109/10253890903089842]. [PMID: 19929315]. [DOI] [PubMed] [Google Scholar]
- 100.Lakomkin V.L., Konovalova G.G., Kalenikova E.I., Zabbarova I.V., Tikhaze A.K., Tsyplenkova V.G., Lankin V.Z., Ruuge E.K., Kapelko V.I. Protection of rat myocardium by coenzyme Q during oxidative stress induced by hydrogen peroxide. Biochemistry (Mosc.) 2004;69(5):520–526. doi: 10.1023/b:biry.0000029850.58543.82. [http://dx.doi.org/10.1023/B:BIRY.0000029850.58543.82]. [PMID: 15193126]. [DOI] [PubMed] [Google Scholar]
- 101.Leung T.K., Chen C.H., Tsai S.Y., Hsiao G., Lee C.M. Effects of far infrared rays irradiated from ceramic material (BIOCERAMIC) on psychological stress-conditioned elevated heart rate, blood pressure, and oxidative stress-suppressed cardiac contractility. Chin. J. Physiol. 2012;55(5):323–330. doi: 10.4077/CJP.2012.BAA037. [PMID: 23282206]. [DOI] [PubMed] [Google Scholar]
- 102.Busnardo C., Tavares R.F., Correa F.M. Angiotensinergic neurotransmission in the paraventricular nucleus of the hypothalamus modulates the pressor response to acute restraint stress in rats. Neuroscience. 2014;270:12–19. doi: 10.1016/j.neuroscience.2014.03.064. [http://dx.doi.org/10.1016/j.neuroscience.2014.03.064]. [PMID: 24717718]. [DOI] [PubMed] [Google Scholar]
- 103.Ceccatelli S., Villar M.J., Goldstein M., Hökfelt T. Expression of c-Fos immunoreactivity in transmitter-characterized neurons after stress. Proc. Natl. Acad. Sci. USA. 1989;86(23):9569–9573. doi: 10.1073/pnas.86.23.9569. [http://dx.doi.org/10.1073/pnas.86.23.9569]. [PMID: 2512584]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Derin N., Yargiçoğlu P., Aslan M., Elmas O., Agar A., Aicigüzel Y. The effect of sulfite and chronic restraint stress on brain lipid peroxidation and anti-oxidant enzyme activities. Toxicol. Ind. Health. 2006;22(6):233–240. doi: 10.1191/0748233706th264oa. [http://dx.doi.org/10.1191/0748233706th264oa]. [PMID: 16924954]. [DOI] [PubMed] [Google Scholar]
- 105.Pillai R., Uyehara-Lock J.H., Bellinger F.P. Selenium and selenoprotein function in brain disorders. IUBMB Life. 2014;66(4):229–239. doi: 10.1002/iub.1262. [http://dx.doi.org/10.1002/iub.1262]. [PMID: 24668686]. [DOI] [PubMed] [Google Scholar]
- 106.Shin E.J., Shin S.W., Nguyen T.T., Park D.H., Wie M.B., Jang C.G., Nah S.Y., Yang B.W., Ko S.K., Nabeshima T., Kim H.C. Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cδ gene. Mol. Neurobiol. 2014;49(3):1400–1421. doi: 10.1007/s12035-013-8617-1. [http://dx.doi.org/10.1007/s12035-013-8617-1]. [PMID: 24430743]. [DOI] [PubMed] [Google Scholar]
- 107.Carballo M., Conde M., El Bekay R., Martín-Nieto J., Camacho M.J., Monteseirín J., Conde J., Bedoya F.J., Sobrino F. Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. J. Biol. Chem. 1999;274(25):17580–17586. doi: 10.1074/jbc.274.25.17580. [http://dx.doi.org/10.1074/jbc.274.25.17580]. [PMID: 10364193]. [DOI] [PubMed] [Google Scholar]
- 108.Kuwahata S., Miyata M., Fujita S., Kubozono T., Shinsato T., Ikeda Y., Hamasaki S., Kuwaki T., Tei C. Improvement of autonomic nervous activity by Waon therapy in patients with chronic heart failure. J. Cardiol. 2011;57(1):100–106. doi: 10.1016/j.jjcc.2010.08.005. [http://dx.doi.org/10.1016/j.jjcc.2010.08.005]. [PMID: 20884178]. [DOI] [PubMed] [Google Scholar]
- 109.Oelze M., Kröller-Schön S., Steven S., Lubos E., Doppler C., Hausding M., Tobias S., Brochhausen C., Li H., Torzewski M., Wenzel P., Bachschmid M., Lackner K.J., Schulz E., Münzel T., Daiber A. Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging. Hypertension. 2014;63(2):390–396. doi: 10.1161/HYPERTENSIONAHA.113.01602. [http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01602]. [PMID: 24296279]. [DOI] [PubMed] [Google Scholar]
- 110.Ullrich V., Kissner R. Redox signaling: bioinorganic chemistry at its best. J. Inorg. Biochem. 2006;100(12):2079–2086. doi: 10.1016/j.jinorgbio.2006.09.019. [http://dx.doi.org/10.1016/j.jinorgbio.2006.09.019]. [PMID: 17095095]. [DOI] [PubMed] [Google Scholar]
- 111.Leão R.M., Cruz F.C., Planeta C.S. Exposure to acute restraint stress reinstates nicotine-induced place preference in rats. Behav. Pharmacol. 2009;20(1):109–113. doi: 10.1097/FBP.0b013e3283242f41. [http://dx.doi.org/10.1097/FBP.0b013e3283242f41]. [PMID: 19179854]. [DOI] [PubMed] [Google Scholar]
- 112.Pacchioni A.M., Gioino G., Assis A., Cancela L.M. A single exposure to restraint stress induces behavioral and neurochemical sensitization to stimulating effects of amphetamine: involvement of NMDA receptors. Ann. N. Y. Acad. Sci. 2002;965:233–246. doi: 10.1111/j.1749-6632.2002.tb04165.x. [http://dx.doi.org/10.1111/j.1749-6632.2002.tb04165.x]. [PMID: 12105099]. [DOI] [PubMed] [Google Scholar]
- 113.Deroche V., Piazza P.V., Casolini P., Maccari S., Le Moal M., Simon H. Stress-induced sensitization to amphetamine and morphine psychomotor effects depend on stress-induced corticosterone secretion. Brain Res. 1992;598(1-2):343–348. doi: 10.1016/0006-8993(92)90205-n. [http://dx.doi.org/10.1016/0006-8993(92)90205-N]. [PMID: 1486498]. [DOI] [PubMed] [Google Scholar]
- 114.Quinton M.S., Yamamoto B.K. Neurotoxic effects of chronic restraint stress in the striatum of methamphetamine-exposed rats. Psychopharmacology (Berl.) 2007;193(3):341–350. doi: 10.1007/s00213-007-0796-x. [http://dx.doi.org/10.1007/s00213-007-0796-x]. [PMID: 17458543]. [DOI] [PubMed] [Google Scholar]
- 115.Tata D.A., Yamamoto B.K. Chronic stress enhances methamphetamine-induced extracellular glutamate and excitotoxicity in the rat striatum. Synapse. 2008;62(5):325–336. doi: 10.1002/syn.20497. [http://dx.doi.org/10.1002/syn.20497]. [PMID: 18288648]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Ballester J., Valentine G., Sofuoglu M. Pharmacological treatments for methamphetamine addiction: current status and future directions. Expert Rev. Clin. Pharmacol. 2017;10(3):305–314. doi: 10.1080/17512433.2017.1268916. [PMID: 27927042]. [DOI] [PubMed] [Google Scholar]
- 117.Nordahl T.E., Salo R., Leamon M. Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: a review. J. Neuropsychiatry Clin. Neurosci. 2003;15(3):317–325. doi: 10.1176/jnp.15.3.317. [http://dx.doi.org/10.1176/jnp.15.3.317]. [PMID: 12928507]. [DOI] [PubMed] [Google Scholar]
- 118.Yui K., Ikemoto S., Goto K., Nishijima K., Yoshino T., Ishiguro T. Spontaneous recurrence of methamphetamine-induced paranoid-hallucinatory states in female subjects: susceptibility to psychotic states and implications for relapse of schizophrenia. Pharmacopsychiatry. 2002;35(2):62–71. doi: 10.1055/s-2002-25067. [http://dx.doi.org/10.1055/s-2002-25067]. [PMID: 11951147]. [DOI] [PubMed] [Google Scholar]
- 119.Yui K., Goto K., Ikemoto S., Ishiguro T. Methamphetamine psychosis: spontaneous recurrence of paranoid-hallucinatory states and monoamine neurotransmitter function. J. Clin. Psychopharmacol. 1997;17(1):34–43. doi: 10.1097/00004714-199702000-00007. [http://dx.doi.org/10.1097/00004714-199702000-00007]. [PMID: 9004055]. [DOI] [PubMed] [Google Scholar]
- 120.Shin E.J., Nam Y., Lee J.W., Nguyen P.T., Yoo J.E., Tran T.V., Jeong J.H., Jang C.G., Oh Y.J., Youdim M.B.H., Lee P.H., Nabeshima T., Kim H.C. N-Methyl, N-propynyl-2-phenylethylamine (MPPE), a selegiline analog, attenuates MPTP-induced dopaminergic toxicity with guaranteed behavioral safety: involvement of inhibitions of mitochondrial oxidative burdens and p53 gene-elicited pro-apoptotic change. Mol. Neurobiol. 2016;53(9):6251–6269. doi: 10.1007/s12035-015-9527-1. [http://dx.doi.org/10.1007/s12035-015-9527-1]. [PMID: 26563498]. [DOI] [PubMed] [Google Scholar]
- 121.Shin E.J., Bing G., Chae J.S., Kim T.W., Bach J.H., Park D.H., Yamada K., Nabeshima T., Kim H.C. Role of microsomal epoxide hydrolase in methamphetamine-induced drug dependence in mice. J. Neurosci. Res. 2009;87(16):3679–3686. doi: 10.1002/jnr.22166. [http://dx.doi.org/10.1002/jnr.22166]. [PMID: 19598248]. [DOI] [PubMed] [Google Scholar]
- 122.Kim H.C., Jhoo W.K., Choi D.Y., Im D.H., Shin E.J., Suh J.H., Floyd R.A., Bing G. Protection of methamphetamine nigrostriatal toxicity by dietary selenium. Brain Res. 1999;851(1-2):76–86. doi: 10.1016/s0006-8993(99)02122-8. [http://dx.doi.org/10.1016/S0006-8993(99)02122-8]. [PMID: 10642830]. [DOI] [PubMed] [Google Scholar]
- 123.Mizoguchi H., Ibi D., Takase F., Nagai T., Kamei H., Toth E., Sato J., Takuma K., Yamada K. Nicotine ameliorates impairment of working memory in methamphetamine-treated rats. Behav. Brain Res. 2011;220(1):159–163. doi: 10.1016/j.bbr.2011.01.036. [http://dx.doi.org/10.1016/j.bbr.2011.01.036]. [PMID: 21277906]. [DOI] [PubMed] [Google Scholar]
- 124.Futamura T., Akiyama S., Sugino H., Forbes A., McQuade R.D., Kikuchi T. Aripiprazole attenuates established behavioral sensitization induced by methamphetamine. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2010;34(6):1115–1119. doi: 10.1016/j.pnpbp.2010.06.006. [http://dx.doi.org/10.1016/j.pnpbp.2010.06.006]. [PMID: 20561555]. [DOI] [PubMed] [Google Scholar]
- 125.Kamei H., Nagai T., Nakano H., Togan Y., Takayanagi M., Takahashi K., Kobayashi K., Yoshida S., Maeda K., Takuma K., Nabeshima T., Yamada K. Repeated methamphetamine treatment impairs recognition memory through a failure of novelty-induced ERK1/2 activation in the prefrontal cortex of mice. Biol. Psychiatry. 2006;59(1):75–84. doi: 10.1016/j.biopsych.2005.06.006. [http://dx.doi.org/10.1016/j.biopsych.2005.06.006]. [PMID: 16139811]. [DOI] [PubMed] [Google Scholar]
- 126.Abekawa T., Ito K., Nakagawa S., Nakato Y., Koyama T. Effects of aripiprazole and haloperidol on progression to schizophrenia-like behavioural abnormalities and apoptosis in rodents. Schizophr. Res. 2011;125(1):77–87. doi: 10.1016/j.schres.2010.08.011. [http://dx.doi.org/10.1016/j.schres.2010.08.011]. [PMID: 20833512]. [DOI] [PubMed] [Google Scholar]
- 127.Hsieh J.H., Stein D.J., Howells F.M. The neurobiology of methamphetamine induced psychosis. Front. Hum. Neurosci. 2014;8:537. doi: 10.3389/fnhum.2014.00537. [http://dx.doi.org/10.3389/fnhum.2014.00537]. [PMID: 25100979]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Darke S., Kaye S., McKetin R., Duflou J. Major physical and psychological harms of methamphetamine use. Drug Alcohol Rev. 2008;27(3):253–262. doi: 10.1080/09595230801923702. [http://dx.doi.org/10.1080/09595230801923702]. [PMID: 18368606]. [DOI] [PubMed] [Google Scholar]
- 129.Yui K., Ikemoto S., Ishiguro T., Goto K. Studies of amphetamine or methamphetamine psychosis in Japan: relation of methamphetamine psychosis to schizophrenia. Ann. N. Y. Acad. Sci. 2000;914:1–12. doi: 10.1111/j.1749-6632.2000.tb05178.x. [http://dx.doi.org/10.1111/j.1749-6632.2000.tb05178.x]. [PMID: 11085303]. [DOI] [PubMed] [Google Scholar]
- 130.Sato M., Chen C.C., Akiyama K., Otsuki S. Acute exacerbation of paranoid psychotic state after long-term abstinence in patients with previous methamphetamine psychosis. Biol. Psychiatry. 1983;18(4):429–440. [PMID: 6860719]. [PubMed] [Google Scholar]
- 131.Yui K., Goto K., Ikemoto S., Ishiguro T., Angrist B., Duncan G.E., Sheitman B.B., Lieberman J.A., Bracha S.H., Ali S.F. Neurobiological basis of relapse prediction in stimulant-induced psychosis and schizophrenia: the role of sensitization. Mol. Psychiatry. 1999;4(6):512–523. doi: 10.1038/sj.mp.4000575. [http://dx.doi.org/10.1038/sj.mp.4000575]. [PMID: 10578232]. [DOI] [PubMed] [Google Scholar]
- 132.Marchitti S.A., Deitrich R.A., Vasiliou V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol. Rev. 2007;59(2):125–150. doi: 10.1124/pr.59.2.1. [http://dx.doi.org/10.1124/pr.59.2.1]. [PMID: 17379813]. [DOI] [PubMed] [Google Scholar]
- 133.Lubos E., Loscalzo J., Handy D.E. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2011;15(7):1957–1997. doi: 10.1089/ars.2010.3586. [http://dx.doi.org/10.1089/ars.2010.3586]. [PMID: 21087145]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Tran T.V., Shin E.J., Jeong J.H., Lee J.W., Lee Y., Jang C.G., Nah S.Y., Lei X.G., Toriumi K., Yamada K., Nabeshima T., Kim H.C. Protective potential of the glutathione peroxidase-1 gene in abnormal behaviors induced by phencyclidine in mice. Mol. Neurobiol. 2017;54(9):7042–7062. doi: 10.1007/s12035-016-0239-y. [http://dx.doi.org/10.1007/s12035-016-0239-y]. [PMID: 27796745]. [DOI] [PubMed] [Google Scholar]
- 135.Kuribara H. Dopamine D1 receptor antagonist SCH 23390 retards methamphetamine sensitization in both combined administration and early posttreatment schedules in mice. Pharmacol. Biochem. Behav. 1995;52(4):759–763. doi: 10.1016/0091-3057(95)00173-t. [http://dx.doi.org/10.1016/0091-3057(95)00173-T]. [PMID: 8587917]. [DOI] [PubMed] [Google Scholar]
- 136.Kuribara H., Uchihashi Y. Effects of dopamine antagonism on methamphetamine sensitization: evaluation by ambulatory activity in mice. Pharmacol. Biochem. Behav. 1994;47(1):101–106. doi: 10.1016/0091-3057(94)90117-1. [http://dx.doi.org/10.1016/0091-3057(94)90117-1]. [PMID: 8115410]. [DOI] [PubMed] [Google Scholar]
- 137.Miyamoto Y., Iida A., Sato K., Muramatsu S., Nitta A. Knockdown of dopamine D2 receptors in the nucleus accumbens core suppresses methamphetamine-induced behaviors and signal transduction in mice. Int. J. Neuropsychopharmacol. 2014;18(4):pyu038. doi: 10.1093/ijnp/pyu038. [http://dx.doi.org/10.1093/ijnp/pyu038]. [PMID: 25522385]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Bosse K.E., Charlton J.L., Susick L.L., Newman B., Eagle A.L., Mathews T.A., Perrine S.A., Conti A.C. Deficits in behavioral sensitization and dopaminergic responses to methamphetamine in adenylyl cyclase 1/8-deficient mice. J. Neurochem. 2015;135(6):1218–1231. doi: 10.1111/jnc.13235. [http://dx.doi.org/10.1111/jnc.13235]. [PMID: 26146906]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Park S.W., Shen X., Tien L.T., Roman R., Ma T. Methamphetamine-induced changes in the striatal dopamine pathway in μ-opioid receptor knockout mice. J. Biomed. Sci. 2011;18:83. doi: 10.1186/1423-0127-18-83. [http://dx.doi.org/10.1186/1423-0127-18-83]. [PMID: 22074218]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Brenner-Lavie H., Klein E., Zuk R., Gazawi H., Ljubuncic P., Ben-Shachar D. Dopamine modulates mitochondrial function in viable SH-SY5Y cells possibly via its interaction with complex I: relevance to dopamine pathology in schizophrenia. Biochim. Biophys. Acta. 2008;1777(2):173–185. doi: 10.1016/j.bbabio.2007.10.006. [http://dx.doi.org/10.1016/j.bbabio.2007.10.006]. [PMID: 17996721]. [DOI] [PubMed] [Google Scholar]
- 141.Brookes P.S., Yoon Y., Robotham J.L., Anders M.W., Sheu S.S. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 2004;287(4):C817–C833. doi: 10.1152/ajpcell.00139.2004. [http://dx.doi.org/10.1152/ajpcell.00139.2004]. [PMID: 15355853]. [DOI] [PubMed] [Google Scholar]
- 142.Beauvais G., Atwell K., Jayanthi S., Ladenheim B., Cadet J.L. Involvement of dopamine receptors in binge methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways. PLoS One. 2011;6(12):e28946. doi: 10.1371/journal.pone.0028946. [http://dx.doi.org/10.1371/journal.pone.0028946]. [PMID: 22174933]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Chang J.C., Wu S.L., Hoel F., Cheng Y.S., Liu K.H., Hsieh M., Hoel A., Tronstad K.J., Yan K.C., Hsieh C.L., Lin W.Y., Kuo S.J., Su S.L., Liu C.S. Far-infrared radiation protects viability in a cell model of Spinocerebellar Ataxia by preventing polyQ protein accumulation and improving mitochondrial function. Sci. Rep. 2016;6:30436. doi: 10.1038/srep30436. [http://dx.doi.org/10.1038/srep30436]. [PMID: 27469193]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Simon S.L., Domier C., Carnell J., Brethen P., Rawson R., Ling W. Cognitive impairment in individuals currently using methamphetamine. Am. J. Addict. 2000;9(3):222–231. doi: 10.1080/10550490050148053. [http://dx.doi.org/10.1080/10550490050148053]. [PMID: 11000918]. [DOI] [PubMed] [Google Scholar]
- 145.Paulus M.P., Hozack N.E., Zauscher B.E., Frank L., Brown G.G., Braff D.L., Schuckit M.A. Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology. 2002;26(1):53–63. doi: 10.1016/S0893-133X(01)00334-7. [http://dx.doi.org/10.1016/S0893-133X(01)00334-7]. [PMID: 11751032]. [DOI] [PubMed] [Google Scholar]
- 146.Sekine Y., Iyo M., Ouchi Y., Matsunaga T., Tsukada H., Okada H., Yoshikawa E., Futatsubashi M., Takei N., Mori N. Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am. J. Psychiatry. 2001;158(8):1206–1214. doi: 10.1176/appi.ajp.158.8.1206. [http://dx.doi.org/10.1176/appi.ajp.158.8.1206]. [PMID: 11481152]. [DOI] [PubMed] [Google Scholar]
- 147.Cheng W.H., Ho Y.S., Ross D.A., Valentine B.A., Combs G.F., Lei X.G. Cellular glutathione peroxidase knockout mice express normal levels of selenium-dependent plasma and phospholipid hydroperoxide glutathione peroxidases in various tissues. J. Nutr. 1997;127(8):1445–1450. doi: 10.1093/jn/127.8.1445. [http://dx.doi.org/10.1093/jn/127.8.1445]. [PMID: 9237936]. [DOI] [PubMed] [Google Scholar]
- 148.Tran T.V., Shin E.J., Nguyen L.T.T., Lee Y., Kim D.J., Jeong J.H., Jang C.G., Nah S.Y., Toriumi K., Nabeshima T., Yamada K., Kim H.C. Protein kinase Cdelta gene depletion protects against methamphetamine-induced impairments in recognition memory and ERK1/2 signaling via upregulation of glutathione peroxidase-1 gene. Mol. Neurobiol. 2018;55(5):4136–4159. doi: 10.1007/s12035-017-0638-8. [PMID: 28597397]. [DOI] [PubMed] [Google Scholar]
- 149.Scott J.C., Woods S.P., Matt G.E., Meyer R.A., Heaton R.K., Atkinson J.H., Grant I. Neurocognitive effects of methamphetamine: a critical review and meta-analysis. Neuropsychol. Rev. 2007;17(3):275–297. doi: 10.1007/s11065-007-9031-0. [http://dx.doi.org/10.1007/s11065-007-9031-0]. [PMID: 17694436]. [DOI] [PubMed] [Google Scholar]
- 150.Talman V., Pascale A., Jäntti M., Amadio M., Tuominen R.K. Protein kinase C activation as a potential therapeutic strategy in Alzheimer’s disease: is there a role for embryonic lethal abnormal vision-like proteins? Basic Clin. Pharmacol. Toxicol. 2016;119(2):149–160. doi: 10.1111/bcpt.12581. [http://dx.doi.org/10.1111/bcpt.12581]. [PMID: 27001133]. [DOI] [PubMed] [Google Scholar]
- 151.Newton A.C. Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem. Rev. 2001;101(8):2353–2364. doi: 10.1021/cr0002801. [http://dx.doi.org/10.1021/cr0002801]. [PMID: 11749377]. [DOI] [PubMed] [Google Scholar]
- 152.Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988;334(6184):661–665. doi: 10.1038/334661a0. [http://dx.doi.org/10.1038/334661a0]. [PMID: 3045562]. [DOI] [PubMed] [Google Scholar]
- 153.Shin E.J., Duong C.X., Nguyen X.T., Bing G., Bach J.H., Park D.H., Nakayama K., Ali S.F., Kanthasamy A.G., Cadet J.L., Nabeshima T., Kim H.C. PKCδ inhibition enhances tyrosine hydroxylase phosphorylation in mice after methamphetamine treatment. Neurochem. Int. 2011;59(1):39–50. doi: 10.1016/j.neuint.2011.03.022. [http://dx.doi.org/10.1016/j.neuint.2011.03.022]. [PMID: 21672585]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154.Iwase K., Miyanaka K., Shimizu A., Nagasaki A., Gotoh T., Mori M., Takiguchi M. Induction of endothelial nitric-oxide synthase in rat brain astrocytes by systemic lipopolysaccharide treatment. J. Biol. Chem. 2000;275(16):11929–11933. doi: 10.1074/jbc.275.16.11929. [http://dx.doi.org/10.1074/jbc.275.16.11929]. [PMID: 10766821]. [DOI] [PubMed] [Google Scholar]
- 155.Monti M., Donnini S., Giachetti A., Mochly-Rosen D., Ziche M. deltaPKC inhibition or varepsilonPKC activation repairs endothelial vascular dysfunction by regulating eNOS post-translational modification. J. Mol. Cell. Cardiol. 2010;48(4):746–756. doi: 10.1016/j.yjmcc.2009.11.002. [http://dx.doi.org/10.1016/j.yjmcc.2009.11.002]. [PMID: 19913548]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Ghigo D., Geromin D., Franchino C., Todde R., Priotto C., Costamagna C., Arese M., Garbarino G., Pescarmona G.P., Bosia A. Correlation between nitric oxide synthase activity and reduced glutathione level in human and murine endothelial cells. Amino Acids. 1996;10(3):277–281. doi: 10.1007/BF00807330. [http://dx.doi.org/10.1007/BF00807330]. [PMID: 24178542]. [DOI] [PubMed] [Google Scholar]
- 157.Hofmann H., Schmidt H.H. Thiol dependence of nitric oxide synthase. Biochemistry. 1995;34(41):13443–13452. doi: 10.1021/bi00041a023. [http://dx.doi.org/10.1021/bi00041a023]. [PMID: 7577932]. [DOI] [PubMed] [Google Scholar]
- 158.Yang X., Wang Y., Li Q., Zhong Y., Chen L., Du Y., He J., Liao L., Xiong K., Yi C.X., Yan J. The Main Molecular Mechanisms Underlying Methamphetamine- Induced Neurotoxicity and Implications for Pharmacological Treatment. Front. Mol. Neurosci. 2018;11:186. doi: 10.3389/fnmol.2018.00186. [http://dx.doi.org/10.3389/fnmol.2018.00186]. [PMID: 29915529]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Krasnova I.N., Cadet J.L. Methamphetamine toxicity and messengers of death. Brain Res. Brain Res. Rev. 2009;60(2):379–407. doi: 10.1016/j.brainresrev.2009.03.002. [http://dx.doi.org/10.1016/j.brainresrev.2009.03.002]. [PMID: 19328213]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160.Jayanthi S., McCoy M.T., Beauvais G., Ladenheim B., Gilmore K., Wood W., III, Becker K., Cadet J.L. Methamphetamine induces dopamine D1 receptor-dependent endoplasmic reticulum stress-related molecular events in the rat striatum. PLoS One. 2009;4(6):e6092. doi: 10.1371/journal.pone.0006092. [http://dx.doi.org/10.1371/journal.pone.0006092]. [PMID: 19564919]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 161.Nathan P.J., Watson J., Lund J., Davies C.H., Peters G., Dodds C.M., Swirski B., Lawrence P., Bentley G.D., O’Neill B.V., Robertson J., Watson S., Jones G.A., Maruff P., Croft R.J., Laruelle M., Bullmore E.T. The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int. J. Neuropsychopharmacol. 2013;16(4):721–731. doi: 10.1017/S1461145712000752. [http://dx.doi.org/10.1017/S1461145712000752]. [PMID: 22932339]. [DOI] [PubMed] [Google Scholar]
- 162.Kim B.K., Tran H.Y., Shin E.J., Lee C., Chung Y.H., Jeong J.H., Bach J.H., Kim W.K., Park D.H., Saito K., Nabeshima T., Kim H.C. IL-6 attenuates trimethyltin-induced cognitive dysfunction via activation of JAK2/STAT3, M1 mAChR and ERK signaling network. Cell. Signal. 2013;25(6):1348–1360. doi: 10.1016/j.cellsig.2013.02.017. [http://dx.doi.org/10.1016/j.cellsig.2013.02.017]. [PMID: 23499905]. [DOI] [PubMed] [Google Scholar]
- 163.Park S.J., Shin E.J., Min S.S., An J., Li Z., Hee Chung Y., Hoon Jeong J., Bach J.H., Nah S.Y., Kim W.K., Jang C.G., Kim Y.S., Nabeshima Y., Nabeshima T., Kim H.C. Inactivation of JAK2/STAT3 signaling axis and downregulation of M1 mAChR cause cognitive impairment in klotho mutant mice, a genetic model of aging. Neuropsychopharmacology. 2013;38(8):1426–1437. doi: 10.1038/npp.2013.39. [http://dx.doi.org/10.1038/npp.2013.39]. [PMID: 23389690]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 164.Pearson G., Robinson F., Beers Gibson T., Xu B.E., Karandikar M., Berman K., Cobb M.H. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 2001;22(2):153–183. doi: 10.1210/edrv.22.2.0428. [PMID: 11294822]. [DOI] [PubMed] [Google Scholar]
- 165.English J.D., Sweatt J.D. Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem. 1996;271(40):24329–24332. doi: 10.1074/jbc.271.40.24329. [http://dx.doi.org/10.1074/jbc.271.40.24329]. [PMID: 8798683]. [DOI] [PubMed] [Google Scholar]
- 166.Valjent E., Caboche J., Vanhoutte P. Mitogen-activated protein kinase/extracellular signal-regulated kinase induced gene regulation in brain: a molecular substrate for learning and memory? Mol. Neurobiol. 2001;23(2-3):83–99. doi: 10.1385/MN:23:2-3:083. [http://dx.doi.org/10.1385/MN:23:2-3:083]. [PMID: 11817219]. [DOI] [PubMed] [Google Scholar]
- 167.Nestler E.J. Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2001;2(2):119–128. doi: 10.1038/35053570. [http://dx.doi.org/10.1038/35053570]. [PMID: 11252991]. [DOI] [PubMed] [Google Scholar]
