Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Feb 21;76(Pt 3):423–426. doi: 10.1107/S205698902000211X

A binuclear CuII/CaII thio­cyanate complex with a Schiff base ligand derived from o-vanillin and ammonia

Nataliya Plyuta a,b,*, Olga Yu Vassilyeva a, Vladimir N Kokozay a, Iryna Omelchenko c, Svitlana Petrusenko a
PMCID: PMC7057356  PMID: 32148887

A new title heterometallic Cu/Ca complex, [Cu(C8H8NO2)2Ca(NCS)2(H2O)], with a Schiff base ligand derived from o-vanillin and ammonia has been synthesized by a facile one-pot reaction under ambient conditions. In the crystal, O—H⋯S hydrogen bonds between the coordinating water mol­ecules and thio­cyanate groups form a supra­molecular chain with a zigzag-shaped calcium skeleton.

Keywords: crystal structure, Schiff base ligand, copper, calcium, heterometallic, hydrogen bond

Abstract

The new heterometallic complex, aqua-1κO-bis­(μ2-2-imino­methyl-6-meth­oxy­phenolato-1κ2 O 1,O 6:2κ2 O 1,N)bis­(thio­cyanato-1κN)calcium(II)copper(II), [CaCu(C8H8NO2)2(NCS)2(H2O)], has been synthesized using a one-pot reaction of copper powder, calcium oxide, o-vanillin and ammonium thio­cyanate in methanol under ambient conditions. The Schiff base ligand (C8H9NO2) is generated in situ from the condensation of o-vanillin and ammonia, which is released from the initial NH4SCN. The title compound consists of a discrete binuclear mol­ecule with a {Cu(μ-O)2Ca} core, in which the Cu⋯Ca distance is 3.4275 (6) Å. The coordination geometries of the four-coordinate copper atom in the [CuN2O2] chromophore and the seven-coordinate calcium atom in the [CaO5N2] chromophore can be described as distorted square planar and penta­gonal bipyramidal, respectively. In the crystal, O—H⋯S hydrogen bonds between the coordinating water mol­ecules and thio­cyanate groups form a supra­molecular chain with a zigzag-shaped calcium skeleton.

Chemical context  

The coordination chemistry of s-block elements is a fairly new and rapidly growing area of research (Fromm, 2008). Among the many systems studied, special attention is paid to heterometallic Cu/Ca complexes because of their structural diversity, relatively low toxicity, useful properties such as catalytic (Saha et al., 2016; Liu et al., 2017; Mon et al., 2016), magnetic (Sanchis et al., 1992; Zhang et al., 2013), luminescent (Zou & Gao, 2016), sorption (Grancha et al., 2017) and bioactivity (Mon et al., 2018; Grancha et al., 2016), and therefore high potential for applications. In the course of our systematic work on the development of the ‘direct synthesis’ (DS) approach, we have been successful in preparing different homo- and heterometallic complexes with transition metals (Kokozay et al., 2018). Herein we report the synthesis and crystal structure of the title compound.graphic file with name e-76-00423-scheme1.jpg

Structural commentary  

The main structural unit is the heterometallic mol­ecular complex formed by divalent copper and calcium ions with two deprotonated Schiff base ligands (L = C8H8NO2 ), two thio­cyanate ions and one water mol­ecule (Fig. 1). The metal atoms are joined through two μ-O bridges from the phenolato-groups of the organic ligands, giving a binuclear {Cu(μ-O)2Ca} core with a Cu⋯Ca distance of 3.4275 (6) Å and Cu—O—Ca angles of 106.15 (8) and 106.64 (8)°. The copper atom is four-coordinated by two imino N and two phenoxo O atoms from the Schiff base ligands. The coordination geometry of the CuN2O2 chromophore is slightly distorted square planar; the Cu—O and Cu—N bond lengths vary in the range of 1.918 (2)–1.937 (2) Å and the corresponding cis/trans bond angles deviate from ideal symmetry by less than 8° with τ 4 = 0.112 (Yang et al., 2007). The copper atom is displaced from the N2O2 plane by ca 0.01 Å. All of the O atoms of the {Cu(L)2} moiety chelate the calcium atom in a tetra­dentate manner and the coordination sphere of the Ca center is further completed by two SCN groups and one water mol­ecule giving a coordination number of seven. The CaO5N2 chromophore can be described as having a distorted penta­gonal–bipyramidal geometry with the oxygen atoms in the equatorial plane and the nitro­gen atoms in the axial positions (Fig. 2). The calcium atom is located on the least-squares plane through the five equatorial O atoms, the sum of all O—Ca—O cis angles being 361°. The longest Ca—O bond distances [2.511 (2) and 2.521 (2) Å] are observed for the coordinating meth­oxy groups and the shortest ones [2.339 (2)–2.356 (2) Å] for the phenoxido groups and the water mol­ecule. The values are in accordance with those found in related binuclear Cu/Ca complexes (Mondal et al., 2011; Constable et al., 2010; Chandrasekhar et al., 2012). The Cu⋯Ca separation [3.4275 (6) Å] is inter­mediate compared to the analogous distances of 3.363 and 3.462 Å, respectively, in [CuLCa(ClO4)2(H2O)] (Mondal et al., 2011) and [LCuCa(NO3)2] (Chandrasekhar et al., 2012). The N,O,O,O′-tetra­dentate coordination mode, or [2.1121] in the Harris notation (Coxall et al., 2000), of the HL ligand has been observed previously in [Ni(L)2Na(ClO4)(H2O)] (Costes et al., 1994). The bond-valence-sum (BVS) analysis applied to the corresponding bond lengths leads to the +2 oxidation state for both metals: 2.07 (Cu) and 2.11 (Ca) (Brown & Altermatt, 1985; Chen & Adams, 2017).

Figure 1.

Figure 1

Mol­ecular structure of the title compound, with the numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

Coordination polyhedron of the calcium atom in the title compound.

Supra­molecular features  

The coordinating water mol­ecule and thio­cyanate ions of each binuclear complex are involved in four O—H⋯S hydrogen bonds (Table 1) with two adjacent complexes. The hydrogen-bonded repeat unit can be described as a double twelve-membered ring motif [Inline graphic(12)]2 (Bernstein et al., 1995) (Fig. 3). A fragment of the crystal structure showing the chain skeleton based on the [Inline graphic(12)]2 synthon is shown in Fig. 4. It should be noted that the arrangement of calcium atoms within the chain has a zigzag shape with all metal atoms lying in the same plane. The shortest Ca⋯Ca distance is 7.792 (7) Å and the angle formed by the three nearest metal centers is 85.093 (7)°. The supra­molecular chains run parallel to the b-axis (Fig. 5). Weak N—H⋯S hydrogen bonds (Table 1) and a π–π stacking inter­action between the C1–C6 ring and the adjacent C9–C14(x − 1, y, z) ring [dihedral angle between the rings 4.6 (1)°, mean inter­planar separation 3.40 Å and plane shift 0.69 (1) Å] link neighbouring chains, increasing the whole dimensionality of the crystal framework.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯S2i 0.85 (1) 2.47 (1) 3.297 (3) 169 (4)
O5—H5B⋯S1ii 0.84 (1) 2.40 (2) 3.226 (3) 166 (5)
N1—H1⋯S2iii 0.82 (1) 2.80 (2) 3.500 (2) 145 (3)
N2—H2⋯S1iv 0.82 (1) 2.61 (1) 3.403 (3) 163 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 3.

Figure 3

Packing diagram of the title compound, showing inter­molecular O—H⋯S hydrogen bonds forming a chain structure. [Symmetry codes: (i) x − Inline graphic, −y + Inline graphic, z + Inline graphic; (ii) −x, 1 − y, −z.]

Figure 4.

Figure 4

Fragment of the crystal structure of the title compound, illustrating the chain skeleton based on the [Inline graphic(12)]2 synthon in (a) ball-and-stick and (b) space-filling mode.

Figure 5.

Figure 5

Packing diagram of the title compound viewed along the a axis, showing the supra­molecular chains. The dashed lines denote hydrogen bonds.

Database survey  

To date, the crystal structures of 72 complexes containing copper and calcium are known (CSD, version 5.40, last update February 2019; Groom et al., 2016). Most of them possess polymeric or ionic frameworks. Only five examples were found of mol­ecular binuclear Cu/Ca complexes, including two formed by carboxyl­ate ligands (Smith et al., 1985; Breeze & Wang, 1994) and three with symmetric salen-type Schiff base ligands (Constable et al., 2010; Mondal et al., 2011; Chandrasekhar et al., 2012). To the best of our knowledge, [Cu(L)2Ca(NCS)2(H2O)] is the first mol­ecular binuclear Cu/Ca complex with an asymmetric Schiff base ligand to have been characterized crystallographically.

Synthesis and crystallization  

The following system has been investigated:

Cu0–CaO–o-vanillin–NH4SCN–methanol (open air),

and the heterometallic complex [Cu(L)2Ca(NCS)2(H2O)] was obtained. Its formation can be described by the following scheme:

Cu0 + CaO + 2o-vanillin + 2NH4SCN + 1/2O2(air)→ [Cu(L)2Ca(NCS)2(H2O)] + 3H2O,

where the Schiff base HL can be regarded as a product of the condensation of o-vanillin and NH3, which is released from NH4SCN in the basic environment.

Copper powder (0.06 g, 1 mmol), CaO (0.11 g, 2 mmol), o-vanillin (0.3 g, 2 mmol) and NH4SCN (0.15 g, 2 mmol) were added to 30 ml of methanol. The reaction mixture was stirred magnetically at 323–333 K for ca 5 h until the complete dissolution of the copper powder was observed. The solution was filtered and left for 1 d, and then light-orange crystals were formed. Yield: 0.26 g (48.3%, Cu). Analysis calculated for CaCuC18N4H18O5S2: Ca 7.45, Cu 11.81, C 40.18, N 10.41, H 3.37, S 11.92. Found: Ca 8.1, Cu 11.2, C 36.5, N 10.1, H 3.2, S 11.4. FT–IR (KBr, νmax cm−1): 3349 vs, 3187 vs, 2942 s, 2076 vs, 1617vs, 1555 m, 1464 vs, 1386 s, 1318 s, 1245 s, 1225 vs, 1162 m, 1074 s, 1036 m, 948 m, 853 m, 823 m, 738 s, 652 m, 617 m, 571 m, 515 m, 469 m.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms of CH and CH3 groups were placed in idealized positions (C—H = 0.93–0.96 Å) and constrained to ride on their parent atoms, with U iso(H) = 1.2U eq(C) for CH and 1.5U eq(C) for CH3. All H atoms of the NH and OH groups were located in a difference-Fourier map and refined isotropically; the N—H and O—H distances were restrained to have fixed lengths of 0.82 (1) and 0.85 (1) Å, respectively.

Table 2. Experimental details.

Crystal data
Chemical formula [CaCu(C8H8NO2)2(NCS)2(H2O)]
M r 538.10
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 8.5623 (3), 10.5377 (3), 24.4439 (7)
β (°) 90.768 (3)
V3) 2205.30 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.45
Crystal size (mm) 0.40 × 0.20 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2007)
T min, T max 0.671, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15599, 5844, 3849
R int 0.037
(sin θ/λ)max−1) 0.712
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.103, 1.02
No. of reflections 5844
No. of parameters 298
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.55, −0.53

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXT (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902000211X/is5531sup1.cif

e-76-00423-sup1.cif (477.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902000211X/is5531Isup2.hkl

e-76-00423-Isup2.hkl (320.3KB, hkl)

CCDC reference: 1984001

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[CaCu(C8H8NO2)2(NCS)2(H2O)] F(000) = 1100
Mr = 538.10 Dx = 1.621 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.5623 (3) Å Cell parameters from 3455 reflections
b = 10.5377 (3) Å θ = 3.2–28.2°
c = 24.4439 (7) Å µ = 1.45 mm1
β = 90.768 (3)° T = 298 K
V = 2205.30 (13) Å3 Plate, clear light orange
Z = 4 0.40 × 0.20 × 0.04 mm

Data collection

Oxford Diffraction Xcalibur, Sapphire3 diffractometer 5844 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3849 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
Detector resolution: 16.1827 pixels mm-1 θmax = 30.4°, θmin = 3.1°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2007) k = −14→13
Tmin = 0.671, Tmax = 1.000 l = −31→33
15599 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.4639P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
5844 reflections Δρmax = 0.55 e Å3
298 parameters Δρmin = −0.53 e Å3
4 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.25895 (4) 0.25464 (3) 0.00673 (2) 0.03322 (10)
Ca1 0.22640 (7) 0.27119 (5) −0.13299 (2) 0.03249 (14)
S1 0.51771 (13) −0.14153 (9) −0.18147 (3) 0.0646 (3)
S2 −0.03690 (13) 0.68682 (9) −0.19653 (3) 0.0614 (3)
O1 0.1048 (2) 0.22468 (17) −0.04945 (7) 0.0338 (4)
O2 −0.0464 (2) 0.1848 (2) −0.13976 (7) 0.0414 (5)
O3 0.3808 (2) 0.30690 (18) −0.05483 (7) 0.0355 (4)
O4 0.4805 (2) 0.3859 (2) −0.14838 (7) 0.0450 (5)
O5 0.2298 (3) 0.2535 (3) −0.22876 (9) 0.0619 (7)
H5A 0.305 (3) 0.225 (4) −0.2470 (16) 0.098 (16)*
H5B 0.179 (5) 0.288 (4) −0.2545 (14) 0.119 (18)*
N1 0.1121 (3) 0.2106 (2) 0.06324 (9) 0.0428 (6)
H1 0.134 (4) 0.218 (3) 0.0957 (5) 0.055 (10)*
N2 0.4350 (3) 0.2754 (2) 0.05565 (10) 0.0409 (6)
H2 0.430 (4) 0.254 (3) 0.0876 (5) 0.044 (9)*
N3 0.3366 (4) 0.0593 (3) −0.14345 (10) 0.0554 (7)
N4 0.1238 (3) 0.4817 (3) −0.15087 (11) 0.0631 (8)
C1 −0.0978 (3) 0.1323 (2) 0.00536 (10) 0.0331 (6)
C2 −0.0321 (3) 0.1693 (2) −0.04459 (10) 0.0291 (6)
C3 −0.1196 (3) 0.1456 (2) −0.09263 (10) 0.0323 (6)
C4 −0.2633 (4) 0.0899 (3) −0.09111 (12) 0.0424 (7)
H4 −0.319638 0.076917 −0.123429 0.051*
C5 −0.3257 (4) 0.0525 (3) −0.04175 (13) 0.0454 (7)
H5 −0.422967 0.013284 −0.040983 0.054*
C6 −0.2446 (3) 0.0731 (3) 0.00573 (12) 0.0417 (7)
H6 −0.286972 0.047557 0.038788 0.050*
C7 −0.0217 (4) 0.1594 (3) 0.05695 (11) 0.0401 (7)
H7 −0.074932 0.137499 0.088485 0.048*
C8 −0.1315 (5) 0.1643 (5) −0.18992 (12) 0.0846 (15)
H8A −0.073501 0.198512 −0.219853 0.127*
H8B −0.231122 0.205765 −0.188105 0.127*
H8C −0.146754 0.074931 −0.195367 0.127*
C9 0.6152 (3) 0.3727 (3) −0.00718 (11) 0.0374 (6)
C10 0.5218 (3) 0.3585 (2) −0.05441 (11) 0.0335 (6)
C11 0.5812 (3) 0.4028 (3) −0.10421 (11) 0.0377 (6)
C12 0.7263 (4) 0.4563 (3) −0.10718 (13) 0.0470 (7)
H12 0.763901 0.483621 −0.140689 0.056*
C13 0.8170 (4) 0.4696 (3) −0.06040 (15) 0.0530 (8)
H13 0.915615 0.506000 −0.062517 0.064*
C14 0.7631 (4) 0.4299 (3) −0.01150 (14) 0.0486 (8)
H14 0.824788 0.440632 0.019761 0.058*
C15 0.5658 (4) 0.3266 (3) 0.04523 (12) 0.0428 (7)
H15 0.636341 0.335062 0.074278 0.051*
C16 0.5129 (5) 0.4603 (4) −0.19647 (12) 0.0657 (11)
H16A 0.427580 0.452705 −0.222133 0.099*
H16B 0.606992 0.430087 −0.212968 0.099*
H16C 0.525799 0.547751 −0.186305 0.099*
C17 0.4078 (4) −0.0245 (3) −0.15950 (11) 0.0442 (7)
C18 0.0590 (4) 0.5668 (3) −0.17037 (11) 0.0461 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.03093 (18) 0.0417 (2) 0.02712 (16) 0.00156 (16) 0.00306 (13) 0.00148 (13)
Ca1 0.0298 (3) 0.0411 (3) 0.0267 (3) −0.0003 (3) 0.0050 (2) 0.0035 (2)
S1 0.0866 (8) 0.0591 (5) 0.0475 (5) 0.0227 (5) −0.0176 (5) −0.0163 (4)
S2 0.0702 (6) 0.0635 (6) 0.0508 (5) 0.0184 (5) 0.0145 (4) 0.0176 (4)
O1 0.0275 (10) 0.0456 (11) 0.0284 (9) −0.0035 (9) 0.0037 (7) 0.0061 (8)
O2 0.0356 (11) 0.0576 (12) 0.0310 (9) −0.0097 (11) 0.0004 (8) 0.0014 (9)
O3 0.0286 (10) 0.0461 (11) 0.0319 (9) −0.0072 (9) 0.0057 (8) −0.0013 (8)
O4 0.0430 (13) 0.0508 (12) 0.0416 (11) −0.0128 (11) 0.0101 (9) 0.0079 (9)
O5 0.0562 (16) 0.098 (2) 0.0315 (11) 0.0175 (16) 0.0059 (11) 0.0061 (12)
N1 0.0490 (17) 0.0540 (15) 0.0256 (12) 0.0007 (14) 0.0063 (11) 0.0032 (11)
N2 0.0413 (15) 0.0484 (15) 0.0328 (13) 0.0064 (13) −0.0028 (11) −0.0018 (11)
N3 0.0602 (19) 0.0542 (17) 0.0516 (16) 0.0112 (16) −0.0036 (14) −0.0043 (13)
N4 0.0536 (19) 0.0588 (18) 0.0773 (19) 0.0139 (16) 0.0206 (16) 0.0210 (15)
C1 0.0294 (15) 0.0306 (13) 0.0396 (14) 0.0071 (12) 0.0115 (12) 0.0051 (11)
C2 0.0244 (13) 0.0282 (13) 0.0349 (13) 0.0041 (12) 0.0075 (11) 0.0037 (10)
C3 0.0309 (15) 0.0306 (13) 0.0355 (14) 0.0002 (12) 0.0072 (11) 0.0004 (11)
C4 0.0379 (17) 0.0399 (16) 0.0494 (17) −0.0050 (15) 0.0021 (14) −0.0033 (13)
C5 0.0311 (16) 0.0379 (16) 0.067 (2) −0.0076 (14) 0.0095 (15) −0.0018 (14)
C6 0.0367 (17) 0.0340 (15) 0.0549 (17) 0.0011 (14) 0.0206 (14) 0.0076 (13)
C7 0.0454 (18) 0.0405 (16) 0.0348 (14) 0.0052 (15) 0.0165 (13) 0.0083 (12)
C8 0.077 (3) 0.145 (4) 0.0323 (17) −0.051 (3) −0.0041 (17) 0.000 (2)
C9 0.0307 (15) 0.0302 (14) 0.0514 (17) 0.0064 (13) 0.0017 (13) −0.0072 (12)
C10 0.0275 (14) 0.0276 (13) 0.0455 (15) 0.0045 (12) 0.0047 (12) −0.0062 (11)
C11 0.0341 (16) 0.0314 (14) 0.0480 (16) 0.0001 (13) 0.0096 (13) −0.0019 (12)
C12 0.0376 (18) 0.0366 (16) 0.067 (2) −0.0022 (15) 0.0147 (15) 0.0010 (14)
C13 0.0307 (17) 0.0382 (17) 0.090 (2) −0.0075 (15) 0.0083 (17) −0.0027 (17)
C14 0.0344 (17) 0.0359 (16) 0.075 (2) 0.0037 (15) −0.0089 (16) −0.0128 (15)
C15 0.0403 (18) 0.0444 (17) 0.0432 (16) 0.0107 (15) −0.0114 (14) −0.0115 (13)
C16 0.080 (3) 0.068 (2) 0.0498 (19) −0.018 (2) 0.0130 (18) 0.0179 (17)
C17 0.053 (2) 0.0468 (18) 0.0321 (14) −0.0011 (17) −0.0102 (14) −0.0010 (13)
C18 0.0421 (18) 0.0538 (19) 0.0426 (16) −0.0008 (16) 0.0158 (14) 0.0026 (14)

Geometric parameters (Å, º)

Cu1—Ca1 3.4275 (6) C1—C2 1.406 (3)
Cu1—O1 1.9183 (18) C1—C6 1.404 (4)
Cu1—O3 1.9232 (18) C1—C7 1.440 (4)
Cu1—N1 1.937 (2) C2—C3 1.407 (3)
Cu1—N2 1.924 (2) C3—C4 1.364 (4)
Ca1—O1 2.3565 (17) C4—H4 0.9300
Ca1—O2 2.511 (2) C4—C5 1.383 (4)
Ca1—O3 2.3394 (18) C5—H5 0.9300
Ca1—O4 2.521 (2) C5—C6 1.362 (4)
Ca1—O5 2.349 (2) C6—H6 0.9300
Ca1—N3 2.439 (3) C7—H7 0.9300
Ca1—N4 2.423 (3) C8—H8A 0.9600
S1—C17 1.646 (3) C8—H8B 0.9600
S2—C18 1.633 (4) C8—H8C 0.9600
O1—C2 1.315 (3) C9—C10 1.403 (4)
O2—C3 1.382 (3) C9—C14 1.408 (4)
O2—C8 1.434 (3) C9—C15 1.439 (4)
O3—C10 1.324 (3) C10—C11 1.405 (4)
O4—C11 1.384 (3) C11—C12 1.367 (4)
O4—C16 1.443 (3) C12—H12 0.9300
O5—H5A 0.845 (10) C12—C13 1.381 (4)
O5—H5B 0.844 (10) C13—H13 0.9300
N1—H1 0.815 (10) C13—C14 1.353 (4)
N1—C7 1.274 (4) C14—H14 0.9300
N2—H2 0.816 (10) C15—H15 0.9300
N2—C15 1.272 (4) C16—H16A 0.9600
N3—C17 1.145 (4) C16—H16B 0.9600
N4—C18 1.155 (4) C16—H16C 0.9600
O1—Cu1—Ca1 41.33 (5) C17—N3—Ca1 161.8 (3)
O1—Cu1—O3 82.10 (8) C18—N4—Ca1 163.1 (3)
O1—Cu1—N1 91.37 (10) C2—C1—C7 121.6 (3)
O1—Cu1—N2 171.72 (9) C6—C1—C2 119.8 (2)
O3—Cu1—Ca1 40.84 (5) C6—C1—C7 118.5 (2)
O3—Cu1—N1 172.27 (10) O1—C2—C1 124.7 (2)
O3—Cu1—N2 91.42 (10) O1—C2—C3 118.0 (2)
N1—Cu1—Ca1 132.69 (8) C1—C2—C3 117.4 (2)
N2—Cu1—Ca1 131.76 (8) O2—C3—C2 113.6 (2)
N2—Cu1—N1 95.45 (11) C4—C3—O2 124.8 (2)
O1—Ca1—Cu1 32.52 (4) C4—C3—C2 121.6 (2)
O1—Ca1—O2 63.89 (6) C3—C4—H4 119.8
O1—Ca1—O4 128.41 (6) C3—C4—C5 120.3 (3)
O1—Ca1—N3 94.38 (8) C5—C4—H4 119.8
O1—Ca1—N4 100.56 (8) C4—C5—H5 120.0
O2—Ca1—Cu1 96.33 (4) C6—C5—C4 120.0 (3)
O2—Ca1—O4 165.45 (6) C6—C5—H5 120.0
O3—Ca1—Cu1 32.52 (4) C1—C6—H6 119.6
O3—Ca1—O1 64.99 (6) C5—C6—C1 120.8 (3)
O3—Ca1—O2 128.85 (6) C5—C6—H6 119.6
O3—Ca1—O4 64.24 (6) N1—C7—C1 125.8 (3)
O3—Ca1—O5 144.32 (8) N1—C7—H7 117.1
O3—Ca1—N3 91.01 (8) C1—C7—H7 117.1
O3—Ca1—N4 101.51 (9) O2—C8—H8A 109.5
O4—Ca1—Cu1 96.56 (4) O2—C8—H8B 109.5
O5—Ca1—Cu1 170.80 (8) O2—C8—H8C 109.5
O5—Ca1—O1 149.18 (9) H8A—C8—H8B 109.5
O5—Ca1—O2 85.97 (8) H8A—C8—H8C 109.5
O5—Ca1—O4 82.36 (8) H8B—C8—H8C 109.5
O5—Ca1—N3 79.22 (9) C10—C9—C14 119.1 (3)
O5—Ca1—N4 84.39 (10) C10—C9—C15 121.7 (3)
N3—Ca1—Cu1 91.80 (6) C14—C9—C15 119.1 (3)
N3—Ca1—O2 91.27 (9) O3—C10—C9 124.0 (2)
N3—Ca1—O4 95.02 (9) O3—C10—C11 118.0 (2)
N4—Ca1—Cu1 104.52 (7) C9—C10—C11 117.9 (3)
N4—Ca1—O2 89.15 (9) O4—C11—C10 113.8 (2)
N4—Ca1—O4 81.12 (9) C12—C11—O4 124.7 (3)
N4—Ca1—N3 163.53 (9) C12—C11—C10 121.5 (3)
Cu1—O1—Ca1 106.15 (8) C11—C12—H12 120.0
C2—O1—Cu1 127.85 (15) C11—C12—C13 120.0 (3)
C2—O1—Ca1 125.10 (15) C13—C12—H12 120.0
C3—O2—Ca1 119.05 (15) C12—C13—H13 119.8
C3—O2—C8 115.9 (2) C14—C13—C12 120.4 (3)
C8—O2—Ca1 124.91 (18) C14—C13—H13 119.8
Cu1—O3—Ca1 106.64 (8) C9—C14—H14 119.5
C10—O3—Cu1 128.01 (16) C13—C14—C9 121.1 (3)
C10—O3—Ca1 125.29 (16) C13—C14—H14 119.5
C11—O4—Ca1 118.37 (15) N2—C15—C9 126.2 (3)
C11—O4—C16 116.1 (2) N2—C15—H15 116.9
C16—O4—Ca1 123.92 (19) C9—C15—H15 116.9
Ca1—O5—H5A 125 (3) O4—C16—H16A 109.5
Ca1—O5—H5B 134 (4) O4—C16—H16B 109.5
H5A—O5—H5B 99 (4) O4—C16—H16C 109.5
Cu1—N1—H1 122 (2) H16A—C16—H16B 109.5
C7—N1—Cu1 127.4 (2) H16A—C16—H16C 109.5
C7—N1—H1 111 (2) H16B—C16—H16C 109.5
Cu1—N2—H2 121 (2) N3—C17—S1 177.3 (3)
C15—N2—Cu1 127.5 (2) N4—C18—S2 178.2 (3)
C15—N2—H2 111 (2)
Cu1—O1—C2—C1 6.8 (4) C3—C4—C5—C6 1.0 (4)
Cu1—O1—C2—C3 −173.44 (17) C4—C5—C6—C1 0.1 (4)
Cu1—O3—C10—C9 6.7 (4) C6—C1—C2—O1 −179.6 (2)
Cu1—O3—C10—C11 −172.68 (18) C6—C1—C2—C3 0.6 (4)
Cu1—N1—C7—C1 −5.3 (4) C6—C1—C7—N1 178.8 (3)
Cu1—N2—C15—C9 −4.8 (5) C7—C1—C2—O1 3.6 (4)
Ca1—O1—C2—C1 174.37 (18) C7—C1—C2—C3 −176.2 (2)
Ca1—O1—C2—C3 −5.8 (3) C7—C1—C6—C5 175.9 (3)
Ca1—O2—C3—C2 4.8 (3) C8—O2—C3—C2 −179.3 (3)
Ca1—O2—C3—C4 −175.7 (2) C8—O2—C3—C4 0.2 (4)
Ca1—O3—C10—C9 −176.52 (19) C9—C10—C11—O4 −179.4 (2)
Ca1—O3—C10—C11 4.1 (3) C9—C10—C11—C12 1.2 (4)
Ca1—O4—C11—C10 −3.5 (3) C10—C9—C14—C13 −0.9 (4)
Ca1—O4—C11—C12 175.9 (2) C10—C9—C15—N2 −3.6 (5)
O1—C2—C3—O2 0.2 (3) C10—C11—C12—C13 −1.1 (4)
O1—C2—C3—C4 −179.3 (2) C11—C12—C13—C14 0.0 (5)
O2—C3—C4—C5 179.2 (3) C12—C13—C14—C9 1.0 (5)
O3—C10—C11—O4 0.0 (4) C14—C9—C10—O3 −179.5 (2)
O3—C10—C11—C12 −179.4 (2) C14—C9—C10—C11 −0.1 (4)
O4—C11—C12—C13 179.5 (3) C14—C9—C15—N2 178.5 (3)
C1—C2—C3—O2 −180.0 (2) C15—C9—C10—O3 2.5 (4)
C1—C2—C3—C4 0.5 (4) C15—C9—C10—C11 −178.1 (2)
C2—C1—C6—C5 −1.0 (4) C15—C9—C14—C13 177.1 (3)
C2—C1—C7—N1 −4.3 (4) C16—O4—C11—C10 162.7 (3)
C2—C3—C4—C5 −1.4 (4) C16—O4—C11—C12 −17.9 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5A···S2i 0.85 (1) 2.47 (1) 3.297 (3) 169 (4)
O5—H5B···S1ii 0.84 (1) 2.40 (2) 3.226 (3) 166 (5)
N1—H1···S2iii 0.82 (1) 2.80 (2) 3.500 (2) 145 (3)
N2—H2···S1iv 0.82 (1) 2.61 (1) 3.403 (3) 163 (3)

Symmetry codes: (i) −x+1/2, y−1/2, −z−1/2; (ii) −x+1/2, y+1/2, −z−1/2; (iii) −x, −y+1, −z; (iv) −x+1, −y, −z.

Funding Statement

This work was funded by Ministry of Education and Science of Ukraine grant 19BF037–05. Centre National de la Recherche Scientifique grant . Universite Angers grant . French Embassy in Kiev grant .

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Breeze, S. R. & Wang, S. (1994). Inorg. Chem. 33, 5113–5121.
  3. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  4. Chandrasekhar, V., Senapati, T., Dey, A., Das, S., Kalisz, M. & Clérac, R. (2012). Inorg. Chem. 51, 2031–2038. [DOI] [PubMed]
  5. Chen, H. & Adams, S. (2017). IUCrJ, 4, 614–625. [DOI] [PMC free article] [PubMed]
  6. Constable, E. C., Zhang, G., Housecroft, C. E., Neuburger, M. & Zampese, J. A. (2010). CrystEngComm, 12, 1764–1773.
  7. Costes, J.-P., Dahan, F. & Laurent, J.-P. (1994). Inorg. Chem. 33, 2738–2742.
  8. Coxall, R. A., Harris, S. G., Henderson, D. K., Parsons, S., Tasker, P. A. & Winpenny, R. E. P. (2000). J. Chem. Soc. Dalton Trans. pp. 2349–2356.
  9. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  10. Fromm, K. M. (2008). Coord. Chem. Rev. 252, 856–885.
  11. Grancha, T., Ferrando-Soria, J., Cano, J., Amorós, P., Seoane, B., Gascon, J., Bazaga-García, M., Losilla, E. R., Cabeza, A., Armentano, D. & Pardo, E. (2016). Chem. Mater. 28, 4608–4615.
  12. Grancha, T., Mon, M., Ferrando-Soria, J., Gascon, J., Seoane, B., Ramos-Fernandez, E. V., Armentano, D. & Pardo, E. (2017). J. Mater. Chem. A, 5, 11032–11039.
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Kokozay, V. N., Vassilyeva, O. Yu. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. I. Kharisov, pp. 183–237. Amsterdam: Elsevier.
  15. Liu, Q.-F., Liu, W., Cao, Y.-P., Dong, Y.-L. & Liu, H.-M. (2017). Inorg. Nano-Met. Chem. 47, 153–157.
  16. Mon, M., Bruno, R., Ferrando-Soria, J., Bartella, L., Donna, L. D., Talia, M., Lappano, R., Maggiolini, M., Armentano, D. & Pardo, E. (2018). Mater. Horiz. 5, 683–690.
  17. Mon, M., Ferrando-Soria, J., Grancha, T., Fortea-Pérez, F. R., Gascon, J., Leyva-Pérez, A., Armentano, D. & Pardo, E. (2016). J. Am. Chem. Soc. 138, 7864–7867. [DOI] [PubMed]
  18. Mondal, S., Hazra, S., Sarkar, S., Sasmal, S. & Mohanta, S. (2011). J. Mol. Struct. 1004, 204–214.
  19. Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
  20. Saha, D., Hazra, D. K., Maity, T. & Koner, S. (2016). Inorg. Chem. 55, 5729–5731. [DOI] [PubMed]
  21. Sanchis, M. J., Gomez-Romero, P., Folgado, J. V., Sapina, F., Ibanez, R., Beltran, A., Garcia, J. & Beltran, D. (1992). Inorg. Chem. 31, 2915–2919.
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Smith, G., O’Reilly, E. J., Kennard, C. H. L. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 243–251.
  25. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]
  26. Zhang, J., Cheng, S., Wang, X., Yuan, L., Xue, M., Wang, Y. & Liu, W. (2013). CrystEngComm, 15, 6074–6082.
  27. Zou, G.-H. & Gao, J. (2016). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 1721–1724.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902000211X/is5531sup1.cif

e-76-00423-sup1.cif (477.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902000211X/is5531Isup2.hkl

e-76-00423-Isup2.hkl (320.3KB, hkl)

CCDC reference: 1984001

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES