Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Feb 18;76(Pt 3):410–416. doi: 10.1107/S2056989020001644

The crystal structures and Hirshfeld surface analyses of a cadmium(II) and a zinc(II) mononuclear complex of the new tetrakis-substituted pyrazine ligand N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline)

Ana Tesouro Vallina a, Helen Stoeckli-Evans b,*
PMCID: PMC7057360  PMID: 32148885

In the cadmium(II) and zinc(II) complexes of the tetra­kis-substituted pyrazine ligand, N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline), the ligand coordinates in a mono-tridentate fashion, and both metal atoms have fivefold coordination spheres with distorted shapes.

Keywords: crystal structure, tetra­kis-substituted pyrazine, cadmium(II), zinc(II), mononuclear complexes, C—H⋯π inter­actions, metal–halide⋯π(pyrazine) contacts

Abstract

The whole mol­ecule of the cadmium(II) complex, di­iodido­{N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline)-κ3 N 2,N 1,N 6}cadmium(II), [CdI2(C36H40N6)], (I), of the ligand N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline) (L), is generated by a twofold rotation symmetry; the twofold axis bis­ects the cadmium atom and the nitro­gen atoms of the pyrazine ring. The ligand coordinates in a mono-tridentate manner and the cadmium atom has a fivefold CdN3I2 coordination environment with a distorted shape. In the zinc(II) complex, dichlorido{N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline)-κ3 N 2,N 1,N 6}zinc(II) di­chloro­methane 0.6-solvate, [ZnCl2(C36H40N6)]·0.6CH2Cl2, (II), ligand L also coordinates in a mono-tridentate manner and the zinc atom has a fivefold ZnN3Cl2 coordination environment with a distorted shape. It crystallized as a partial di­chloro­methane solvate. In the crystal of I, the complex mol­ecules are linked by weak C—H⋯I contacts, forming ribbons propagating along [100]. In the crystal of II, the complex mol­ecules are linked by a series of C—H⋯π inter­actions, forming layers lying parallel to the (1Inline graphic1) plane. In the crystals of both compounds there are metal–halide⋯π(pyrazine) contacts present. The Hirshfeld analyses confirm the importance of the C—H⋯halide contacts in the crystal packing of both compounds.

Chemical context  

The title ligand, N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetra­yltetra­kis(methyl­ene)]tetra­kis­(N-methyl­aniline) (L), whose synthesis and crystal structure have been described in the preceding publication (Tesouro Vallina & Stoeckli-Evans, 2020), is a new tetra­kis-substituted pyrazine derivative. It was designed to study its coordination behaviour with transition metals (Tesouro Vallina, 2001). The reaction of the ligand with CdI2 and ZnCl2 lead to the formation of the title mononuclear complexes I and II. Herein, we describe their syntheses, mol­ecular and crystal structures and the analyses of their Hirshfeld surfaces.

Structural commentary  

The mol­ecular structure of the cadmium(II) complex, Cd(L)I2 (I), of the ligand N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline) (L), is illustrated in Fig. 1. Selected geometrical parameters are given in Table 1. The complex possesses twofold rotation symmetry, with the twofold axis bis­ecting the cadmium atom, Cd1, and the nitro­gen atoms N1 and N4 of the pyrazine ring. The ligand coordinates in a mono-tridentate manner and the cadmium atom has a fivefold CdN3I2 coordination environment with a distorted shape (see Fig. 2 a). The τ5 parameter for the fivefold coordination of atom Cd1 is 0.14 (τ5 = 0 for a perfect square-pyramidal geometry and = 1 for a trigonal–pyramidal geometry; Addison et al., 1984).graphic file with name e-76-00410-scheme1.jpg

Figure 1.

Figure 1

A view of the mol­ecular structure of complex I, with atom labelling [symmetry code (i): −x + Inline graphic, y, −z]. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular C—H⋯π inter­actions are shown as dashed red arrows (Table 2).

Table 1. Selected geometric parameters (Å, °) for I .

Cd1—N1 2.295 (3) Cd1—I1 2.7038 (3)
Cd1—N2 2.599 (3)    
       
N1—Cd1—N2 69.65 (6) N2—Cd1—I1i 95.35 (6)
N2i—Cd1—N2 139.31 (12) N2—Cd1—I1 101.29 (6)
N1—Cd1—I1 114.551 (10) I1i—Cd1—I1 130.90 (2)

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

A comparison of the coordination spheres of (a) the cadmium atom in complex I [symmetry code (i): −x + Inline graphic, y, −z], and (b) the zinc atom in complex II.

A search of the Cambridge Structural Database (CSD, Version 5.41, last update November 2019; Groom et al., 2016) for a CdN3I2 coordination environment involving a pyrazine N atom yielded only one relevant structure, the CdI2 mononuclear complex of the ligand 2,3,5,6-tetra­kis­(pyridin-2-yl)pyrazine (TPPZ), viz. complex (2,3,5,6-tetra­kis­(pyridin-2-yl)pyrazine)­bis­(iodo)­cadmium(II) (GAHRIT; Saghatforoush, 2015). Here the τ5 parameter for the cadmium atom is 0.04. The Cd—Npz bond length is ca 2.388 Å compared to 2.295 (3) Å in I, while the Cd—I bond lengths are ca 2.741 and 2.727 Å compared to 2.7038 (3) Å in I. The N-methyl­aniline groups on the non-coordinated side of the ligand are linked by intra­molecular C—H⋯π inter­actions (Fig. 1 and Table 2).

Table 2. Hydrogen-bond geometry (Å, °) for I .

Cg3 is the centroid of the pyrazine ring N1/N4/C1/C2/C1i/C2i and Cg5 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18C⋯Cg5i 0.97 2.95 3.896 (5) 165
C17—H17⋯I1ii 0.94 3.09 3.907 (4) 147
Cd1—I1⋯Cg iii 2.70 (1) 3.96 (1) 6.5131 (12) 155 (1)
Cd1—I1⋯Cg3iv 2.70 (1) 3.96 (1) 6.5131 (12) 155 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

The mol­ecular structure of the zinc(II) complex, Zn(L)Cl2·0.6(CH2Cl2) (II), is illustrated in Fig. 3. It crystallized as a partial di­chloro­methane solvate. Selected geom­etrical parameters are given in Table 3. The ligand L coordinates in a mono-tridentate manner and the zinc atom, Zn1, has a fivefold ZnN3Cl2 coordination environment with a distorted shape (see Fig. 2 b). The τ5 parameter for atom Zn1 is 0.30.

Figure 3.

Figure 3

A view of the mol­ecular structure of compound II, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. For clarity, H atoms have been omitted.

Table 3. Selected geometric parameters (Å, °) for II .

Zn1—N1 2.057 (3) Zn1—Cl1 2.2251 (10)
Zn1—N2 2.385 (3) Zn1—Cl2 2.2425 (11)
Zn1—N5 2.413 (3)    
       
N1—Zn1—N2 75.02 (12) Cl1—Zn1—N2 98.12 (8)
N1—Zn1—N5 74.23 (12) Cl2—Zn1—N2 95.70 (9)
N2—Zn1—N5 149.21 (11) Cl1—Zn1—N5 93.02 (7)
N1—Zn1—Cl1 114.15 (9) Cl2—Zn1—N5 98.34 (8)
N1—Zn1—Cl2 114.68 (9) Cl1—Zn1—Cl2 131.14 (4)

A search of the CSD for a ZnN3Cl2 coordination environment involving a pyrazine N atom yielded five relevant structures, which again involve the ligand TPPZ. They include two polymorphs of the mononuclear complex di­chloro-[2,3,5,6-tetra­kis­(2-pyrid­yl)pyrazine-N,N′,N′′]zinc(II): a monoclinic polymorph (WAGPOJ; Graf et al., 1993) and a triclinic polymorph (WAGPOJ01; Saljooghi & Fatemi, 2011). There are two structures of the binuclear complex [μ2-2,3,5,6-tetra­kis­(2-pyrid­yl)pyrazine]­tetra­chloro­dizinc(II): one hydrated (DOMHOD; Trivedi et al., 2009), the other not (PAPCER; Hong et al., 2017), and finally, the unusual polynuclear complex octa­kis­(μ2-chloro)­bis­[μ2-2,3,5,6-tetra­kis­(2-pyrid­yl)pyrazine]­dodeca­chloro­tetra­aqua­deca­zinc (WIBVOS; Graf & Stoeckli-Evans, 1994). For these five structures, the τ5 parameter for the zinc atoms varies from 0.08 in WAGPOJ to 0.36 in WAGPOJ01. The latter is similar to the value of 0.30 for II. The Zn—Npz bond lengths vary from ca 2.141 to 2.200 Å compared to 2.057 (3) Å in II, while the Zn—Cl bond lengths vary from ca 2.232 to 2.343 Å compared to 2.2251 (10) and 2.2425 (11) Å in II.

The conformation of the ligand L differs in the two complexes (Fig. 4). The orientation of the phenyl rings with respect to the pyrazine ring and to each other is slightly different, and the various dihedral angles are compared in Table 5. It can be seen that the most significant difference, of 20.9 (2)°, involves the orientation of ring D (ring B i in I) with respect to ring E (ring C i in I).

Figure 4.

Figure 4

A comparison of the conformation of the ligand L in complexes I and II. For complex I, which possesses twofold rotation symmetry, ring D = B i, and ring E = C i [symmetry code: (i) −x + Inline graphic, y, −z].

Table 5. A comparison of the conformation of the ligand (L) in complexes I and II .

The definitions of rings A, B, C, D and E are given in Fig. 4.

Dihedral angle (°) I a II Δ(I - II
A to B 41.9 (2) 35.5 (2) > 6.4
A to C 86.1 (2) 87.5 (3) < 1.4
A to D 41.9 (2) 34.9 (2) > 7.0
A to E 86.1 (2) 74.4 (2) > 11.7
B to C 54.0 (2) 53.7 (3) > 0.3
B to D 38.0 (2) 26.9 (2) > 11.1
B to E 63.4 (2) 71.9 (2) < 8.5
C to D 63.4 (2) 58.5 (3) > 4.9
C to E 24.9 (2) 18.3 (3) > 6.6
D to E 54.0 (2) 74.9 (2) < 20.9

Note: (a) D = B i, E = C i; symmetry code: (i) −x + Inline graphic, y, −z.

Supra­molecular features  

A partial view of the crystal packing of I is shown in Fig. 5. Mol­ecules are linked by weak C—H⋯I contacts, forming ribbons propagating along [100]; see Table 2. There are Cd—I⋯π(pyrazine) contacts present, consolidating the chains propagating along the a-axis direction (Fig. 6 a and Table 2). This situation is similar to that observed in the crystal of the CdI2 complex of TPPZ (GAHRIT; Saghatforoush, 2015). There, the I⋯centroid(pyrazine ring) distance is 3.699 (1) Å with a Cd—I⋯centroid angle of 175.92 (12)°, compared to 3.9593 (12) Å and 155.19 (3)° in complex I (Fig. 6 a and Table 2).

Figure 5.

Figure 5

A view normal to plane (011) of the crystal packing of complex I. The weak C—H⋯I inter­actions are shown as dashed lines (Table 2).

Figure 6.

Figure 6

(a) A partial view along the c axis of the crystal packing of I, showing the Cd—I⋯π(pyrazine) inter­actions (Table 2; dashed red arrows), (b) a partial view along the a axis of the crystal packing of II, showing the Zn—Cl⋯π(pyrazine) inter­actions (Table 4; dashed red arrows). For clarity, the di­chloro­methane mol­ecule has been omitted.

In the crystal of II, mol­ecules are linked by a series of C—H⋯π inter­actions, forming layers lying parallel to the (1Inline graphic1) plane; see Fig. 7 and Table 4. The di­chloro­methane mol­ecules are linked across a center of symmetry with a short Cl4⋯Cl4(−x, −y, −z + 2) contact of 3.045 (5) Å and do not participate in any significant inter­molecular inter­actions with the complex mol­ecule. There are Zn—Cl⋯π(pyrazine) contacts present, which link inversion-related mol­ecules, forming dimers (Fig. 6 b and Table 5). This arrangement is similar to that observed in the crystal structure of the ZnCl2 complex of TPPZ (PAPCER; Hong et al., 2017). This compound crystallized with two independent mol­ecules in the asymmetric unit. There, the Cl⋯centroid(pyrazine ring) distances are ca 3.087 and 3.167 Å, with the corresponding Zn—Cl⋯centroid angles being ca 152.62 and 141.76°. In the crystal structure of WIBVOS, a similar inter­action is present with a Cl⋯centroid(pyrazine ring) distance of ca 3.987 Å and a Zn—Cl⋯centroid angle of ca. 170.96°. In complex II, the corresponding Cl⋯centroid(pyrazine ring) distance and Zn—Cl⋯centroid angle are 3.683 (2) Å and 155.96 (6)°, respectively (Table 4).

Figure 7.

Figure 7

A view along the a axis of the crystal packing of compound II. The various C—H⋯π inter­actions (Table 4; blue, red and green) are shown as dashed lines. The di­chloro­methane mol­ecule has been omitted, and only the H atoms (blue, red and green) involved in the C—H⋯π inter­actions have been included.

Table 4. Hydrogen-bond geometry (Å, °) for II .

Cg3 is the centroid of the pyrazine ring N1/N4/C1/C2/C21/C22, and Cg5 and Cg7 are the centroids of rings C12–C17 and C32–C37, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg7i 0.94 2.88 3.814 (6) 177
C11—H11B⋯Cg5ii 0.98 2.90 3.540 (5) 124
C26—H26⋯Cg3iii 0.94 2.95 3.544 (5) 122
Zn1—Cl2⋯Cg3iv 2.24 (1) 3.68 (1) 5.8035 (19) 156 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Hirshfeld surface analysis and two-dimensional fingerprint plots  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surfaces are colour-mapped with the normalized contact distance, d norm, ranging from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). A summary of the short inter­molecular contacts in the crystal structures of I and II is given in Table 6.

Table 6. Summary of inter­atomic contacts (Å)a, shorter than the sum of the van der Waals radii, in the crystal structures of I and II .

Contact Length Length − vdW Symmetry operation
I      
C11⋯C12 3.278 −0.122 Inline graphic − x, −Inline graphic − y, −Inline graphic − z
C12⋯H11A 2.805 −0.095 Inline graphic − x, −Inline graphic − y, −Inline graphic − z
I1⋯H17 3.087 −0.093 Inline graphic + x, −y, z
N3⋯H11B 2.671 −0.079 Inline graphic − x, −Inline graphic − y, −Inline graphic − z
N3⋯C11 3.234 −0.016 Inline graphic − x, −Inline graphic − y, −Inline graphic − z
       
II      
Cl4⋯Cl4 3.045 −0.455 -x, −y, 2 − z
C6⋯H40B 2.758 −0.142 -x, −y, 1 − z
C30⋯H3B 2.779 −0.121 1 − x, −y, 1 − z
H23B⋯H23B 2.287 −0.113 1 − x, 1 − y, 1 − z
H6⋯C36 2.798 −0.102 −1 + x, −1 + y, z
Cl1⋯H33 2.854 −0.096 −1 + x, y, z
H6⋯C37 2.858 −0.042 −1 + x, −1 + y, z
H3B⋯H30A 2.359 −0.041 1 − x, −y, 1 − z
H10B⋯H26 2.382 −0.018 1 − x, 1 − y, 1 − z

Note: (a) distances were calculated using Mercury (Macrae et al., 2008).

For complex I, the Hirshfeld surface (HS) mapped over d norm, and the two-dimensional fingerprint plots are given in Fig. 8. The red spots on the HS (Fig. 8 a) correspond to the I⋯H contacts, which give a pair of spikes in the fingerprint plot (Fig. 8 b) at d e + d i ≃ 3.0 Å, contributing 14.2% to the HS. The H⋯H contacts contribute 63.4% and the C⋯H contacts 18.0%. Any other atom–atom contacts contributed less than 2% and have not been included here.

Figure 8.

Figure 8

(a) The Hirshfeld surface of complex I, mapped over d norm, in the colour range −0.0713 to 1.5380 a.u., (b) the full two-dimensional fingerprint plot for complex I, and fingerprint plots delineated into H⋯H, C⋯H/H⋯C and I⋯H/H⋯I contacts.

For compound II, the Hirshfeld surface mapped over d norm, is shown in Fig. 9 a, and that for the complex itself and the solvent mol­ecule in Figs. 9 b and 9c, respectively. The faint red spots correspond to the Cl⋯H contacts in the crystal. These give a pair of spikes in the fingerprint plots, at d e + d i ≃ 2.7 Å, contributing 22.7%, in the compound (Fig. 10 a) and at d e + d i ≃ 2.7 Å, contributing 18.1%, in the complex (Fig. 10 b). For the solvent mol­ecule, a single sharp spike is observed (d e + d i ≃ 2.8 Å) with a contribution of 59.6% to the HS (Fig. 10 c). The H⋯H contacts contribute 55.1, 59.4 and 25.2% to the Hirshfeld surfaces of the compound, the complex and the solvent mol­ecule, respectively, while the C⋯H contributions are 17.7, 18.8 and 6.8%, respectively. Any other atom–atom contacts contributed less than 2% and have not been included here.

Figure 9.

Figure 9

(a) The Hirshfeld surface of compound II, mapped over d norm, in the colour range −0.2597 to 1.5438 a.u., (b) the Hirshfeld surface of complex II, mapped over d norm, in the colour range −0.0933 to 1.5453 a.u., (c) the Hirshfeld surface of the solvent mol­ecule, mapped over d norm, in the colour range −0.2602 to 1.4344 a.u..

Figure 10.

Figure 10

(a) The full two-dimensional fingerprint plot for compound II, and fingerprint plots delineated into H⋯H, Cl⋯H/H⋯Cl, C⋯H/H⋯C and Cl⋯C/C⋯Cl contacts, (b) the full two-dimensional fingerprint plot for complex II, and fingerprint plots delineated into H⋯H, C⋯H/H⋯C and Cl⋯H/H⋯Cl contacts, (c) the full two-dimensional fingerprint plot for the solvent mol­ecule and fingerprint plots delineated into Cl⋯H/H⋯Cl, H⋯H, C⋯H/H⋯C, Cl⋯Cl and Cl⋯C/C⋯Cl contacts.

Synthesis and crystallization  

The synthesis and crystal structure of the ligand, N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-meth­ylaniline) L, have been described in the preceding publication (Tesouro Vallina & Stoeckli-Evans, 2020).

Synthesis of the complex [Cd(L)I2] (I):

About 10 ml of a very dilute CH2Cl2 solution of ligand L were introduced into a glass tube and layered with ca 2 ml of MeOH as a buffer zone. Then, 10 ml of a dilute methano­lic solution of CdI2 were added slowly to avoid possible mixing. The glass tube was sealed and left at room temperature. The colour of the inter­phase changed immediately to deep yellow and in hours to green. After a few days, green rod-like crystals were formed. IR (KBr pellet, cm−1): 2922 (m), 1599 (vs), 1507 (s), 1497 (s), 1173 (m), 1120 (m), 751 (s), 694 (s). No elemental analytical data are available.

Synthesis of the complex [Zn(L)Cl2]·0.6(CH2Cl2) (II):

To a solution of ZnCl2 (0.1 mmol, 0.014 g) in 5 ml of MeOH, a solution of L (0.05 mmol, 0.028 g, 5 ml CH2Cl2) was added. The solution was stirred at RT for 2 h without any significant colour change. The clear light-green solution obtained was filtered to avoid any impurity and allowed to evaporate slowly. After a few days, yellow rod-like crystals were obtained. IR (KBr pellet, cm−1): 1599 (vs), 1507 (s), 1451 (m), 1363 (s), 1257 (m), 1171 (m), 1033 (m), 920 (m), 746 (s), 691 (s). Analysis for [Zn(C36H40N6)Cl2]·0.6CH2Cl2 (743.99 g mol−1): calculated C 60.50, H 5.68, N 11.65%; found C 60.66, H 5.78, N 11.93%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 7. The C-bound H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.94–0.98 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 7. Experimental details.

  I II
Crystal data
Chemical formula [CdI2(C36H40N6)] [ZnCl2(C36H40N6)]·0.6CH2Cl2
M r 922.94 743.99
Crystal system, space group Monoclinic, I2/a Triclinic, P Inline graphic
Temperature (K) 223 223
a, b, c (Å) 12.8370 (7), 20.1241 (14), 15.2568 (9) 11.9196 (8), 12.1208 (8), 13.919 (1)
α, β, γ (°) 90, 110.871 (6), 90 98.222 (8), 100.313 (8), 107.580 (7)
V3) 3682.7 (4) 1843.9 (2)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.30 0.93
Crystal size (mm) 0.40 × 0.10 × 0.10 0.30 × 0.10 × 0.10
 
Data collection
Diffractometer STOE IPDS 1 STOE IPDS 1
Absorption correction Multi-scan (MULABS; Spek, 2020) Multi-scan (MULABS; Spek, 2020)
T min, T max 0.961, 1.000 0.983, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14308, 3566, 2549 14512, 6654, 3490
R int 0.031 0.054
(sin θ/λ)max−1) 0.615 0.615
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.029, 0.072, 0.95 0.043, 0.117, 0.79
No. of reflections 3566 6654
No. of parameters 207 437
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.15, −0.88 0.75, −0.35

Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2004), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2020), SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

With the STOE IPDS I, a one-circle diffractometer, for the triclinic system often only 93% of the Ewald sphere is accessible. Hence, for compound II the _diffrn_reflns_Laue_measured_fraction_full of 0.939 is below the required minimum of 0.95. For II, a small number of low-angle reflections, either in the shadow of the beam-stop or with bad agreement, were omitted during the final cycles of refinement.

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989020001644/xi2022sup1.cif

e-76-00410-sup1.cif (889.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020001644/xi2022Isup2.hkl

e-76-00410-Isup2.hkl (284.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020001644/xi2022IIsup3.hkl

e-76-00410-IIsup3.hkl (528.7KB, hkl)

CCDC references: 1982100, 1982099

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

HSE is grateful to the University of Neuchâtel for their support over the years.

supplementary crystallographic information

Diiodido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}cadmium(II) (I) . Crystal data

[CdI2(C36H40N6)] F(000) = 1808
Mr = 922.94 Dx = 1.665 Mg m3
Monoclinic, I2/a Mo Kα radiation, λ = 0.71073 Å
a = 12.8370 (7) Å Cell parameters from 5000 reflections
b = 20.1241 (14) Å θ = 1.7–26.1°
c = 15.2568 (9) Å µ = 2.30 mm1
β = 110.871 (6)° T = 223 K
V = 3682.7 (4) Å3 Rod, green
Z = 4 0.40 × 0.10 × 0.10 mm

Diiodido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}cadmium(II) (I) . Data collection

STOE IPDS 1 diffractometer 3566 independent reflections
Radiation source: fine-focus sealed tube 2549 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.031
φ rotation scans θmax = 25.9°, θmin = 2.0°
Absorption correction: multi-scan (MULABS; Spek, 2009) h = −15→15
Tmin = 0.961, Tmax = 1.000 k = −24→24
14308 measured reflections l = −18→18

Diiodido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}cadmium(II) (I) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0409P)2] where P = (Fo2 + 2Fc2)/3
3566 reflections (Δ/σ)max = 0.001
207 parameters Δρmax = 1.15 e Å3
0 restraints Δρmin = −0.88 e Å3

Diiodido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}cadmium(II) (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Diiodido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}cadmium(II) (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.750000 0.06345 (2) 0.000000 0.04883 (11)
I1 0.55787 (2) 0.11927 (2) −0.00131 (2) 0.07922 (12)
N1 0.750000 −0.05058 (17) 0.000000 0.0399 (8)
N2 0.6906 (2) 0.01854 (14) −0.17053 (17) 0.0460 (6)
N3 0.7067 (3) −0.26232 (15) −0.15731 (19) 0.0545 (7)
N4 0.750000 −0.18660 (18) 0.000000 0.0423 (8)
C1 0.7472 (2) −0.08374 (16) −0.0768 (2) 0.0410 (7)
C2 0.7432 (3) −0.15288 (16) −0.0772 (2) 0.0417 (7)
C3 0.7572 (3) −0.04292 (16) −0.1562 (2) 0.0476 (8)
H3A 0.835630 −0.031459 −0.142427 0.057*
H3B 0.731715 −0.069302 −0.213986 0.057*
C4 0.7161 (3) 0.06601 (18) −0.2319 (2) 0.0513 (8)
C5 0.7873 (3) 0.0528 (2) −0.2792 (3) 0.0655 (10)
H5 0.820979 0.010810 −0.273599 0.079*
C6 0.8096 (4) 0.1012 (2) −0.3351 (3) 0.0838 (14)
H6 0.858370 0.091568 −0.367010 0.101*
C7 0.7617 (4) 0.1625 (3) −0.3441 (4) 0.0881 (14)
H7 0.777532 0.195179 −0.381596 0.106*
C8 0.6897 (4) 0.1759 (2) −0.2974 (3) 0.0835 (13)
H8 0.655115 0.217760 −0.304226 0.100*
C9 0.6677 (3) 0.1284 (2) −0.2406 (3) 0.0674 (11)
H9 0.619914 0.138442 −0.207941 0.081*
C10 0.5702 (3) 0.0017 (2) −0.2061 (2) 0.0591 (9)
H10A 0.550377 −0.019190 −0.267217 0.089*
H10B 0.526719 0.041903 −0.211542 0.089*
H10C 0.554820 −0.028697 −0.162881 0.089*
C11 0.7299 (3) −0.19289 (17) −0.1643 (2) 0.0528 (8)
H11A 0.669076 −0.173622 −0.217143 0.063*
H11B 0.798405 −0.188947 −0.178391 0.063*
C12 0.7924 (3) −0.30691 (18) −0.1149 (2) 0.0564 (9)
C13 0.7708 (5) −0.3737 (2) −0.1026 (3) 0.0763 (13)
H13 0.696946 −0.389104 −0.121410 0.092*
C14 0.8600 (6) −0.4174 (2) −0.0619 (4) 0.0975 (17)
H14 0.844606 −0.462330 −0.054507 0.117*
C15 0.9680 (6) −0.3971 (3) −0.0330 (4) 0.1016 (18)
H15 1.026535 −0.427029 −0.004708 0.122*
C16 0.9892 (4) −0.3321 (3) −0.0459 (3) 0.0862 (14)
H16 1.063444 −0.317367 −0.027305 0.103*
C17 0.9041 (4) −0.2880 (2) −0.0856 (3) 0.0664 (10)
H17 0.921527 −0.243502 −0.093253 0.080*
C18 0.5935 (4) −0.2794 (2) −0.1693 (3) 0.0777 (12)
H18A 0.569896 −0.317068 −0.211386 0.117*
H18B 0.545221 −0.241751 −0.195689 0.117*
H18C 0.589042 −0.290749 −0.108965 0.117*

Diiodido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}cadmium(II) (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.03359 (17) 0.0483 (2) 0.0628 (2) 0.000 0.01500 (15) 0.000
I1 0.04735 (16) 0.0918 (2) 0.0946 (2) 0.02423 (13) 0.02050 (14) −0.00291 (16)
N1 0.0377 (19) 0.043 (2) 0.0401 (19) 0.000 0.0151 (15) 0.000
N2 0.0346 (13) 0.0559 (16) 0.0469 (14) 0.0013 (12) 0.0136 (11) 0.0099 (12)
N3 0.0613 (18) 0.0577 (18) 0.0493 (16) −0.0119 (15) 0.0254 (14) −0.0097 (14)
N4 0.049 (2) 0.044 (2) 0.0371 (19) 0.000 0.0191 (16) 0.000
C1 0.0357 (15) 0.0541 (19) 0.0358 (15) 0.0012 (14) 0.0157 (12) 0.0024 (14)
C2 0.0398 (16) 0.0521 (19) 0.0373 (16) 0.0012 (14) 0.0187 (13) −0.0003 (14)
C3 0.0478 (18) 0.0541 (19) 0.0444 (17) 0.0018 (15) 0.0209 (14) 0.0078 (14)
C4 0.0404 (17) 0.059 (2) 0.0513 (18) −0.0002 (15) 0.0118 (14) 0.0126 (16)
C5 0.057 (2) 0.076 (3) 0.071 (2) 0.0077 (19) 0.0325 (19) 0.024 (2)
C6 0.074 (3) 0.098 (3) 0.093 (3) 0.013 (3) 0.046 (3) 0.040 (3)
C7 0.075 (3) 0.094 (3) 0.099 (3) 0.003 (3) 0.036 (3) 0.045 (3)
C8 0.071 (3) 0.070 (3) 0.104 (3) 0.010 (2) 0.025 (3) 0.033 (3)
C9 0.052 (2) 0.068 (2) 0.081 (3) 0.0093 (18) 0.023 (2) 0.021 (2)
C10 0.0371 (18) 0.077 (3) 0.058 (2) −0.0061 (17) 0.0104 (15) 0.0104 (18)
C11 0.068 (2) 0.056 (2) 0.0398 (17) −0.0015 (17) 0.0263 (16) −0.0037 (15)
C12 0.080 (3) 0.055 (2) 0.0427 (18) −0.0036 (19) 0.0322 (18) −0.0075 (15)
C13 0.113 (4) 0.060 (3) 0.064 (2) −0.011 (2) 0.041 (3) −0.009 (2)
C14 0.161 (6) 0.059 (3) 0.084 (3) 0.018 (3) 0.058 (4) 0.005 (2)
C15 0.126 (5) 0.101 (5) 0.088 (4) 0.042 (4) 0.051 (4) 0.004 (3)
C16 0.084 (3) 0.107 (4) 0.074 (3) 0.021 (3) 0.035 (2) −0.008 (3)
C17 0.076 (3) 0.072 (3) 0.058 (2) 0.002 (2) 0.032 (2) −0.0091 (19)
C18 0.070 (3) 0.094 (3) 0.072 (3) −0.023 (2) 0.029 (2) −0.011 (2)

Diiodido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}cadmium(II) (I) . Geometric parameters (Å, º)

Cd1—N1 2.295 (3) C6—H6 0.9400
Cd1—N2i 2.599 (3) C7—C8 1.380 (7)
Cd1—N2 2.599 (3) C7—H7 0.9400
Cd1—I1i 2.7038 (3) C8—C9 1.386 (6)
Cd1—I1 2.7038 (3) C8—H8 0.9400
N1—C1 1.338 (3) C9—H9 0.9400
N1—C1i 1.338 (3) C10—H10A 0.9700
N2—C4 1.454 (4) C10—H10B 0.9700
N2—C3 1.475 (4) C10—H10C 0.9700
N2—C10 1.484 (4) C11—H11A 0.9800
N3—C12 1.388 (5) C11—H11B 0.9800
N3—C11 1.440 (4) C12—C17 1.394 (6)
N3—C18 1.440 (5) C12—C13 1.398 (5)
N4—C2 1.335 (4) C13—C14 1.402 (7)
N4—C2i 1.335 (4) C13—H13 0.9400
C1—C2 1.392 (5) C14—C15 1.360 (9)
C1—C3 1.506 (4) C14—H14 0.9400
C2—C11 1.511 (4) C15—C16 1.364 (8)
C3—H3A 0.9800 C15—H15 0.9400
C3—H3B 0.9800 C16—C17 1.370 (6)
C4—C5 1.376 (5) C16—H16 0.9400
C4—C9 1.386 (5) C17—H17 0.9400
C5—C6 1.390 (5) C18—H18A 0.9700
C5—H5 0.9400 C18—H18B 0.9700
C6—C7 1.363 (7) C18—H18C 0.9700
N1—Cd1—N2i 69.65 (6) C6—C7—H7 120.5
N1—Cd1—N2 69.65 (6) C8—C7—H7 120.5
N2i—Cd1—N2 139.31 (12) C7—C8—C9 120.7 (4)
N1—Cd1—I1i 114.551 (10) C7—C8—H8 119.6
N2i—Cd1—I1i 101.29 (6) C9—C8—H8 119.6
N1—Cd1—I1 114.551 (10) C8—C9—C4 120.1 (4)
N2i—Cd1—I1 95.35 (6) C8—C9—H9 120.0
N2—Cd1—I1i 95.35 (6) C4—C9—H9 120.0
N2—Cd1—I1 101.29 (6) N2—C10—H10A 109.5
I1i—Cd1—I1 130.90 (2) N2—C10—H10B 109.5
C1—N1—C1i 120.2 (4) H10A—C10—H10B 109.5
C1—N1—Cd1 119.92 (19) N2—C10—H10C 109.5
C1i—N1—Cd1 119.92 (19) H10A—C10—H10C 109.5
C4—N2—C3 113.3 (3) H10B—C10—H10C 109.5
C4—N2—C10 111.0 (2) N3—C11—C2 114.4 (3)
C3—N2—C10 109.6 (3) N3—C11—H11A 108.7
C4—N2—Cd1 111.3 (2) C2—C11—H11A 108.7
C3—N2—Cd1 101.28 (17) N3—C11—H11B 108.7
C10—N2—Cd1 110.0 (2) C2—C11—H11B 108.7
C12—N3—C11 120.8 (3) H11A—C11—H11B 107.6
C12—N3—C18 120.1 (3) N3—C12—C17 121.8 (3)
C11—N3—C18 116.6 (3) N3—C12—C13 121.4 (4)
C2—N4—C2i 118.9 (4) C17—C12—C13 116.8 (4)
N1—C1—C2 119.5 (3) C12—C13—C14 119.6 (5)
N1—C1—C3 116.7 (3) C12—C13—H13 120.2
C2—C1—C3 123.7 (3) C14—C13—H13 120.2
N4—C2—C1 120.9 (3) C15—C14—C13 122.1 (5)
N4—C2—C11 117.2 (3) C15—C14—H14 118.9
C1—C2—C11 121.9 (3) C13—C14—H14 118.9
N2—C3—C1 111.4 (3) C14—C15—C16 118.4 (5)
N2—C3—H3A 109.3 C14—C15—H15 120.8
C1—C3—H3A 109.3 C16—C15—H15 120.8
N2—C3—H3B 109.3 C15—C16—C17 121.0 (5)
C1—C3—H3B 109.3 C15—C16—H16 119.5
H3A—C3—H3B 108.0 C17—C16—H16 119.5
C5—C4—C9 118.9 (3) C16—C17—C12 122.1 (4)
C5—C4—N2 123.7 (3) C16—C17—H17 118.9
C9—C4—N2 117.4 (3) C12—C17—H17 118.9
C4—C5—C6 120.5 (4) N3—C18—H18A 109.5
C4—C5—H5 119.8 N3—C18—H18B 109.5
C6—C5—H5 119.8 H18A—C18—H18B 109.5
C7—C6—C5 120.7 (4) N3—C18—H18C 109.5
C7—C6—H6 119.6 H18A—C18—H18C 109.5
C5—C6—H6 119.6 H18B—C18—H18C 109.5
C6—C7—C8 119.1 (4)
C1i—N1—C1—C2 2.3 (2) C4—C5—C6—C7 0.0 (7)
Cd1—N1—C1—C2 −177.7 (2) C5—C6—C7—C8 −0.5 (8)
C1i—N1—C1—C3 −173.3 (3) C6—C7—C8—C9 1.2 (7)
Cd1—N1—C1—C3 6.7 (3) C7—C8—C9—C4 −1.6 (7)
C2i—N4—C2—C1 2.3 (2) C5—C4—C9—C8 1.1 (6)
C2i—N4—C2—C11 −177.0 (3) N2—C4—C9—C8 179.4 (4)
N1—C1—C2—N4 −4.7 (4) C12—N3—C11—C2 −82.7 (4)
C3—C1—C2—N4 170.6 (3) C18—N3—C11—C2 79.2 (4)
N1—C1—C2—C11 174.6 (3) N4—C2—C11—N3 10.3 (4)
C3—C1—C2—C11 −10.1 (5) C1—C2—C11—N3 −169.0 (3)
C4—N2—C3—C1 167.5 (3) C11—N3—C12—C17 −6.2 (5)
C10—N2—C3—C1 −68.0 (3) C18—N3—C12—C17 −167.4 (3)
Cd1—N2—C3—C1 48.2 (3) C11—N3—C12—C13 176.2 (3)
N1—C1—C3—N2 −41.9 (4) C18—N3—C12—C13 15.0 (5)
C2—C1—C3—N2 142.8 (3) N3—C12—C13—C14 178.1 (4)
C3—N2—C4—C5 5.8 (4) C17—C12—C13—C14 0.3 (6)
C10—N2—C4—C5 −118.0 (4) C12—C13—C14—C15 0.6 (7)
Cd1—N2—C4—C5 119.1 (3) C13—C14—C15—C16 −1.3 (8)
C3—N2—C4—C9 −172.4 (3) C14—C15—C16—C17 1.2 (8)
C10—N2—C4—C9 63.8 (4) C15—C16—C17—C12 −0.3 (7)
Cd1—N2—C4—C9 −59.1 (3) N3—C12—C17—C16 −178.2 (3)
C9—C4—C5—C6 −0.3 (6) C13—C12—C17—C16 −0.5 (5)
N2—C4—C5—C6 −178.5 (4)

Symmetry code: (i) −x+3/2, y, −z.

Diiodido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}cadmium(II) (I) . Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the pyrazine ring N1/N4/C1/C2/C1i/C2i and Cg5 is the centroid of the C12–C17 ring.

D—H···A D—H H···A D···A D—H···A
C18—H18C···Cg5i 0.97 2.95 3.896 (5) 165
C17—H17···I1ii 0.94 3.09 3.907 (4) 147
Cd1—I1···Cgiii 2.70 (1) 3.96 (1) 6.5131 (12) 155 (1)
Cd1—I1···Cg3iv 2.70 (1) 3.96 (1) 6.5131 (12) 155 (1)

Symmetry codes: (i) −x+3/2, y, −z; (ii) x+1/2, −y, z; (iii) −x+1, −y, −z; (iv) x−1/2, −y, z.

Dichorido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}zinc(II) dichloromethane 0.6-solvate (II) . Crystal data

[ZnCl2(C36H40N6)]·0.6CH2Cl2 Z = 2
Mr = 743.99 F(000) = 774.4
Triclinic, P1 Dx = 1.340 Mg m3
a = 11.9196 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.1208 (8) Å Cell parameters from 5000 reflections
c = 13.919 (1) Å θ = 1.7–26.1°
α = 98.222 (8)° µ = 0.93 mm1
β = 100.313 (8)° T = 223 K
γ = 107.580 (7)° Rod, yellow
V = 1843.9 (2) Å3 0.30 × 0.10 × 0.10 mm

Dichorido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}zinc(II) dichloromethane 0.6-solvate (II) . Data collection

STOE IPDS 1 diffractometer 6654 independent reflections
Radiation source: fine-focus sealed tube 3490 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.054
φ rotation scans θmax = 25.9°, θmin = 2.1°
Absorption correction: multi-scan (MULABS; Spek, 2009) h = −14→13
Tmin = 0.983, Tmax = 1.000 k = −13→14
14512 measured reflections l = −17→17

Dichorido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}zinc(II) dichloromethane 0.6-solvate (II) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 0.79 w = 1/[σ2(Fo2) + (0.0649P)2] where P = (Fo2 + 2Fc2)/3
6654 reflections (Δ/σ)max = 0.028
437 parameters Δρmax = 0.75 e Å3
0 restraints Δρmin = −0.35 e Å3

Dichorido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}zinc(II) dichloromethane 0.6-solvate (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dichorido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}zinc(II) dichloromethane 0.6-solvate (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.35680 (4) 0.17960 (5) 0.48236 (4) 0.03370 (16)
Cl1 0.26266 (9) 0.31262 (9) 0.48265 (8) 0.0379 (3)
Cl2 0.33732 (10) 0.02609 (9) 0.55847 (8) 0.0383 (3)
N1 0.4877 (3) 0.2055 (3) 0.4016 (2) 0.0294 (8)
N2 0.2552 (3) 0.0630 (3) 0.3191 (2) 0.0354 (8)
N3 0.6536 (3) 0.0643 (4) 0.1349 (3) 0.0463 (10)
N4 0.6673 (3) 0.2247 (3) 0.3005 (2) 0.0353 (9)
N5 0.5392 (3) 0.3173 (3) 0.5955 (2) 0.0297 (8)
N6 0.9012 (3) 0.3813 (4) 0.3867 (3) 0.0440 (10)
C1 0.4709 (4) 0.1232 (4) 0.3201 (3) 0.0309 (10)
C2 0.5649 (4) 0.1337 (4) 0.2698 (3) 0.0318 (10)
C3 0.3531 (4) 0.0225 (4) 0.2939 (3) 0.0370 (10)
H3A 0.332467 −0.012157 0.222331 0.044*
H3B 0.361523 −0.039048 0.330527 0.044*
C4 0.1483 (4) −0.0309 (4) 0.3234 (3) 0.0380 (11)
C5 0.1318 (4) −0.1506 (4) 0.2941 (3) 0.0440 (11)
H5 0.189961 −0.173802 0.267030 0.053*
C6 0.0295 (4) −0.2354 (5) 0.3049 (3) 0.0524 (13)
H6 0.020101 −0.315972 0.286843 0.063*
C7 −0.0586 (5) −0.2035 (6) 0.3417 (4) 0.0615 (15)
H7 −0.128003 −0.261909 0.348052 0.074*
C8 −0.0441 (4) −0.0849 (6) 0.3691 (4) 0.0618 (15)
H8 −0.104135 −0.062684 0.393942 0.074*
C9 0.0583 (4) 0.0012 (5) 0.3603 (4) 0.0518 (13)
H9 0.067382 0.081656 0.379134 0.062*
C10 0.2243 (4) 0.1374 (4) 0.2491 (3) 0.0492 (12)
H10C 0.195802 0.090689 0.181450 0.074*
H10B 0.295684 0.204609 0.253252 0.074*
H10A 0.161260 0.165493 0.267231 0.074*
C11 0.5545 (4) 0.0370 (4) 0.1832 (3) 0.0458 (12)
H11A 0.549429 −0.035832 0.207651 0.055*
H11B 0.479057 0.021761 0.133629 0.055*
C12 0.6568 (4) 0.1362 (4) 0.0662 (3) 0.0447 (12)
C13 0.7525 (5) 0.1612 (5) 0.0174 (4) 0.0666 (16)
H13 0.814974 0.129703 0.032399 0.080*
C14 0.7552 (7) 0.2312 (7) −0.0519 (5) 0.087 (2)
H14 0.820382 0.246888 −0.083057 0.105*
C15 0.6682 (9) 0.2781 (6) −0.0769 (5) 0.098 (3)
H15 0.671980 0.325867 −0.124647 0.117*
C16 0.5726 (7) 0.2540 (6) −0.0303 (4) 0.086 (2)
H16 0.510787 0.285978 −0.046768 0.103*
C17 0.5667 (5) 0.1833 (5) 0.0405 (4) 0.0599 (14)
H17 0.500786 0.167545 0.070873 0.072*
C18 0.7620 (6) 0.0419 (6) 0.1793 (4) 0.086 (2)
H18C 0.779738 −0.012043 0.130429 0.129*
H18B 0.749440 0.006775 0.236560 0.129*
H18A 0.829462 0.115809 0.200454 0.129*
C21 0.5910 (4) 0.2969 (4) 0.4341 (3) 0.0288 (9)
C22 0.6828 (3) 0.3080 (4) 0.3814 (3) 0.0310 (10)
C23 0.5972 (4) 0.3833 (4) 0.5261 (3) 0.0324 (10)
H23A 0.681896 0.429429 0.558643 0.039*
H23B 0.555559 0.438161 0.507247 0.039*
C24 0.5072 (4) 0.3885 (4) 0.6722 (3) 0.0317 (10)
C25 0.5468 (4) 0.5100 (4) 0.6919 (3) 0.0362 (10)
H25 0.599552 0.551869 0.656583 0.043*
C26 0.5080 (4) 0.5711 (4) 0.7651 (3) 0.0448 (12)
H26 0.533850 0.654230 0.778053 0.054*
C27 0.4327 (4) 0.5106 (5) 0.8179 (3) 0.0487 (13)
H27 0.407923 0.552419 0.867503 0.058*
C28 0.3934 (4) 0.3893 (5) 0.7988 (3) 0.0489 (12)
H28 0.341885 0.347757 0.835120 0.059*
C29 0.4302 (4) 0.3282 (4) 0.7255 (3) 0.0440 (12)
H29 0.402641 0.245046 0.711871 0.053*
C30 0.6175 (4) 0.2547 (4) 0.6402 (3) 0.0432 (12)
H30C 0.693683 0.312083 0.679612 0.065*
H30B 0.632752 0.203586 0.587463 0.065*
H30A 0.577342 0.207377 0.682678 0.065*
C31 0.7994 (4) 0.4100 (4) 0.4112 (3) 0.0463 (12)
H31A 0.788908 0.473627 0.378260 0.056*
H31B 0.817746 0.440047 0.483454 0.056*
C32 0.9419 (4) 0.4069 (4) 0.3029 (3) 0.0368 (10)
C33 1.0564 (4) 0.4040 (5) 0.2933 (3) 0.0509 (13)
H33 1.103887 0.380026 0.342028 0.061*
C34 1.0987 (5) 0.4367 (6) 0.2120 (4) 0.0689 (17)
H34 1.175749 0.434902 0.207024 0.083*
C35 1.0337 (5) 0.4715 (5) 0.1385 (4) 0.0710 (17)
H35 1.065545 0.495398 0.084821 0.085*
C36 0.9177 (5) 0.4703 (5) 0.1459 (4) 0.0608 (14)
H36 0.869357 0.490972 0.095273 0.073*
C37 0.8741 (4) 0.4395 (4) 0.2261 (3) 0.0480 (12)
H37 0.796333 0.440162 0.229773 0.058*
C38 0.9460 (5) 0.3087 (5) 0.4473 (4) 0.0611 (15)
H38C 0.951629 0.241231 0.404214 0.092*
H38B 0.890860 0.281192 0.489074 0.092*
H38A 1.025495 0.355234 0.489222 0.092*
C40 0.1063 (10) 0.2516 (11) 0.9543 (8) 0.095 (4) 0.6
H40A 0.053445 0.294842 0.973082 0.114* 0.6
H40B 0.103192 0.249458 0.883154 0.114* 0.6
Cl3 0.2564 (2) 0.3346 (3) 1.02194 (16) 0.0912 (10) 0.6
Cl4 0.0491 (3) 0.1163 (3) 0.9673 (2) 0.1003 (10) 0.6

Dichorido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}zinc(II) dichloromethane 0.6-solvate (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0365 (3) 0.0345 (3) 0.0385 (3) 0.0163 (3) 0.0187 (2) 0.0121 (2)
Cl1 0.0334 (6) 0.0367 (7) 0.0497 (6) 0.0193 (6) 0.0121 (5) 0.0092 (5)
Cl2 0.0485 (7) 0.0319 (6) 0.0394 (6) 0.0134 (6) 0.0156 (5) 0.0167 (5)
N1 0.032 (2) 0.031 (2) 0.0280 (18) 0.0121 (19) 0.0103 (15) 0.0056 (15)
N2 0.032 (2) 0.033 (2) 0.044 (2) 0.0111 (19) 0.0145 (16) 0.0112 (16)
N3 0.052 (2) 0.052 (3) 0.043 (2) 0.023 (2) 0.0239 (19) 0.0053 (19)
N4 0.037 (2) 0.035 (2) 0.036 (2) 0.011 (2) 0.0168 (16) 0.0051 (17)
N5 0.037 (2) 0.029 (2) 0.0307 (18) 0.0164 (18) 0.0140 (15) 0.0092 (15)
N6 0.034 (2) 0.059 (3) 0.046 (2) 0.018 (2) 0.0189 (18) 0.0173 (19)
C1 0.034 (2) 0.028 (3) 0.033 (2) 0.011 (2) 0.0123 (18) 0.0089 (19)
C2 0.037 (3) 0.029 (3) 0.033 (2) 0.013 (2) 0.0150 (19) 0.0061 (18)
C3 0.037 (3) 0.031 (3) 0.042 (3) 0.010 (2) 0.013 (2) 0.003 (2)
C4 0.032 (2) 0.038 (3) 0.040 (2) 0.005 (2) 0.0093 (19) 0.010 (2)
C5 0.044 (3) 0.037 (3) 0.046 (3) 0.007 (3) 0.011 (2) 0.007 (2)
C6 0.050 (3) 0.043 (3) 0.050 (3) −0.002 (3) 0.006 (2) 0.009 (2)
C7 0.042 (3) 0.071 (5) 0.055 (3) −0.007 (3) 0.013 (3) 0.015 (3)
C8 0.036 (3) 0.079 (5) 0.063 (3) 0.007 (3) 0.020 (2) 0.006 (3)
C9 0.038 (3) 0.051 (3) 0.064 (3) 0.011 (3) 0.019 (2) 0.003 (3)
C10 0.049 (3) 0.048 (3) 0.049 (3) 0.015 (3) 0.005 (2) 0.019 (2)
C11 0.055 (3) 0.038 (3) 0.044 (3) 0.012 (3) 0.024 (2) −0.001 (2)
C12 0.052 (3) 0.046 (3) 0.029 (2) 0.011 (3) 0.012 (2) −0.006 (2)
C13 0.060 (3) 0.078 (5) 0.044 (3) −0.003 (3) 0.024 (3) −0.002 (3)
C14 0.090 (5) 0.095 (6) 0.047 (4) −0.012 (5) 0.026 (4) 0.002 (4)
C15 0.149 (8) 0.071 (5) 0.036 (4) −0.011 (5) 0.017 (4) 0.005 (3)
C16 0.141 (7) 0.066 (4) 0.038 (3) 0.042 (5) −0.004 (4) −0.007 (3)
C17 0.080 (4) 0.058 (4) 0.039 (3) 0.025 (3) 0.014 (3) −0.001 (2)
C18 0.086 (4) 0.122 (6) 0.081 (4) 0.072 (5) 0.032 (4) 0.023 (4)
C21 0.032 (2) 0.028 (3) 0.028 (2) 0.011 (2) 0.0081 (18) 0.0060 (18)
C22 0.028 (2) 0.032 (3) 0.036 (2) 0.011 (2) 0.0136 (18) 0.0078 (19)
C23 0.033 (2) 0.031 (3) 0.035 (2) 0.011 (2) 0.0126 (19) 0.0058 (19)
C24 0.033 (2) 0.035 (3) 0.028 (2) 0.015 (2) 0.0075 (18) 0.0027 (18)
C25 0.039 (3) 0.038 (3) 0.034 (2) 0.016 (2) 0.0104 (19) 0.006 (2)
C26 0.056 (3) 0.042 (3) 0.038 (3) 0.020 (3) 0.014 (2) −0.001 (2)
C27 0.054 (3) 0.060 (4) 0.036 (3) 0.029 (3) 0.014 (2) −0.002 (2)
C28 0.053 (3) 0.060 (4) 0.040 (3) 0.021 (3) 0.023 (2) 0.010 (2)
C29 0.058 (3) 0.040 (3) 0.038 (3) 0.016 (3) 0.023 (2) 0.006 (2)
C30 0.050 (3) 0.050 (3) 0.039 (3) 0.031 (3) 0.009 (2) 0.008 (2)
C31 0.039 (3) 0.046 (3) 0.052 (3) 0.008 (3) 0.025 (2) −0.001 (2)
C32 0.031 (2) 0.038 (3) 0.036 (2) 0.007 (2) 0.0075 (19) −0.001 (2)
C33 0.039 (3) 0.076 (4) 0.040 (3) 0.021 (3) 0.015 (2) 0.008 (2)
C34 0.048 (3) 0.105 (5) 0.052 (3) 0.021 (4) 0.024 (3) 0.007 (3)
C35 0.076 (4) 0.092 (5) 0.041 (3) 0.016 (4) 0.027 (3) 0.011 (3)
C36 0.077 (4) 0.051 (4) 0.046 (3) 0.012 (3) 0.008 (3) 0.015 (3)
C37 0.043 (3) 0.045 (3) 0.054 (3) 0.012 (3) 0.011 (2) 0.011 (2)
C38 0.046 (3) 0.082 (4) 0.058 (3) 0.019 (3) 0.013 (3) 0.030 (3)
C40 0.082 (8) 0.114 (10) 0.084 (8) 0.037 (8) −0.013 (6) 0.038 (7)
Cl3 0.0444 (13) 0.179 (3) 0.0384 (12) 0.0251 (17) 0.0150 (10) 0.0076 (15)
Cl4 0.088 (2) 0.098 (3) 0.115 (2) 0.043 (2) 0.0134 (18) 0.0124 (19)

Dichorido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}zinc(II) dichloromethane 0.6-solvate (II) . Geometric parameters (Å, º)

Zn1—N1 2.057 (3) C15—C16 1.386 (10)
Zn1—N2 2.385 (3) C15—H15 0.9400
Zn1—N5 2.413 (3) C16—C17 1.394 (8)
Zn1—Cl1 2.2251 (10) C16—H16 0.9400
Zn1—Cl2 2.2425 (11) C17—H17 0.9400
N1—C21 1.334 (5) C18—H18C 0.9700
N1—C1 1.340 (5) C18—H18B 0.9700
N2—C4 1.446 (5) C18—H18A 0.9700
N2—C3 1.473 (5) C21—C22 1.407 (5)
N2—C10 1.491 (5) C21—C23 1.509 (5)
N3—C12 1.381 (6) C22—C31 1.497 (6)
N3—C18 1.449 (6) C23—H23A 0.9800
N3—C11 1.438 (5) C23—H23B 0.9800
N4—C2 1.325 (5) C24—C25 1.373 (6)
N4—C22 1.345 (5) C24—C29 1.386 (6)
N5—C24 1.453 (5) C25—C26 1.399 (5)
N5—C30 1.480 (5) C25—H25 0.9400
N5—C23 1.476 (5) C26—C27 1.371 (7)
N6—C32 1.380 (5) C26—H26 0.9400
N6—C31 1.441 (5) C27—C28 1.371 (7)
N6—C38 1.451 (6) C27—H27 0.9400
C1—C2 1.408 (5) C28—C29 1.385 (6)
C1—C3 1.500 (6) C28—H28 0.9400
C2—C11 1.516 (5) C29—H29 0.9400
C3—H3A 0.9800 C30—H30C 0.9700
C3—H3B 0.9800 C30—H30B 0.9700
C4—C5 1.393 (6) C30—H30A 0.9700
C4—C9 1.400 (6) C31—H31A 0.9800
C5—C6 1.385 (6) C31—H31B 0.9800
C5—H5 0.9400 C32—C37 1.399 (6)
C6—C7 1.376 (7) C32—C33 1.404 (6)
C6—H6 0.9400 C33—C34 1.380 (7)
C7—C8 1.383 (8) C33—H33 0.9400
C7—H7 0.9400 C34—C35 1.365 (7)
C8—C9 1.384 (7) C34—H34 0.9400
C8—H8 0.9400 C35—C36 1.401 (7)
C9—H9 0.9400 C35—H35 0.9400
C10—H10C 0.9700 C36—C37 1.365 (7)
C10—H10B 0.9700 C36—H36 0.9400
C10—H10A 0.9700 C37—H37 0.9400
C11—H11A 0.9800 C38—H38C 0.9700
C11—H11B 0.9800 C38—H38B 0.9700
C12—C17 1.378 (6) C38—H38A 0.9700
C12—C13 1.408 (7) C40—Cl4 1.625 (12)
C13—C14 1.370 (9) C40—Cl3 1.772 (11)
C13—H13 0.9400 C40—H40A 0.9800
C14—C15 1.343 (9) C40—H40B 0.9800
C14—H14 0.9400
N1—Zn1—N2 75.02 (12) C16—C15—H15 121.0
N1—Zn1—N5 74.23 (12) C17—C16—C15 121.2 (6)
N2—Zn1—N5 149.21 (11) C17—C16—H16 119.4
N1—Zn1—Cl1 114.15 (9) C15—C16—H16 119.4
N1—Zn1—Cl2 114.68 (9) C12—C17—C16 120.4 (6)
Cl1—Zn1—N2 98.12 (8) C12—C17—H17 119.8
Cl2—Zn1—N2 95.70 (9) C16—C17—H17 119.8
Cl1—Zn1—N5 93.02 (7) N3—C18—H18C 109.5
Cl2—Zn1—N5 98.34 (8) N3—C18—H18B 109.5
Cl1—Zn1—Cl2 131.14 (4) H18C—C18—H18B 109.5
C21—N1—C1 120.8 (3) N3—C18—H18A 109.5
C21—N1—Zn1 120.7 (2) H18C—C18—H18A 109.5
C1—N1—Zn1 118.3 (3) H18B—C18—H18A 109.5
C4—N2—C3 114.5 (3) N1—C21—C22 119.6 (3)
C4—N2—C10 111.2 (3) N1—C21—C23 115.2 (3)
C3—N2—C10 109.9 (3) C22—C21—C23 125.1 (4)
C4—N2—Zn1 110.2 (2) N4—C22—C21 119.8 (4)
C3—N2—Zn1 99.2 (2) N4—C22—C31 117.4 (3)
C10—N2—Zn1 111.3 (3) C21—C22—C31 122.8 (4)
C12—N3—C18 120.4 (4) N5—C23—C21 109.2 (3)
C12—N3—C11 120.1 (4) N5—C23—H23A 109.8
C18—N3—C11 117.4 (4) C21—C23—H23A 109.8
C2—N4—C22 119.8 (3) N5—C23—H23B 109.8
C24—N5—C30 111.1 (3) C21—C23—H23B 109.8
C24—N5—C23 114.7 (3) H23A—C23—H23B 108.3
C30—N5—C23 109.3 (3) C25—C24—C29 119.5 (4)
C24—N5—Zn1 109.4 (2) C25—C24—N5 123.5 (4)
C30—N5—Zn1 111.1 (3) C29—C24—N5 117.0 (4)
C23—N5—Zn1 100.9 (2) C24—C25—C26 119.4 (4)
C32—N6—C31 122.1 (4) C24—C25—H25 120.3
C32—N6—C38 122.1 (3) C26—C25—H25 120.3
C31—N6—C38 115.2 (4) C27—C26—C25 120.5 (4)
N1—C1—C2 118.9 (4) C27—C26—H26 119.7
N1—C1—C3 115.6 (3) C25—C26—H26 119.7
C2—C1—C3 125.4 (4) C28—C27—C26 120.2 (4)
N4—C2—C1 120.9 (4) C28—C27—H27 119.9
N4—C2—C11 118.2 (3) C26—C27—H27 119.9
C1—C2—C11 120.7 (4) C27—C28—C29 119.6 (4)
N2—C3—C1 110.9 (3) C27—C28—H28 120.2
N2—C3—H3A 109.5 C29—C28—H28 120.2
C1—C3—H3A 109.5 C28—C29—C24 120.7 (4)
N2—C3—H3B 109.5 C28—C29—H29 119.6
C1—C3—H3B 109.5 C24—C29—H29 119.6
H3A—C3—H3B 108.1 N5—C30—H30C 109.5
C5—C4—C9 118.8 (4) N5—C30—H30B 109.5
C5—C4—N2 123.3 (4) H30C—C30—H30B 109.5
C9—C4—N2 117.8 (4) N5—C30—H30A 109.5
C6—C5—C4 120.0 (4) H30C—C30—H30A 109.5
C6—C5—H5 120.0 H30B—C30—H30A 109.5
C4—C5—H5 120.0 N6—C31—C22 114.2 (4)
C7—C6—C5 121.1 (5) N6—C31—H31A 108.7
C7—C6—H6 119.5 C22—C31—H31A 108.7
C5—C6—H6 119.5 N6—C31—H31B 108.7
C6—C7—C8 119.4 (5) C22—C31—H31B 108.7
C6—C7—H7 120.3 H31A—C31—H31B 107.6
C8—C7—H7 120.3 N6—C32—C37 122.3 (4)
C7—C8—C9 120.5 (5) N6—C32—C33 120.4 (4)
C7—C8—H8 119.8 C37—C32—C33 117.3 (4)
C9—C8—H8 119.8 C34—C33—C32 119.6 (5)
C8—C9—C4 120.3 (5) C34—C33—H33 120.2
C8—C9—H9 119.9 C32—C33—H33 120.2
C4—C9—H9 119.9 C35—C34—C33 122.9 (5)
N2—C10—H10C 109.5 C35—C34—H34 118.5
N2—C10—H10B 109.5 C33—C34—H34 118.5
H10C—C10—H10B 109.5 C34—C35—C36 117.6 (5)
N2—C10—H10A 109.5 C34—C35—H35 121.2
H10C—C10—H10A 109.5 C36—C35—H35 121.2
H10B—C10—H10A 109.5 C37—C36—C35 120.6 (5)
N3—C11—C2 114.2 (4) C37—C36—H36 119.7
N3—C11—H11A 108.7 C35—C36—H36 119.7
C2—C11—H11A 108.7 C36—C37—C32 121.9 (5)
N3—C11—H11B 108.7 C36—C37—H37 119.1
C2—C11—H11B 108.7 C32—C37—H37 119.1
H11A—C11—H11B 107.6 N6—C38—H38C 109.5
C17—C12—N3 122.3 (4) N6—C38—H38B 109.5
C17—C12—C13 117.4 (5) H38C—C38—H38B 109.5
N3—C12—C13 120.3 (4) N6—C38—H38A 109.5
C14—C13—C12 120.5 (6) H38C—C38—H38A 109.5
C14—C13—H13 119.8 H38B—C38—H38A 109.5
C12—C13—H13 119.8 Cl4—C40—Cl3 118.1 (6)
C15—C14—C13 122.5 (6) Cl4—C40—H40A 107.8
C15—C14—H14 118.8 Cl3—C40—H40A 107.8
C13—C14—H14 118.8 Cl4—C40—H40B 107.8
C14—C15—C16 118.0 (6) Cl3—C40—H40B 107.8
C14—C15—H15 121.0 H40A—C40—H40B 107.1
C21—N1—C1—C2 0.9 (5) C1—N1—C21—C22 0.8 (5)
Zn1—N1—C1—C2 −173.8 (3) Zn1—N1—C21—C22 175.4 (3)
C21—N1—C1—C3 177.6 (3) C1—N1—C21—C23 179.5 (3)
Zn1—N1—C1—C3 2.8 (4) Zn1—N1—C21—C23 −5.9 (4)
C22—N4—C2—C1 0.6 (6) C2—N4—C22—C21 1.2 (6)
C22—N4—C2—C11 −175.4 (4) C2—N4—C22—C31 −178.7 (4)
N1—C1—C2—N4 −1.7 (6) N1—C21—C22—N4 −1.9 (5)
C3—C1—C2—N4 −178.0 (4) C23—C21—C22—N4 179.6 (3)
N1—C1—C2—C11 174.2 (4) N1—C21—C22—C31 178.0 (4)
C3—C1—C2—C11 −2.0 (6) C23—C21—C22—C31 −0.5 (6)
C4—N2—C3—C1 −163.3 (3) C24—N5—C23—C21 −162.9 (3)
C10—N2—C3—C1 70.8 (4) C30—N5—C23—C21 71.6 (4)
Zn1—N2—C3—C1 −46.0 (3) Zn1—N5—C23—C21 −45.5 (3)
N1—C1—C3—N2 34.4 (5) N1—C21—C23—N5 39.1 (4)
C2—C1—C3—N2 −149.2 (4) C22—C21—C23—N5 −142.4 (4)
C3—N2—C4—C5 −7.8 (6) C30—N5—C24—C25 112.7 (4)
C10—N2—C4—C5 117.5 (4) C23—N5—C24—C25 −11.8 (5)
Zn1—N2—C4—C5 −118.6 (4) Zn1—N5—C24—C25 −124.3 (3)
C3—N2—C4—C9 171.3 (4) C30—N5—C24—C29 −68.9 (5)
C10—N2—C4—C9 −63.5 (5) C23—N5—C24—C29 166.6 (3)
Zn1—N2—C4—C9 60.4 (4) Zn1—N5—C24—C29 54.1 (4)
C9—C4—C5—C6 −2.2 (6) C29—C24—C25—C26 −0.5 (6)
N2—C4—C5—C6 176.9 (4) N5—C24—C25—C26 177.9 (4)
C4—C5—C6—C7 1.9 (7) C24—C25—C26—C27 1.1 (6)
C5—C6—C7—C8 −0.6 (7) C25—C26—C27—C28 −0.8 (7)
C6—C7—C8—C9 −0.3 (8) C26—C27—C28—C29 −0.1 (7)
C7—C8—C9—C4 0.0 (8) C27—C28—C29—C24 0.7 (7)
C5—C4—C9—C8 1.2 (7) C25—C24—C29—C28 −0.3 (6)
N2—C4—C9—C8 −177.9 (4) N5—C24—C29—C28 −178.9 (4)
C12—N3—C11—C2 −80.2 (5) C32—N6—C31—C22 99.2 (5)
C18—N3—C11—C2 83.5 (5) C38—N6—C31—C22 −72.1 (5)
N4—C2—C11—N3 −8.2 (6) N4—C22—C31—N6 −30.4 (6)
C1—C2—C11—N3 175.7 (4) C21—C22—C31—N6 149.7 (4)
C18—N3—C12—C17 −163.8 (5) C31—N6—C32—C37 −13.3 (7)
C11—N3—C12—C17 −0.6 (7) C38—N6—C32—C37 157.3 (5)
C18—N3—C12—C13 18.0 (7) C31—N6—C32—C33 164.9 (4)
C11—N3—C12—C13 −178.8 (4) C38—N6—C32—C33 −24.5 (7)
C17—C12—C13—C14 0.8 (8) N6—C32—C33—C34 −176.1 (5)
N3—C12—C13—C14 179.1 (5) C37—C32—C33—C34 2.2 (7)
C12—C13—C14—C15 −0.4 (10) C32—C33—C34—C35 −0.5 (9)
C13—C14—C15—C16 0.0 (10) C33—C34—C35—C36 −1.8 (9)
C14—C15—C16—C17 0.0 (9) C34—C35—C36—C37 2.3 (9)
N3—C12—C17—C16 −179.1 (5) C35—C36—C37—C32 −0.7 (8)
C13—C12—C17—C16 −0.8 (7) N6—C32—C37—C36 176.7 (5)
C15—C16—C17—C12 0.4 (8) C33—C32—C37—C36 −1.6 (7)

Dichorido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}zinc(II) dichloromethane 0.6-solvate (II) . Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the pyrazine ring N1/N4/C1/C2/C21/C22, and Cg5 and Cg7 are the centroids of rings C12–C17 and C32–C37, respectively.

D—H···A D—H H···A D···A D—H···A
C6—H6···Cg7i 0.94 2.88 3.814 (6) 177
C11—H11B···Cg5ii 0.98 2.90 3.540 (5) 124
C26—H26···Cg3iii 0.94 2.95 3.544 (5) 122
Zn1—Cl2···Cg3iv 2.24 (1) 3.68 (1) 5.8035 (19) 156 (1)

Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, −y, −z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1.

Funding Statement

This work was funded by Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grant . University of Neuchâtel grant .

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Graf, M., Greaves, B. & Stoeckli-Evans, H. (1993). Inorg. Chim. Acta, 204, 239–246.
  3. Graf, M. & Stoeckli-Evans, H. (1994). Acta Cryst. C50, 1461–1464.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Hong, X.-J., Feng, H.-X., Wei, M.-J., Peng, H.-J., Xie, J.-Q., Cai, Y.-P. & Si, L.-P. (2017). Inorg. Chem. Commun. 77, 59–63.
  6. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  7. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  8. Saghatforoush, L. (2015). Jiegou Huaxue, 34, 1869–1875.
  9. Saljooghi, A. Sh. & Fatemi, S. J. A. (2011). Russ. J. Coord. Chem. 37, 168–171.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  13. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  14. Stoe & Cie (2004). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.
  15. Tesouro Vallina, A. (2001). PhD Thesis. University of Neuchâtel, Switzerland.
  16. Tesouro Vallina, A. & Stoeckli-Evans, H. (2020). Acta Cryst. E76 404–409. [DOI] [PMC free article] [PubMed]
  17. Trivedi, M., Pandey, D. S. & Rath, N. P. (2009). Inorg. Chim. Acta, 362, 284–290.
  18. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989020001644/xi2022sup1.cif

e-76-00410-sup1.cif (889.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020001644/xi2022Isup2.hkl

e-76-00410-Isup2.hkl (284.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020001644/xi2022IIsup3.hkl

e-76-00410-IIsup3.hkl (528.7KB, hkl)

CCDC references: 1982100, 1982099

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES