Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Feb 25;76(Pt 3):443–445. doi: 10.1107/S2056989020002479

Crystal structure analysis of ethyl 3-(4-chloro­phen­yl)-1,6-dimethyl-4-methyl­sulfanyl-1H-pyrazolo[3,4-b]pyridine-5-carboxyl­ate

H Surya Prakash Rao a,b,*, Ramalingam Gunasundari b, Jayaraman Muthukumaran c,
PMCID: PMC7057362  PMID: 32148891

In the title compound, the dihedral angle between the fused pyrazole and pyridine rings is 3.81 (9)°. The benzene ring forms dihedral angles of 35.08 (10) and 36.26 (9)° with the pyrazole and pyridine rings, respectively. In the crystal, weak C—H⋯O hydrogen bonds connect mol­ecules along [100].

Keywords: crystal structure, pyrazolo­pyridine, biological activity

Abstract

In the title compound, C18H18ClN3O2S, the dihedral angle between the fused pyrazole and pyridine rings is 3.81 (9)°. The benzene ring forms dihedral angles of 35.08 (10) and 36.26 (9)° with the pyrazole and pyridine rings, respectively. In the crystal, weak C—H⋯O hydrogen bonds connect mol­ecules along [100].

Chemical context  

The nitro­gen-containing heterocyclic motif is a component in many medicinally important drugs. Mol­ecules built around the pyrazolo­pyridine core structure exhibit diverse medicinal properties that include anti-microbial, anti-viral, anti-fungal, anti-hypertensive, analgesic, anti-cancer, anti-inflammatory, anti-Alzheimer’s, anti-diabetic, anti-nociceptive, anti-tuberculosis, and anti-leishmanial activities (Hardy, 1984; Hawas et al. 2019; de Mello et al. 2004; Panchal et al. 2019; El-Gohary et al. 2019). In addition, some pyrazolo­pyridines have found uses for the treatment of hemorrhagic stress, infertility, and drug addiction (Parmar et al. 1974). Specifically, they act as inhibitors of enzymes such as glycogen synthase kinase-3 (Witherington et al. 2003) and as inhibitors for adenosine receptors (Timóteo et al. 2008). Furthermore, they have been identified as promising inhibitors of cycline dependent kinase, xanthine oxidase, inter­leukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), phospho­diesterase-4, NAD(P)H oxidases and cholesterol formation (Gökhan-Kelekçi et al. 2007; Panchal et al. 2019; Fathy et al. 2015). Considering the aforementioned importance of derivatives of pyrazolo­pyridine, we have carried out a single-crystal X-ray diffraction study on the title compound and have analyzed the structure in terms of geometrical parameters, conformation, and inter­mol­ecular hydrogen-bonding inter­actions.graphic file with name e-76-00443-scheme1.jpg

Structural commentary  

The title compound has pyrazole­[3,4-b]pyridine motif that is decorated by several substituents shown in Fig. 1. The chloro­phenyl (C6H4Cl) group attached to the pyrazolo­pyridine moiety exhibits an (−)anti­clinal conformation [N3—C7—C6—C3 = −141.96 (19)°], as does the methyl­thio (SCH3) group attached to the pyrazolo­pyridine unit [C11—S1—C12—C13 = −128.93 (15) °] while the –COOC2H5 group attached to the pyrazolo­pyridine moiety has an (+)anti-periplanar conformation [N1—C14—C13—C16 = 177.00 (15)°, as do the methyl group attached to the pyridine sub-structure [C9—N1—C14—C15 = −176.20 (16)°] and the methyl group attached to the pyrazole ring (NCH3) [C10—N2—C9—C8: −178.42 (19)°]. The fused pyrazole and pyridine rings are not exactly planar, subtending a dihedral angle of 3.81 (9)°. The dihedral angle between the planes of the benzene and pyrazole rings is 35.08 (10)° and that between the benzene and pyridine rings is 36.26 (9)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level

Supra­molecular features  

In the crystal, weak C—H⋯O hydrogen bonds link mol­ecules into chains along [100] (Table 1 and Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.59 3.513 (2) 170

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

The crystal packing of title compound, viewed along the c axis, showing the weak inter­molecular C—H⋯O hydrogen bonds as dotted lines

Database survey  

A search for the pyrazolo­pyridine scaffold in the Cambridge Structural Database (CSD, Version 5.40; Groom et al., 2016) gave 236 hits. Of these, the structures most closely related to the title compound are FIZLEI (ethyl 2,7-di­amino-3,4-di­cyano-5-phenyl­pyrazolo­[1,5-a]pyridine-6-carboxyl­ate; Naik et al. 2019), ALAFID (Wu et al. 2016), DAWKAQ {[2-(4-chloro­phen­yl)pyrazolo­[1,5-a]pyridin-3-yl(phen­yl)methanone; Ravi et al. 2017}, NADPIU [3-(4-chloro­phen­yl)pyrazolo­[1,5-a]pyridine; Wu et al. 2016] and ZOJWAW (Barrett et al. 1996). The geometrical parameters of the –COOCH2CH3 substituent in the title compound are comparable with those reported for FIZLEI. Similarly, the geometrical parameters of the –C6H4Cl unit in the title compound are comparable with those for in DAWKAQ and NADPIU. The bond lengths of the pyrazolo­[3,4-b]pyridine scaffold of the title compound are closer to those in NADPIU. The pyrazolo­pyridine moiety (N1–N3/C7–C9/C12–C14) of the title compound is approximately plan, as is also observed for FIZLEI, ALAFID, DAWKAQ, NADPIU and ZOJWAW. Apart from the CSD database, two other important databases, namely Drug Bank (database for FDA-approved drugs, drugs under investigation or in clinical trials, etc; Law et al. 2013) and ZINC (database for commercially available compounds; Irwin et al. 2005) were also surveyed. The former database is used for drug repurposing or drug re-profiling studies, and latter for high-throughput virtual screening against the binding site of drug target proteins to identify promising and putative inhibitors. In the Drug Bank database, there were 31 hits, based on a 0.5 similarity threshold, whereas the ZINC search gave only three hits (ZINCIDs: ZINC45166781, ZINC3852638 and ZINC39053824). Out of 31 mol­ecules identified in the Drug Bank database, two mol­ecules were in the approved drug category namely riciguat (accession No: DB08931, similarity score: 0.55) and teletristat ethyl (accession No: DB12095, similarity score: 0.511). The remaining 29 mol­ecules belong to the experimental, investigational or other categories.

Synthesis and crystallization:  

To a solution of 3-(4-chloro­phen­yl)-1-methyl-1H-pyrazol-5-amine (125 mg, 0.65 mmol) and ethyl 2-(bis­(meth­ylthio)­meth­ylene)-3-oxo­butano­ate (145 mg, 0.65 mmol) in toluene (5 ml) under a blanket of dry N2, a catalytic amount of tri­fluoro­acetic acid (TFA; 30 mol%) was added. The resulting mixture was refluxed for 12 h, while monitoring progress by TLC (hexa­ne:ethyl acetate, 99:1). After completion of the reaction, the resulting mixture was subjected to purification by column chromatography to furnish 182 mg of the title compound in 75% yield as a colourless solid, m.p. 415.85 K, R f = 0.3 (hexa­ne:ethyl acetate 99:01). A sample suitable for single-crystal X-ray analysis was obtained by recrystallization from dry methanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.97 Å and refined using a riding model with U iso(H) = 1.2 U eq(C) or 1.5 U eq(C-meth­yl).

Table 2. Experimental details.

Crystal data
Chemical formula C18H18ClN3O2S
M r 375.86
Crystal system, space group Monoclinic, P21/a
Temperature (K) 298
a, b, c (Å) 8.9995 (5), 16.7778 (11), 12.3595 (8)
β (°) 98.892 (6)
V3) 1843.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.65 × 0.6 × 0.24
 
Data collection
Diffractometer Agilent Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.857, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13882, 4340, 3323
R int 0.027
(sin θ/λ)max−1) 0.682
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.161, 1.10
No. of reflections 4340
No. of parameters 230
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.41

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020) and Mercury (Macrae et al., 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020002479/lh5946sup1.cif

e-76-00443-sup1.cif (485.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020002479/lh5946Isup2.hkl

e-76-00443-Isup2.hkl (345.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020002479/lh5946Isup3.cml

CCDC reference: 1977404

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the DST–FIST Single Crystal XRD facility at the Department of Chemistry, Pondicherry University, for the diffraction data and Dr Clara Gomes (FCT–UNL, Portugal) for the CSD database survey. RG thanks the Department of Chemistry for facilities, and the UGC and CSIR for a fellowship. JM thanks Dr Amit Kumar Singh (Sharda University, India) for support.

supplementary crystallographic information

Crystal data

C18H18ClN3O2S F(000) = 784
Mr = 375.86 Dx = 1.354 Mg m3
Monoclinic, P21/a Mo Kα radiation, λ = 0.71073 Å
a = 8.9995 (5) Å Cell parameters from 4472 reflections
b = 16.7778 (11) Å θ = 3.9–29.0°
c = 12.3595 (8) Å µ = 0.34 mm1
β = 98.892 (6)° T = 298 K
V = 1843.8 (2) Å3 Block, colourless
Z = 4 0.65 × 0.6 × 0.24 mm

Data collection

Agilent Xcalibur Eos diffractometer 4340 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3323 reflections with I > 2σ(I)
Detector resolution: 15.9821 pixels mm-1 Rint = 0.027
ω scans θmax = 29.0°, θmin = 3.9°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) h = −11→12
Tmin = 0.857, Tmax = 1.000 k = −22→22
13882 measured reflections l = −15→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
4340 reflections (Δ/σ)max = 0.006
230 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.38706 (5) −0.06089 (3) 0.65888 (4) 0.04572 (19)
Cl1 −0.26383 (7) 0.13979 (4) 0.63284 (7) 0.0751 (3)
O1 0.77428 (16) −0.12709 (8) 0.67467 (12) 0.0460 (4)
N1 0.73909 (16) 0.02099 (9) 0.95211 (12) 0.0363 (4)
N2 0.57052 (18) 0.12776 (9) 0.97183 (14) 0.0404 (4)
O2 0.62392 (19) −0.20707 (9) 0.75585 (14) 0.0599 (4)
N3 0.42863 (18) 0.15124 (10) 0.92994 (14) 0.0409 (4)
C9 0.6093 (2) 0.06010 (10) 0.92252 (14) 0.0335 (4)
C7 0.37469 (19) 0.09887 (11) 0.85219 (15) 0.0347 (4)
C14 0.75435 (19) −0.04529 (11) 0.89531 (15) 0.0340 (4)
C3 0.1239 (2) 0.04255 (12) 0.77078 (17) 0.0421 (5)
H3 0.161730 −0.008533 0.785668 0.051*
C8 0.48642 (19) 0.03902 (11) 0.84112 (14) 0.0323 (4)
C15 0.8936 (2) −0.09402 (12) 0.93020 (17) 0.0430 (5)
H15A 0.968939 −0.061386 0.972304 0.064*
H15B 0.930807 −0.113697 0.866557 0.064*
H15C 0.869892 −0.138103 0.974026 0.064*
C6 0.21737 (19) 0.10825 (11) 0.79948 (15) 0.0345 (4)
C12 0.51150 (19) −0.02733 (11) 0.77555 (14) 0.0329 (4)
C2 −0.0231 (2) 0.05183 (12) 0.72086 (17) 0.0435 (5)
H2 −0.083292 0.007504 0.701057 0.052*
C5 0.0072 (2) 0.19448 (12) 0.73163 (18) 0.0463 (5)
H5 −0.032853 0.245383 0.719599 0.056*
C13 0.64421 (19) −0.06941 (10) 0.80566 (14) 0.0322 (4)
C4 0.1552 (2) 0.18420 (12) 0.78090 (17) 0.0410 (4)
H4 0.214097 0.228738 0.801982 0.049*
C10 0.6609 (3) 0.17282 (13) 1.05805 (19) 0.0525 (5)
H10A 0.723443 0.137017 1.105641 0.079*
H10B 0.596079 0.201357 1.099350 0.079*
H10C 0.722908 0.209945 1.026288 0.079*
C16 0.6758 (2) −0.14269 (11) 0.74373 (15) 0.0372 (4)
C1 −0.0800 (2) 0.12802 (13) 0.70063 (17) 0.0439 (5)
C11 0.3529 (3) 0.02945 (16) 0.57990 (18) 0.0586 (6)
H11A 0.303494 0.067547 0.620089 0.088*
H11B 0.290191 0.017846 0.511611 0.088*
H11C 0.446915 0.051040 0.565940 0.088*
C17 0.8220 (3) −0.19386 (15) 0.6139 (2) 0.0620 (7)
H17A 0.741429 −0.209688 0.556464 0.074*
H17B 0.847277 −0.238963 0.662333 0.074*
C18 0.9549 (3) −0.16898 (19) 0.5657 (2) 0.0784 (9)
H18A 0.928634 −0.124659 0.517341 0.118*
H18B 0.988342 −0.212571 0.525243 0.118*
H18C 1.034070 −0.153518 0.623018 0.118*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0408 (3) 0.0500 (3) 0.0424 (3) 0.0014 (2) −0.0061 (2) −0.0113 (2)
Cl1 0.0410 (3) 0.0734 (5) 0.1034 (6) 0.0093 (3) −0.0123 (3) −0.0214 (4)
O1 0.0491 (8) 0.0400 (8) 0.0522 (8) 0.0015 (6) 0.0179 (7) −0.0078 (6)
N1 0.0350 (8) 0.0336 (8) 0.0387 (8) −0.0032 (6) 0.0005 (6) −0.0019 (7)
N2 0.0426 (9) 0.0337 (9) 0.0426 (9) −0.0007 (6) −0.0009 (7) −0.0074 (7)
O2 0.0696 (10) 0.0392 (9) 0.0749 (11) −0.0140 (7) 0.0236 (8) −0.0115 (8)
N3 0.0411 (9) 0.0371 (9) 0.0436 (9) 0.0035 (7) 0.0040 (7) −0.0016 (7)
C9 0.0356 (9) 0.0319 (9) 0.0327 (9) −0.0041 (7) 0.0042 (7) −0.0007 (7)
C7 0.0375 (9) 0.0305 (9) 0.0368 (9) 0.0014 (7) 0.0084 (7) 0.0017 (7)
C14 0.0308 (8) 0.0332 (9) 0.0370 (9) −0.0045 (7) 0.0027 (7) 0.0027 (8)
C3 0.0426 (10) 0.0332 (10) 0.0522 (12) 0.0002 (8) 0.0122 (9) 0.0019 (9)
C8 0.0312 (8) 0.0317 (9) 0.0339 (9) −0.0015 (7) 0.0048 (7) 0.0008 (7)
C15 0.0360 (9) 0.0422 (11) 0.0476 (11) 0.0032 (8) −0.0030 (8) −0.0006 (9)
C6 0.0323 (8) 0.0373 (10) 0.0357 (9) 0.0010 (7) 0.0105 (7) 0.0015 (8)
C12 0.0306 (8) 0.0361 (9) 0.0319 (9) −0.0044 (7) 0.0049 (7) 0.0006 (7)
C2 0.0375 (10) 0.0416 (11) 0.0531 (12) −0.0053 (8) 0.0122 (8) −0.0061 (9)
C5 0.0408 (10) 0.0391 (11) 0.0590 (13) 0.0088 (8) 0.0075 (9) −0.0040 (10)
C13 0.0320 (8) 0.0312 (9) 0.0334 (9) −0.0030 (7) 0.0050 (7) −0.0004 (7)
C4 0.0376 (9) 0.0355 (10) 0.0511 (11) −0.0009 (8) 0.0101 (8) −0.0049 (9)
C10 0.0624 (13) 0.0420 (12) 0.0490 (12) −0.0044 (10) −0.0044 (10) −0.0149 (10)
C16 0.0333 (9) 0.0364 (10) 0.0405 (10) 0.0003 (7) 0.0015 (7) −0.0031 (8)
C1 0.0349 (10) 0.0494 (12) 0.0487 (11) 0.0037 (8) 0.0098 (8) −0.0067 (9)
C11 0.0595 (13) 0.0778 (17) 0.0367 (10) 0.0189 (12) 0.0022 (9) 0.0032 (11)
C17 0.0615 (14) 0.0577 (15) 0.0692 (15) 0.0088 (11) 0.0179 (12) −0.0218 (12)
C18 0.0790 (19) 0.092 (2) 0.0719 (17) 0.0399 (16) 0.0366 (15) 0.0135 (16)

Geometric parameters (Å, º)

S1—C12 1.7752 (18) C15—H15C 0.9600
S1—C11 1.803 (3) C6—C4 1.396 (3)
Cl1—C1 1.746 (2) C12—C13 1.388 (2)
O1—C16 1.347 (2) C2—C1 1.385 (3)
O1—C17 1.450 (2) C2—H2 0.9300
N1—C14 1.333 (2) C5—C1 1.383 (3)
N1—C9 1.340 (2) C5—C4 1.387 (3)
N2—C9 1.359 (2) C5—H5 0.9300
N2—N3 1.360 (2) C13—C16 1.499 (2)
N2—C10 1.449 (2) C4—H4 0.9300
O2—C16 1.195 (2) C10—H10A 0.9600
N3—C7 1.337 (2) C10—H10B 0.9600
C9—C8 1.420 (2) C10—H10C 0.9600
C7—C8 1.442 (2) C11—H11A 0.9600
C7—C6 1.473 (2) C11—H11B 0.9600
C14—C13 1.426 (2) C11—H11C 0.9600
C14—C15 1.502 (3) C17—C18 1.476 (3)
C3—C2 1.380 (3) C17—H17A 0.9700
C3—C6 1.399 (3) C17—H17B 0.9700
C3—H3 0.9300 C18—H18A 0.9600
C8—C12 1.415 (2) C18—H18B 0.9600
C15—H15A 0.9600 C18—H18C 0.9600
C15—H15B 0.9600
C12—S1—C11 101.91 (10) C1—C5—H5 120.4
C16—O1—C17 117.03 (16) C4—C5—H5 120.4
C14—N1—C9 114.90 (15) C12—C13—C14 122.00 (17)
C9—N2—N3 111.25 (15) C12—C13—C16 120.27 (16)
C9—N2—C10 127.70 (17) C14—C13—C16 117.74 (16)
N3—N2—C10 121.05 (16) C5—C4—C6 121.27 (18)
C7—N3—N2 107.38 (15) C5—C4—H4 119.4
N1—C9—N2 124.05 (17) C6—C4—H4 119.4
N1—C9—C8 128.45 (16) N2—C10—H10A 109.5
N2—C9—C8 107.43 (16) N2—C10—H10B 109.5
N3—C7—C8 110.17 (16) H10A—C10—H10B 109.5
N3—C7—C6 117.73 (15) N2—C10—H10C 109.5
C8—C7—C6 131.99 (16) H10A—C10—H10C 109.5
N1—C14—C13 121.99 (16) H10B—C10—H10C 109.5
N1—C14—C15 116.87 (16) O2—C16—O1 124.26 (18)
C13—C14—C15 121.14 (17) O2—C16—C13 124.64 (17)
C2—C3—C6 121.48 (19) O1—C16—C13 111.07 (15)
C2—C3—H3 119.3 C5—C1—C2 121.04 (19)
C6—C3—H3 119.3 C5—C1—Cl1 119.79 (16)
C12—C8—C9 115.20 (15) C2—C1—Cl1 119.16 (16)
C12—C8—C7 140.99 (16) S1—C11—H11A 109.5
C9—C8—C7 103.74 (15) S1—C11—H11B 109.5
C14—C15—H15A 109.5 H11A—C11—H11B 109.5
C14—C15—H15B 109.5 S1—C11—H11C 109.5
H15A—C15—H15B 109.5 H11A—C11—H11C 109.5
C14—C15—H15C 109.5 H11B—C11—H11C 109.5
H15A—C15—H15C 109.5 O1—C17—C18 108.3 (2)
H15B—C15—H15C 109.5 O1—C17—H17A 110.0
C4—C6—C3 117.87 (17) C18—C17—H17A 110.0
C4—C6—C7 120.25 (17) O1—C17—H17B 110.0
C3—C6—C7 121.83 (17) C18—C17—H17B 110.0
C13—C12—C8 116.96 (16) H17A—C17—H17B 108.4
C13—C12—S1 117.71 (14) C17—C18—H18A 109.5
C8—C12—S1 125.32 (13) C17—C18—H18B 109.5
C3—C2—C1 119.14 (19) H18A—C18—H18B 109.5
C3—C2—H2 120.4 C17—C18—H18C 109.5
C1—C2—H2 120.4 H18A—C18—H18C 109.5
C1—C5—C4 119.13 (19) H18B—C18—H18C 109.5
C9—N2—N3—C7 −0.4 (2) C9—C8—C12—S1 −173.01 (13)
C10—N2—N3—C7 179.58 (18) C7—C8—C12—S1 3.2 (3)
C14—N1—C9—N2 178.40 (16) C11—S1—C12—C13 −128.93 (15)
C14—N1—C9—C8 1.6 (3) C11—S1—C12—C8 51.29 (17)
N3—N2—C9—N1 −175.78 (16) C6—C3—C2—C1 −1.2 (3)
C10—N2—C9—N1 4.2 (3) C8—C12—C13—C14 −2.9 (3)
N3—N2—C9—C8 1.6 (2) S1—C12—C13—C14 177.35 (13)
C10—N2—C9—C8 −178.42 (19) C8—C12—C13—C16 177.08 (15)
N2—N3—C7—C8 −0.9 (2) S1—C12—C13—C16 −2.7 (2)
N2—N3—C7—C6 175.72 (15) N1—C14—C13—C12 −3.1 (3)
C9—N1—C14—C13 3.7 (2) C15—C14—C13—C12 176.81 (16)
C9—N1—C14—C15 −176.20 (16) N1—C14—C13—C16 177.00 (15)
N1—C9—C8—C12 −7.2 (3) C15—C14—C13—C16 −3.1 (3)
N2—C9—C8—C12 175.55 (15) C1—C5—C4—C6 0.1 (3)
N1—C9—C8—C7 175.22 (17) C3—C6—C4—C5 −2.5 (3)
N2—C9—C8—C7 −2.00 (19) C7—C6—C4—C5 −179.85 (17)
N3—C7—C8—C12 −174.7 (2) C17—O1—C16—O2 −1.7 (3)
C6—C7—C8—C12 9.4 (4) C17—O1—C16—C13 176.52 (18)
N3—C7—C8—C9 1.81 (19) C12—C13—C16—O2 −79.4 (3)
C6—C7—C8—C9 −174.18 (18) C14—C13—C16—O2 100.5 (2)
C2—C3—C6—C4 3.1 (3) C12—C13—C16—O1 102.39 (19)
C2—C3—C6—C7 −179.64 (17) C14—C13—C16—O1 −77.7 (2)
N3—C7—C6—C4 35.3 (2) C4—C5—C1—C2 1.8 (3)
C8—C7—C6—C4 −148.98 (19) C4—C5—C1—Cl1 −177.07 (15)
N3—C7—C6—C3 −141.96 (19) C3—C2—C1—C5 −1.3 (3)
C8—C7—C6—C3 33.8 (3) C3—C2—C1—Cl1 177.61 (15)
C9—C8—C12—C13 7.2 (2) C16—O1—C17—C18 −166.05 (19)
C7—C8—C12—C13 −176.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.93 2.59 3.513 (2) 170

Symmetry code: (i) x−1, y, z.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Barrett, D., Sasaki, H., Kinoshita, T. & Sakane, K. (1996). Chem. Commun. pp. 61–62.
  3. El-Gohary, N. S., Gabr, M. T. & Shaaban, M. I. (2019). Bioorg. Chem. 89, 1–13. [DOI] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Fathy, U., Younis, A. & Awad, H. M. (2015). J. Chem. Pharm. Res. 7, 4–12.
  6. Gökhan-Kelekçi, N., Yabanoğlu, S., Küpeli, E., Salgin, U., Ozgen, O., Uçar, G., Yeşilada, E., Kendi, E., Yeşilada, A. & Bilgin, A. A. A. (2007). Bioorg. Med. Chem. 15, 5775–5786. [DOI] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Hardy, C. R. (1984). In Advances in Heterocyclic Chemistry, Vol. 36, pp. 343–409. New York: Academic Press.
  9. Hawas, S. S., El-Gohary, N. S., Gabr, M. T., Shaaban, M. I. & El-Ashmawy, M. B. (2019). Synth. Commun. 49, 2466–2487.
  10. Irwin, J. J. & Shoichet, B. K. (2005). J. Chem. Inf. Model. 45, 177–182. [DOI] [PMC free article] [PubMed]
  11. Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A. C., Liu, Y., Maciejewski, A., Arndt, D., Wilson, M., Neveu, V., Tang, A., Gabriel, G., Ly, C., Adamjee, S., Dame, Z. T., Han, B., Zhou, Y. & Wishart, D. S. (2013). Nucleic Acids Res. 42, D1091–D1097. [DOI] [PMC free article] [PubMed]
  12. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  13. Mello, H. de, Echevarria, A., Bernardino, A. M., Canto-Cavalheiro, M. & Leon, L. L. (2004). J. Med. Chem. 47, 5427–5432. [DOI] [PubMed]
  14. Naik, N. S., Shastri, L. A., Shastri, S. L., Chougala, B. M., Shaikh, F., Madar, J. M., Kulkarni, R. C., Dodamani, S., Jalalpure, S., Joshi, S. D. & Sunagar, V. (2019). ChemistrySelect, 4, 285–297.
  15. Panchal, V., Variya, H. H. & Patel, G. R. (2019). Int. J. Appl. Eng. Res, 14, 43–50.
  16. Parmar, S. S., Pandey, B. R., Dwivedi, C. & Ali, B. (1974). J. Med. Chem. 17, 1031–1033. [DOI] [PubMed]
  17. Ravi, C., Samanta, S., Mohan, D. C., Reddy, N. N. K. & Adimurthy, S. (2017). Synthesis, 49, 2513–2522.
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  21. Timóteo, M. A., Oliveira, L., Campesatto-Mella, E., Barroso, A., Silva, C., Magalhães-Cardoso, M. T., Alves-do-Prado, W. & Correia-de-Sá, P. (2008). Neurochem. Int. 52, 834–845. [DOI] [PubMed]
  22. Witherington, J., Bordas, V., Garland, S. L., Hickey, D. M., Ife, R. J., Liddle, J., Saunders, M., Smith, D. G. & Ward, R. W. (2003). Bioorg. Med. Chem. Lett. 13, 1577–1580. [DOI] [PubMed]
  23. Wu, H.-C., Chu, J.-H., Li, C.-W., Hwang, L.-C. & Wu, M.-J. (2016). Organometallics, 35, 288–300.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020002479/lh5946sup1.cif

e-76-00443-sup1.cif (485.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020002479/lh5946Isup2.hkl

e-76-00443-Isup2.hkl (345.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020002479/lh5946Isup3.cml

CCDC reference: 1977404

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES