Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Feb 18;76(Pt 3):387–391. doi: 10.1107/S2056989020002054

Structural, Hirshfeld and DFT studies of conjugated D–π–A carbazole chalcone crystal

Muhamad Fikri Zaini a, Ibrahim Abdul Razak a, Wan Mohd Khairul b, Suhana Arshad a,*
PMCID: PMC7057368  PMID: 32148881

The title conjugated carbazole chalcone compound, synthesized using a Claisen–Schmidt condensation reaction, adopts an s-cis conformation with respect to the ethyl­enic double bonds (C=O and C=C).

Keywords: carbazole chalcone, crystal structure, Hirshfeld surface, DFT, mol­ecular electrostatic potential

Abstract

A new conjugated carbazole chalcone compound, (E)-3-[4-(9,9a-di­hydro-8aH-carbazol-9-yl)phen­yl]-1-(4-nitro­phen­yl)prop-2-en-1-one (CPNC), C27H18N2O3, was synthesized using a Claisen–Schmidt condensation reaction. CPNC crystallizes in the monoclinic non-centrosymmetric space group Cc and adopts an s-cis conformation with respect to the ethyl­enic double bonds (C=O and C=C). The crystal packing features C—H⋯O and C—H⋯π inter­actions whose percentage contribution was qu­anti­fied by Hirshfeld surface analysis. Quantum chemistry calculations including geometrical optimization and mol­ecular electrostatic potential (MEP) were analysed by density functional theory (DFT) with a B3LYP/6–311 G++(d,p) basis set.

Chemical context  

Chalcone is a privileged structure comprising two aromatic rings that are linked by a three-carbon α,β-unsaturated carbonyl system. Chalcones demonstrate wide-ranging bio­logical activities such as anti-inflammatory and anti­cancer (Cui et al., 2008; Srinivasan et al., 2009; Wang et al., 2013) and have applications in non-linear optics (Zaini, Arshad et al., 2019). They are currently attracting considerable attention because they offer an excellent π-conjugated system within the double bond at the ethyl­enic bridge (Teo et al., 2017). Furthermore, the conjugated chalcone could be enhanced with appropriate electron-pulling and electron-pushing functional groups on the benzene rings (Zhuang et al., 2017). The increased involvement of donor and acceptor inter­actions in the mol­ecule improves the mol­ecular charge transfer and degree of non-linearity (Davanagere et al., 2019). The high planarity and presence of stable E isomer in the solid state stabilizes the crystal structure (Custodio et al., 2020).graphic file with name e-76-00387-scheme1.jpg

In a continuation of our studies (Zaini et al., 2018; Zaini, Razak et al., 2019), we report herein the synthesis and structural properties of the conjugated carbazole chalcone system of (E)-3-[4-(9,9a-di­hydro-8aH-carbazol-9-yl)phen­yl]-1-(4-nitro­phen­yl)prop-2-en-1-one (CPNC). The experimental and theoretical studies and chemical reactivity analysis are discussed.

Structural commentary  

CPNC is composed of 9-phenyl­carbazole and nitro­benzene moieties, which represent donor and acceptor groups, connected by an ethyl­enic bridge. The mol­ecular and optimized structures of the CPNC with assigned atom-numbering scheme are illustrated in Fig. 1. The geometrical optimization of CPNC was computed with the Gaussian09W software package (Frisch et al., 2009) using the DFT method and the B3LYP/6-311G++(d,p) basis set without enforcing any mol­ecular symmetry constraints. There is good agreement between the experimental and optimized structures (see the table in the supporting information), indicating that the basis set used was appropriate in both isolated conditions and the solid-state phase.

Figure 1.

Figure 1

(a) The crystal structure of CPNC showing 50% probability ellipsoids, (b) the optimized structure, (c) the dihedral angle between the nitro­benzene plane and the 9H-carbazole unit and (d) the dihedral angle between the nitro­benzene plane and the phenyl ring of the 9-phenyl­carbazole unit.

CPNC crystallizes in the monoclinic Cc space group with four mol­ecules per unit cell. Its mol­ecular structure exhibits an s-cis configuration with respect to the ethyl­enic bridge consisting of carbonyl (C=O; 1.215 (3) Å (experimental), 1.223 Å (DFT)] and carbon–carbon double bond (C=C; 1.320 (3) Å (experimental), 1.348 Å (DFT)]. The CPNC mol­ecule is twisted slightly at the C21—C22 bond, with a C20—C21—C22—C27 torsion angle of −10.4 (3)° (DFT value = −21.3°). The experimental and theoretical C15—C16—C19—C20 torsion angles are 158.6 (3) and 178.8°, respectively. The 9-phenyl­carbazole C13—N1 bond is also observed to be twisted [C1—N1—C13—C14 51.8 (4)° (in experimental) and 53.2° (DFT). The small discrepancies in the torsion angles between the experimental and calculated DFT results are caused by the involvement of inter­molecular inter­actions, which are negligible during the optimization process (Arshad et al., 2018).

There is also a twist [dihedral angle = 25.30 (17)°] between the mean planes of the nitro­phenyl group [N2/O2/O3/C22–C27; maximum deviation of 0.023 (2) Å at atom O3] and the enone unit [O1/C19–C21; maximum deviation of 0.109 (2) Å at atom C21]. Meanwhile, the enone bridge forms dihedral angles of 31.52 (18) and 21.77 (16)°, respectively, with the C13–C18 phenyl ring and the 9H-carbazole unit [N1/C1–C12; maximum deviation of 0.041 (3) Å at atom C2].

The 9H-carbazole unit and the C13–C18 phenyl ring subtend a dihedral angle of 53.26 (10)°, which is similar to the dihedral angle of 53.8 (3) between the bridge aromatic ring and the 9H-carbazole unit in the related compound 2-[4-(9H-carbazol-9-yl)benzyl­idene]-2,3-di­hydro­inden-1-one (Kim et al., 2011). The 9H-carbazole moiety is nearly co-planar with the nitro­benzene unit, making a dihedral angle of 5.19 (7)° (Fig. 1 c). This planar nature is possibly due to steric repulsion by the hydrogen atoms of the aromatic rings, leading to a small π-electron delocalization. However, the phenyl ring of the 9-phenyl­carbazole moiety subtends a large dihedral angle to the nitro­benzene group of 56.74 (10)° (Fig. 1 d), which tends to suppress the extension of the conjugation effect through the enone moiety.

Supra­molecular features  

The crystal structure of CPNC is built up in a cluster pattern style where the mol­ecules are linked to each other along the b-axis direction via C15—H15A⋯O1 inter­actions (Table 1), as shown in Fig. 2 a. The tilted distortion of 9-phenyl­carbazole ring system is the results of the C18—H18A⋯O2 inter­action involving the nitro group, which links the mol­ecules in a head-to-tail arrangement, propagating diagonally along the ac direction. Weak C9—H9ACg4 inter­actions involving the C13-C18 phenyl ring and a carbazole hydrogen of carbazole moiety link the mol­ecules into infinite chains, as depicted in Fig. 2 b. Overall, the inter­molecular C—H⋯O and C—H⋯π inter­actions of CPNC generate a three-dimensional network.

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O1i 0.93 2.42 3.291 (3) 155
C18—H18A⋯O2ii 0.93 2.56 3.490 (3) 173
C9—H9ACg4iii 0.93 2.89 3.758 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

The packing of CPNC showing (a) C—H⋯O and C—H⋯π inter­actions (dashed lines) and (b) C—H⋯π inter­actions forming an infinite chain along the ac-plane direction.

Hirshfeld surface analysis  

Hirshfeld surface analysis is used to gain a clear understanding of the mol­ecular structure inter­action and visualize them graphically. The Hirshfeld surface and related two-dimensional fingerprint plots were generated using Crystal Explorer3.1 (Wolff et al., 2012). In the d norm surface (Fig. 3), the bright-red spots indicate the involvement of inter­molecular C—H⋯O inter­actions. The fingerprint plots (Ternavisk et al., 2014) (Fig. 4) indicate the percentage contribution of the H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and C⋯C contacts. The H⋯H contacts make the largest contribution to the Hirshfeld surface (38.4%) followed by the C⋯H/H⋯C contacts (28.2%), which are represented as a pair of characteristic wings. The O⋯H/H⋯O (19.1%) contacts display two symmetrical narrow spikes, which confirm the existence of C—H⋯O inter­actions. In addition, the presence of weak inter­molecular C—H⋯π inter­actions can be seen as an orange region marked with black arrows in the shape-index surface (Fig. 5).

Figure 3.

Figure 3

The d norm surfaces showing the inter­molecular inter­actions in CPNC: (a) front and (b) back.

Figure 4.

Figure 4

Qu­anti­fication of different types of contacts and respective fingerprints plots.

Figure 5.

Figure 5

Representation of the C—H⋯π inter­actions (indicated by black arrows).

Mol­ecular electrostatic potential (MEP) analysis  

The reactive sites of a mol­ecule can be investigated using mol­ecular electrostatic potential (MEP) analysis (Barakat et al., 2015). In this study, DFT with the B3LYP/6-311G++(d,p) basis set was utilized to predict the possible location of the nucleophilic and electrophilic attacks. The MEP surface with a colour code from red (−0.04728 a.u) to blue (0.04728 a.u) is depicted in Fig. 6 a. The carbonyl and nitro groups are nucleophilic (electron-rich) sites in the red-coloured region, while the blue colour indicates the electrophilic (electron-deficient) site localized on the hydrogen atom. These reactive sites are responsible for inter­molecular inter­actions where the red and blue spots suggest the strongest repulsion site (electrophilic attack) and strongest attraction site (nucleophilic attack), respectively. The MEP results are further supported by the electrostatic potential contour map showing the iso-surface lines shown in Fig. 6 b where the red lines refer to the strong electron-withdrawing atoms such as in carbonyl and nitro substituents.

Figure 6.

Figure 6

(a) Mol­ecular electrostatic potentials (MEP) and (b) its contour map mapped on the electron density surface calculated by using the DFT/B3LYP/6–311 G++(d,p) basis set.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, last update February 2019; Groom et al., 2016) revealed one closely related 9-phenyl­carbazole chalcone, namely 1-(anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phen­yl]prop-2-en-1-one (refcode ZIJPUG; Zainuri et al., 2018) with an anthracene system as the ketone substituent. Another similar compound is 2-[4-(9H-carbazol-9-yl)benzyl­idene]indan-1-one (ISADOW; Kim et al., 2011) in which the 9-phenyl­carbazole unit is attached to a 2,3-di­hydro-1H-inden-1-one moiety. The two crystals were grown by different methods, ZIJPUG by slow evaporation from acetone solution and ISADOW by solvent diffusion using di­chloro­methane and hexane. The reported mol­ecular structures of ZIJPUG and ISADOW exhibit a π-bridge linker of an enone moiety and the aromatic ring of 9-phenyl­carbazole, respectively. Furthermore, the C16—C17—C18—C19 torsion angle in ZIJPUG [−16.4 (3)°] indicates a slight twist, which is which comparable to that in ISADOW [C8—C10—C11—C12 = 178.6 (2)°].

Synthesis and crystallization  

4′-Nitro­aceto­phenone (5 mmol) and N-(4-formyl­phen­yl)carbazole (5 mmol) were dissolved in 20 mL of methanol and then a catalytic amount of sodium hydroxide solution (5 mL, 20%) was added dropwise under continuous stirring for about 5–6 h at room temperature until a precipitate formed. This was filtered off, washed successively with distilled water and recrystallized from acetone solution, yielding orange block-shaped crystals suitable for X-ray diffraction analysis.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C27H18N2O3
M r 418.43
Crystal system, space group Monoclinic, C c
Temperature (K) 293
a, b, c (Å) 9.9690 (5), 24.8828 (15), 8.3049 (4)
β (°) 94.356 (1)
V3) 2054.13 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.54 × 0.38 × 0.23
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker 2015)
T min, T max 0.783, 0.942
No. of measured, independent and observed [I > 2σ(I)] reflections 39335, 5995, 5046
R int 0.033
(sin θ/λ)max−1) 0.704
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.114, 1.04
No. of reflections 5995
No. of parameters 289
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.15
Absolute structure Flack x determined using 2241 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.1 (3)

Computer programs: APEX2 and SAINT (Bruker 2015), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and Mercury (Macrae et al., 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020002054/ex2028sup1.cif

e-76-00387-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020002054/ex2028Isup2.hkl

e-76-00387-Isup2.hkl (328.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020002054/ex2028Isup4.cml

SI Comparison between the calculated optimized and X-ray geometrical parameters for the CPNC compound. DOI: 10.1107/S2056989020002054/ex2028sup3.docx

CCDC reference: 1967669

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities to conduct this work.

supplementary crystallographic information

Crystal data

C27H18N2O3 F(000) = 872
Mr = 418.43 Dx = 1.353 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
a = 9.9690 (5) Å Cell parameters from 9847 reflections
b = 24.8828 (15) Å θ = 2.2–29.5°
c = 8.3049 (4) Å µ = 0.09 mm1
β = 94.356 (1)° T = 293 K
V = 2054.13 (19) Å3 Block, orange
Z = 4 0.54 × 0.38 × 0.23 mm

Data collection

Bruker APEXII CCD diffractometer 5046 reflections with I > 2σ(I)
φ and ω scans Rint = 0.033
Absorption correction: multi-scan (SADABS; Bruker 2015) θmax = 30.0°, θmin = 1.6°
Tmin = 0.783, Tmax = 0.942 h = −13→14
39335 measured reflections k = −34→34
5995 independent reflections l = −11→11

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.455P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.19 e Å3
5995 reflections Δρmin = −0.15 e Å3
289 parameters Absolute structure: Flack x determined using 2241 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraints Absolute structure parameter: −0.1 (3)

Special details

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71074 8.313 9.985 13.418 68.212 88.424 85.648
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2822 (2) 0.52900 (7) 0.1628 (3) 0.0715 (6)
O2 0.0014 (2) 0.71634 (9) −0.3674 (2) 0.0685 (5)
O3 0.1029 (2) 0.77955 (9) −0.2279 (3) 0.0681 (5)
N1 0.7901 (2) 0.62943 (8) 0.9806 (2) 0.0491 (4)
N2 0.0790 (2) 0.73213 (9) −0.2556 (2) 0.0514 (5)
C1 0.8488 (2) 0.59669 (10) 1.1043 (3) 0.0494 (5)
C2 0.8433 (3) 0.54134 (11) 1.1238 (3) 0.0640 (7)
H2A 0.7917 0.5198 1.0514 0.077*
C3 0.9176 (4) 0.51939 (13) 1.2555 (4) 0.0768 (9)
H3A 0.9161 0.4824 1.2707 0.092*
C4 0.9943 (4) 0.55101 (14) 1.3656 (4) 0.0748 (9)
H4A 1.0435 0.5349 1.4522 0.090*
C5 0.9978 (3) 0.60597 (13) 1.3474 (3) 0.0633 (7)
H5A 1.0484 0.6272 1.4215 0.076*
C6 0.9240 (2) 0.62937 (10) 1.2159 (3) 0.0482 (5)
C7 0.9091 (2) 0.68404 (10) 1.1603 (3) 0.0462 (5)
C8 0.9545 (3) 0.73328 (11) 1.2227 (3) 0.0574 (6)
H8A 1.0090 0.7348 1.3185 0.069*
C9 0.9177 (3) 0.77957 (11) 1.1410 (4) 0.0644 (7)
H9A 0.9483 0.8126 1.1815 0.077*
C10 0.8351 (3) 0.77768 (11) 0.9983 (4) 0.0615 (6)
H10A 0.8106 0.8096 0.9459 0.074*
C11 0.7885 (3) 0.72941 (10) 0.9322 (3) 0.0538 (6)
H11A 0.7340 0.7284 0.8362 0.065*
C12 0.8262 (2) 0.68269 (9) 1.0148 (3) 0.0447 (4)
C13 0.7077 (2) 0.61190 (9) 0.8430 (3) 0.0467 (5)
C14 0.5978 (3) 0.57950 (11) 0.8617 (3) 0.0565 (6)
H14A 0.5780 0.5685 0.9643 0.068*
C15 0.5166 (3) 0.56331 (11) 0.7274 (3) 0.0558 (6)
H15A 0.4435 0.5410 0.7407 0.067*
C16 0.5429 (2) 0.58002 (9) 0.5731 (3) 0.0481 (5)
C17 0.6564 (2) 0.61148 (10) 0.5552 (3) 0.0511 (5)
H17A 0.6774 0.6219 0.4525 0.061*
C18 0.7384 (2) 0.62741 (10) 0.6890 (3) 0.0503 (5)
H18A 0.8139 0.6485 0.6758 0.060*
C19 0.4473 (3) 0.56599 (10) 0.4358 (3) 0.0528 (5)
H19A 0.3907 0.5369 0.4499 0.063*
C20 0.4339 (3) 0.59058 (10) 0.2947 (3) 0.0538 (6)
H20A 0.4922 0.6184 0.2730 0.065*
C21 0.3268 (2) 0.57442 (10) 0.1701 (3) 0.0511 (5)
C22 0.2696 (2) 0.61668 (10) 0.0544 (3) 0.0458 (5)
C23 0.1803 (3) 0.60042 (11) −0.0741 (3) 0.0568 (6)
H23A 0.1623 0.5641 −0.0904 0.068*
C24 0.1188 (2) 0.63807 (11) −0.1771 (3) 0.0550 (6)
H24A 0.0601 0.6275 −0.2637 0.066*
C25 0.1462 (2) 0.69147 (10) −0.1489 (3) 0.0452 (5)
C26 0.2350 (2) 0.70923 (10) −0.0246 (3) 0.0510 (5)
H26A 0.2522 0.7457 −0.0089 0.061*
C27 0.2975 (3) 0.67082 (10) 0.0758 (3) 0.0518 (5)
H27A 0.3593 0.6816 0.1590 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0810 (13) 0.0456 (9) 0.0816 (13) 0.0062 (9) −0.0343 (10) −0.0086 (9)
O2 0.0650 (11) 0.0839 (14) 0.0528 (10) 0.0021 (10) −0.0193 (8) 0.0097 (9)
O3 0.0688 (12) 0.0606 (11) 0.0728 (12) 0.0061 (9) −0.0075 (9) 0.0078 (9)
N1 0.0542 (11) 0.0498 (10) 0.0410 (9) −0.0063 (8) −0.0105 (8) −0.0006 (8)
N2 0.0444 (10) 0.0643 (13) 0.0449 (9) 0.0046 (9) −0.0001 (8) 0.0055 (8)
C1 0.0538 (13) 0.0540 (12) 0.0393 (10) −0.0010 (10) −0.0041 (9) 0.0003 (9)
C2 0.0829 (19) 0.0556 (14) 0.0521 (14) −0.0008 (13) −0.0045 (13) 0.0000 (11)
C3 0.110 (3) 0.0587 (16) 0.0597 (16) 0.0113 (16) −0.0051 (16) 0.0112 (13)
C4 0.093 (2) 0.0776 (19) 0.0507 (14) 0.0152 (17) −0.0109 (14) 0.0122 (13)
C5 0.0670 (16) 0.0815 (19) 0.0394 (11) 0.0020 (14) −0.0092 (10) −0.0001 (12)
C6 0.0484 (11) 0.0582 (13) 0.0375 (10) −0.0017 (10) −0.0005 (8) −0.0012 (9)
C7 0.0419 (10) 0.0578 (13) 0.0386 (10) −0.0064 (9) 0.0017 (8) −0.0025 (9)
C8 0.0582 (14) 0.0679 (15) 0.0461 (12) −0.0185 (12) 0.0054 (10) −0.0105 (11)
C9 0.0772 (18) 0.0560 (15) 0.0621 (16) −0.0218 (13) 0.0188 (14) −0.0103 (12)
C10 0.0718 (17) 0.0531 (13) 0.0609 (15) −0.0049 (12) 0.0137 (13) 0.0060 (11)
C11 0.0555 (13) 0.0565 (14) 0.0491 (12) 0.0000 (10) 0.0014 (10) 0.0046 (10)
C12 0.0421 (10) 0.0514 (12) 0.0401 (10) −0.0052 (8) −0.0003 (8) −0.0017 (8)
C13 0.0477 (11) 0.0486 (11) 0.0417 (10) −0.0030 (9) −0.0096 (8) −0.0028 (9)
C14 0.0618 (14) 0.0628 (15) 0.0436 (11) −0.0136 (11) −0.0051 (10) 0.0017 (10)
C15 0.0591 (14) 0.0527 (13) 0.0536 (12) −0.0166 (11) −0.0089 (10) 0.0029 (10)
C16 0.0539 (12) 0.0419 (10) 0.0459 (10) 0.0017 (9) −0.0129 (9) −0.0031 (8)
C17 0.0518 (12) 0.0587 (13) 0.0413 (10) 0.0008 (10) −0.0064 (9) 0.0017 (9)
C18 0.0454 (11) 0.0587 (13) 0.0454 (11) −0.0056 (10) −0.0070 (9) 0.0029 (9)
C19 0.0589 (13) 0.0424 (11) 0.0541 (13) −0.0001 (9) −0.0154 (11) −0.0054 (9)
C20 0.0541 (13) 0.0522 (13) 0.0518 (12) 0.0028 (10) −0.0176 (10) −0.0065 (10)
C21 0.0525 (12) 0.0490 (12) 0.0490 (12) 0.0100 (9) −0.0150 (9) −0.0099 (9)
C22 0.0441 (11) 0.0494 (11) 0.0419 (10) 0.0043 (9) −0.0099 (8) −0.0067 (8)
C23 0.0559 (13) 0.0528 (13) 0.0579 (13) 0.0003 (10) −0.0212 (11) −0.0102 (10)
C24 0.0516 (13) 0.0597 (14) 0.0504 (12) 0.0011 (10) −0.0188 (10) −0.0065 (10)
C25 0.0398 (10) 0.0572 (12) 0.0380 (9) 0.0029 (9) −0.0022 (8) 0.0008 (9)
C26 0.0561 (13) 0.0532 (12) 0.0419 (11) −0.0033 (10) −0.0086 (9) −0.0021 (9)
C27 0.0566 (13) 0.0550 (13) 0.0412 (10) −0.0018 (10) −0.0131 (9) −0.0071 (9)

Geometric parameters (Å, º)

O1—C21 1.215 (3) C11—H11A 0.9300
O2—N2 1.227 (3) C13—C14 1.378 (4)
O3—N2 1.222 (3) C13—C18 1.393 (3)
N1—C12 1.397 (3) C14—C15 1.387 (3)
N1—C1 1.404 (3) C14—H14A 0.9300
N1—C13 1.425 (3) C15—C16 1.391 (3)
N2—C25 1.472 (3) C15—H15A 0.9300
C1—C2 1.388 (4) C16—C17 1.394 (4)
C1—C6 1.406 (3) C16—C19 1.471 (3)
C2—C3 1.386 (4) C17—C18 1.386 (3)
C2—H2A 0.9300 C17—H17A 0.9300
C3—C4 1.390 (5) C18—H18A 0.9300
C3—H3A 0.9300 C19—C20 1.320 (3)
C4—C5 1.377 (5) C19—H19A 0.9300
C4—H4A 0.9300 C20—C21 1.485 (3)
C5—C6 1.396 (3) C20—H20A 0.9300
C5—H5A 0.9300 C21—C22 1.507 (3)
C6—C7 1.441 (3) C22—C27 1.384 (3)
C7—C8 1.392 (3) C22—C23 1.397 (3)
C7—C12 1.412 (3) C23—C24 1.381 (3)
C8—C9 1.373 (4) C23—H23A 0.9300
C8—H8A 0.9300 C24—C25 1.373 (4)
C9—C10 1.392 (4) C24—H24A 0.9300
C9—H9A 0.9300 C25—C26 1.380 (3)
C10—C11 1.386 (4) C26—C27 1.385 (3)
C10—H10A 0.9300 C26—H26A 0.9300
C11—C12 1.387 (3) C27—H27A 0.9300
C12—N1—C1 108.39 (18) C18—C13—N1 119.9 (2)
C12—N1—C13 125.30 (19) C13—C14—C15 120.0 (2)
C1—N1—C13 126.31 (19) C13—C14—H14A 120.0
O3—N2—O2 123.6 (2) C15—C14—H14A 120.0
O3—N2—C25 118.5 (2) C14—C15—C16 121.0 (2)
O2—N2—C25 117.9 (2) C14—C15—H15A 119.5
C2—C1—N1 130.1 (2) C16—C15—H15A 119.5
C2—C1—C6 121.4 (2) C15—C16—C17 118.5 (2)
N1—C1—C6 108.6 (2) C15—C16—C19 119.1 (2)
C3—C2—C1 117.4 (3) C17—C16—C19 122.3 (2)
C3—C2—H2A 121.3 C18—C17—C16 120.6 (2)
C1—C2—H2A 121.3 C18—C17—H17A 119.7
C2—C3—C4 122.0 (3) C16—C17—H17A 119.7
C2—C3—H3A 119.0 C17—C18—C13 120.0 (2)
C4—C3—H3A 119.0 C17—C18—H18A 120.0
C5—C4—C3 120.5 (3) C13—C18—H18A 120.0
C5—C4—H4A 119.8 C20—C19—C16 126.4 (2)
C3—C4—H4A 119.8 C20—C19—H19A 116.8
C4—C5—C6 118.9 (3) C16—C19—H19A 116.8
C4—C5—H5A 120.5 C19—C20—C21 120.8 (2)
C6—C5—H5A 120.5 C19—C20—H20A 119.6
C5—C6—C1 119.8 (2) C21—C20—H20A 119.6
C5—C6—C7 132.8 (2) O1—C21—C20 121.9 (2)
C1—C6—C7 107.34 (19) O1—C21—C22 119.9 (2)
C8—C7—C12 119.5 (2) C20—C21—C22 118.2 (2)
C8—C7—C6 133.6 (2) C27—C22—C23 119.3 (2)
C12—C7—C6 106.9 (2) C27—C22—C21 122.34 (19)
C9—C8—C7 119.2 (2) C23—C22—C21 118.3 (2)
C9—C8—H8A 120.4 C24—C23—C22 120.3 (2)
C7—C8—H8A 120.4 C24—C23—H23A 119.9
C8—C9—C10 120.7 (2) C22—C23—H23A 119.9
C8—C9—H9A 119.6 C25—C24—C23 118.5 (2)
C10—C9—H9A 119.6 C25—C24—H24A 120.7
C11—C10—C9 121.7 (3) C23—C24—H24A 120.7
C11—C10—H10A 119.2 C24—C25—C26 123.1 (2)
C9—C10—H10A 119.2 C24—C25—N2 119.1 (2)
C10—C11—C12 117.4 (2) C26—C25—N2 117.8 (2)
C10—C11—H11A 121.3 C25—C26—C27 117.6 (2)
C12—C11—H11A 121.3 C25—C26—H26A 121.2
C11—C12—N1 129.7 (2) C27—C26—H26A 121.2
C11—C12—C7 121.5 (2) C22—C27—C26 121.2 (2)
N1—C12—C7 108.8 (2) C22—C27—H27A 119.4
C14—C13—C18 119.8 (2) C26—C27—H27A 119.4
C14—C13—N1 120.3 (2)
C12—N1—C1—C2 −179.4 (3) C12—N1—C13—C18 52.0 (3)
C13—N1—C1—C2 0.6 (4) C1—N1—C13—C18 −128.0 (3)
C12—N1—C1—C6 −0.9 (3) C18—C13—C14—C15 −1.3 (4)
C13—N1—C1—C6 179.1 (2) N1—C13—C14—C15 178.9 (2)
N1—C1—C2—C3 176.8 (3) C13—C14—C15—C16 −1.1 (4)
C6—C1—C2—C3 −1.6 (4) C14—C15—C16—C17 2.9 (4)
C1—C2—C3—C4 0.5 (5) C14—C15—C16—C19 −174.4 (2)
C2—C3—C4—C5 0.5 (6) C15—C16—C17—C18 −2.4 (4)
C3—C4—C5—C6 −0.5 (5) C19—C16—C17—C18 174.9 (2)
C4—C5—C6—C1 −0.5 (4) C16—C17—C18—C13 0.1 (4)
C4—C5—C6—C7 −178.0 (3) C14—C13—C18—C17 1.8 (4)
C2—C1—C6—C5 1.5 (4) N1—C13—C18—C17 −178.4 (2)
N1—C1—C6—C5 −177.1 (2) C15—C16—C19—C20 158.6 (3)
C2—C1—C6—C7 179.7 (2) C17—C16—C19—C20 −18.7 (4)
N1—C1—C6—C7 1.1 (3) C16—C19—C20—C21 −175.9 (2)
C5—C6—C7—C8 −5.4 (5) C19—C20—C21—O1 −27.7 (4)
C1—C6—C7—C8 176.8 (3) C19—C20—C21—C22 150.0 (2)
C5—C6—C7—C12 177.0 (3) O1—C21—C22—C27 167.4 (3)
C1—C6—C7—C12 −0.8 (2) C20—C21—C22—C27 −10.4 (3)
C12—C7—C8—C9 −0.1 (3) O1—C21—C22—C23 −9.5 (4)
C6—C7—C8—C9 −177.5 (3) C20—C21—C22—C23 172.7 (2)
C7—C8—C9—C10 0.6 (4) C27—C22—C23—C24 −1.1 (4)
C8—C9—C10—C11 −0.8 (4) C21—C22—C23—C24 175.9 (2)
C9—C10—C11—C12 0.6 (4) C22—C23—C24—C25 −0.8 (4)
C10—C11—C12—N1 177.0 (2) C23—C24—C25—C26 1.7 (4)
C10—C11—C12—C7 −0.1 (3) C23—C24—C25—N2 −178.7 (2)
C1—N1—C12—C11 −177.0 (2) O3—N2—C25—C24 179.1 (2)
C13—N1—C12—C11 3.0 (4) O2—N2—C25—C24 −0.6 (3)
C1—N1—C12—C7 0.4 (2) O3—N2—C25—C26 −1.3 (3)
C13—N1—C12—C7 −179.6 (2) O2—N2—C25—C26 179.0 (2)
C8—C7—C12—C11 −0.1 (3) C24—C25—C26—C27 −0.6 (4)
C6—C7—C12—C11 177.9 (2) N2—C25—C26—C27 179.7 (2)
C8—C7—C12—N1 −177.8 (2) C23—C22—C27—C26 2.3 (4)
C6—C7—C12—N1 0.2 (2) C21—C22—C27—C26 −174.6 (2)
C12—N1—C13—C14 −128.2 (3) C25—C26—C27—C22 −1.4 (4)
C1—N1—C13—C14 51.8 (4)

Hydrogen-bond geometry (Å, º)

Cg4 is the centroid of the C13–C18 ring.

D—H···A D—H H···A D···A D—H···A
C15—H15A···O1i 0.93 2.42 3.291 (3) 155
C18—H18A···O2ii 0.93 2.56 3.490 (3) 173
C9—H9A···Cg4iii 0.93 2.89 3.758 (3) 155

Symmetry codes: (i) x, −y+1, z+1/2; (ii) x+1, y, z+1; (iii) x+1/2, −y+3/2, z+1/2.

Funding Statement

This work was funded by Universiti Sains Malaysia grants 1001.PFIZIK.8011081 and 203.PFIZIK.6711606. Ministry of Higher Education, Malaysia grants 1001.PFIZIK.8011081 and 203.PFIZIK.6711606.

References

  1. Arshad, S., Zainuri, D. A., Khalib, N. C., Thanigaimani, K., Rosli, M. M., Razak, I. A., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2018). Mol. Cryst. Liq. Cryst. 664, 218–240.
  2. Barakat, A., Al-Majid, A. M., Soliman, S. M., Mabkhot, Y. N., Ali, M., Ghabbour, H. A., Fun, H.-K. & Wadood, A. (2015). Chem. Cent. J. 9, 35. [DOI] [PMC free article] [PubMed]
  3. Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cui, Y., Ao, M., Hu, J. & Yu, L. (2008). Z. Naturforsch. C. 63, 361–365. [DOI] [PubMed]
  5. Custodio, J. M. F., Guimarães-Neto, J. J. A., Awad, R., Queiroz, J. E., Verde, G. M. V., Mottin, M., Neves, B. J., Andrade, C. H., Aquino, G. L. B., Valverde, C., Osório, F. A. P., Baseia, B. & Napolitano, H. B. (2020). Arab. J. Chem. 13, 3362–3371.
  6. Davanagere, H., Jayarama, A., Patil, P. S. G., Maidur, S. R., Quah, C. K. & Kwong, H. C. (2019). Appl. Phys. A, 125, article No.309.
  7. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H. & Vreven, T. (2009). Gaussian 09, Revision B. 01. Gaussian, Inc., Wallingford, CT, USA.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Kim, B.-S., Kim, S.-H., Matsumoto, S. & Son, Y.-A. (2011). Z. Krist. New Cryst. Struct. 226, 177–178.
  10. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  11. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst C71, 3–8.
  14. Srinivasan, B., Johnson, T. E., Lad, R. & Xing, C. (2009). J. Med. Chem. 52, 7228–7235. [DOI] [PubMed]
  15. Teo, K. Y., Tiong, M. H., Wee, H. Y., Jasin, N., Liu, Z.-Q., Shiu, M. Y., Tang, J. Y., Tsai, J.-K., Rahamathullah, R., Khairul, W. M. & Tay, M. G. (2017). J. Mol. Struct. 1143, 42–48.
  16. Ternavisk, R. R., Camargo, A. J., Machado, F. B., Rocco, J. A., Aquino, G. L., Silva, V. H. & Napolitano, H. B. (2014). J. Mol. Model. 20, 2526. [DOI] [PubMed]
  17. Wang, Z., Wang, N., Han, S., Wang, D., Mo, S., Yu, L., Huang, H., Tsui, K., Shen, J. & Chen, J. (2013). PLoS One, 8, e68566. [DOI] [PMC free article] [PubMed]
  18. Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2012). CrystalExplorer. University of Western Australia.
  19. Zaini, M. F., Arshad, S., Thanigaimani, K., Khalib, N. C., Zainuri, D. A., Abdullah, M. & Razak, I. A. (2019). J. Mol. Struct. 1195, 606–619.
  20. Zaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2018). Acta Cryst. E74, 1589–1594. [DOI] [PMC free article] [PubMed]
  21. Zaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2019). Acta Cryst. E75, 685–689. [DOI] [PMC free article] [PubMed]
  22. Zainuri, D. A., Razak, I. A. & Arshad, S. (2018). Acta Cryst. E74, 1302–1308. [DOI] [PMC free article] [PubMed]
  23. Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810 [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020002054/ex2028sup1.cif

e-76-00387-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020002054/ex2028Isup2.hkl

e-76-00387-Isup2.hkl (328.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020002054/ex2028Isup4.cml

SI Comparison between the calculated optimized and X-ray geometrical parameters for the CPNC compound. DOI: 10.1107/S2056989020002054/ex2028sup3.docx

CCDC reference: 1967669

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES