Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Feb 21;76(Pt 3):427–431. doi: 10.1107/S2056989020001899

Crystal structure and Hirshfeld surface analysis of (E)-3-(benzyl­idene­amino)-5-phenyl­thia­zolidin-2-iminium bromide

Gulnara Sh Duruskari a, Mehmet Akkurt b, Gunay Z Mammadova a, Taras Chyrka c,*, Abel M Maharramov a
PMCID: PMC7057372  PMID: 32148888

In the crystal, the cations and anions of the title salt are linked via N—H⋯Br hydrogen bonds. In the 1H NMR spectra of this compound, the NH iminium protons were observed at δ 10.35 p.p.m., which confirms the strong charge-assisted hydrogen bonding (CAHB) in the =HN+—HBr synthon.

Keywords: crystal structure, charge assisted hydrogen bonding, thia­zolidine ring, envelope conformation, Hirshfeld surface analysis

Abstract

The central thia­zolidine ring of the title salt, C16H16N3S+·Br, adopts an envelope conformation, with the C atom bearing the phenyl ring as the flap atom. In the crystal, the cations and anions are linked by N—H⋯Br hydrogen bonds, forming chains parallel to the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (46.4%), C⋯H/H⋯C (18.6%) and H⋯Br/Br⋯H (17.5%) inter­actions.

Chemical context  

Sulfur and nitro­gen-containing heterocycles maintain their importance as key fragments of drugs and medicinally active compounds (Pathania et al., 2019). Moreover, azomethine-containing structural motifs have been widely employed for industrial purposes as they exhibit a broad range of biological activities, and are used in synthesis, catalysis and the design of materials (Gurbanov et al., 2017, 2018; Mahmoudi et al., 2018a,b,c ; Mamedov et al., 2018). Nowadays, N-ligands are key players in a wide diversity of fields, namely in coordination, metal–organic, pharmaceutical and medicinal chemistry, biologically active compounds, catalysis, non-covalent inter­actions and supra­molecular assemblies (Maharramov et al., 2011, 2018; Mahmudov et al., 2013, 2014, 2017a,b , 2019; Mamedov et al., 2015). In our previous studies we have reported on the mol­ecular structural properties of a series of 5-phenyl­thia­zolidin-2-imine derivatives (Akkurt et al., 2018a ,b ; Duruskari et al., 2019a ,b ; Khalilov et al., 2019; Maharramov et al., 2019). Following further study in this field, herein we report the crystal structure and Hirshfeld surface analysis of the title compound, (E)-3-(benzyl­idene­amino)-5-phenyl­thia­zolidin-2-iminium bromide.graphic file with name e-76-00427-scheme1.jpg

Structural commentary  

The thia­zolidine ring (S1/N2/C1–C3) in the cation of the title salt (Fig. 1) adopts an envelope conformation, with the C atom bearing the phenyl ring as the flap atom; the puckering parameters are Q(2) = 0.318 (3) Å and φ(2) = 42.0 (5)°. The mean plane of the thia­zolidine ring makes dihedral angles of 18.28 (15) and 83.19 (15)°, respectively, with the C5–C10 and C11–C16 phenyl rings of the 3-(benzyl­idene­amino) and 5-phenyl­thia­zolidin groups, while the dihedral angle between them is 82.54 (15)°. The torsion angle of the N2—N1—C4—C5 bridge that links the thia­zolidine and 3-(benzyl­idene­amino) units is −175.7 (3)°.

Figure 1.

Figure 1

The mol­ecular structure of the title salt, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The inter­ionic hydrogen bond is shown as a dashed line.

Supra­molecular features  

In the crystal, adjacent cations and anions are linked by pairs of N—H⋯Br hydrogen bonds (Table 1, Fig. 2), forming chains running parallel to the b-axis direction. C—H⋯π inter­actions or π–π stacking inter­actions contributing to the stabilization of the crystal packing are not observed.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Br1 0.90 2.37 3.258 (3) 168
N3—H3B⋯Br1i 0.90 2.55 3.399 (3) 158

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

A view of the crystal packing showing the formation of chains parallel to the b axis through N—H⋯Br hydrogen bonds (dashed lines).

Hirshfeld surface analysis  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) of the title compound was generated by CrystalExplorer 3.1 (Wolff et al., 2012), and comprises dnorm surface plots and two-dimensional fingerprint plots (Spackman & McKinnon, 2002). A d norm surface plot of the title compound mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.3485 (red) to 1.3503 a.u. (blue) is shown in Fig. 3. The dark-red spots on the d norm surface arise as a result of short inter­atomic contacts (Table 2), while the other weaker inter­molecular inter­actions appear as light-red spots.

Figure 3.

Figure 3

View of the three-dimensional Hirshfeld surface of the title salt plotted over d norm.

Table 2. Summary of short inter­atomic contacts (Å) in the title salt.

Contact Distance Symmetry operation
Br1⋯H3A (N3) 2.37 x, y, z
Br1⋯H3B (N3) 2.55 1 − x, − Inline graphic + y, Inline graphic − z
Br1⋯H14A (C14) 3.14 x, 1 − y, 1 − z
Br1⋯H4A (C4) 2.96 x, Inline graphic − y, Inline graphic + z
Br1⋯H12A (C12) 3.02 x, Inline graphic − y, Inline graphic + z

The shape index of the Hirshfeld surface is a tool to visualize π–·π stacking inter­actions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 4 clearly suggests that there are no π–π inter­actions present in the title compound. Fig. 5(a) shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode (Tables 1 and 2). The fingerprint plots delineated into H⋯H (46.4%), C⋯H/H⋯C (18.6%), H⋯Br/Br⋯H (17.5%), H⋯S/S⋯H (4.5%) and C⋯N/N⋯C (3.7%) contacts are shown in Fig. 5 bf.

Figure 4.

Figure 4

Hirshfeld surface of the title salt plotted over shape-index.

Figure 5.

Figure 5

The Hirshfeld surface representations and the full two-dimensional fingerprint plots for the title salt, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) H⋯Br/Br⋯H, (e) H⋯S/S⋯H and (f) C⋯N/N⋯C inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The most significant inter­molecular inter­actions are the H⋯H inter­actions (46.4%) (Fig. 5 b). All of the contributions to the Hirshfeld surface are given in Table 3. The large number of H⋯H, C⋯H/H⋯C and H⋯Br/Br⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title salt.

Contact Percentage contribution
H⋯H 46.4
C⋯H/H⋯C 18.6
H⋯Br/Br⋯H 17.5
H⋯S/S⋯H 4.5
C⋯N/N⋯C 3.7
C⋯S/S⋯C 3.0
H⋯N/N⋯H 2.6
C⋯C 2.3
C⋯Br/Br⋯C 0.9
N⋯S/S⋯N 0.5
N⋯N 0.2

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, February 2019; Groom et al., 2016) for 2-thia­zolidiniminium compounds gave ten hits, viz. MOJGUQ (Duruskari et al., 2019a ), XOWXAL (Duruskari et al., 2019b ), BOBWIB (Khalilov et al., 2019), UDELUN (Akkurt et al., 2018a ), WILBIC (Marthi et al., 1994), WILBOI (Marthi et al., 1994), WILBOI01 (Marthi et al., 1994), YITCEJ (Martem’yanova et al., 1993a ), YITCAF (Martem’yanova et al., 1993b ) and YOPLUK (Marthi et al., 1995).

In the crystal of MOJGUQ (Duruskari et al., 2019a ), centrosymmetrically related cations and anions are linked into dimeric units via N—-H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, C—H⋯π inter­actions and π–π stacking inter­actions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the mol­ecular packing. In the crystal of XOWXAL (Duruskari et al., 2019b ), the thia­zolidine ring adopts an envelope conformation. N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Weak π–π stacking inter­actions between the phenyl rings of adjacent cations also contribute to the mol­ecular packing. In the crystal of BOBWIB (Khalilov et al., 2019), the central thia­zolidine ring adopts an envelope conformation. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br hydrogen bonds into chains parallel to [110]. In the crystal of UDELUN (Akkurt et al., 2018a ), C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π inter­actions, which only involve the minor disorder component of the ring, also contribute to the mol­ecular packing. In addition, there are also inversion-related Cl⋯Cl halogen bonds and C-–Cl⋯π(ring) contacts. In the other structures, the 3-N atom carries a C–substituent instead of an N–substituent as found in the title compound. Three of them were determined to be racemic (WILBIC; Marthi et al., 1994) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994) of 3-(2′-chloro-2′-phenyl­eth­yl)-2-thia­zolidiniminium p-toluene­sulfonate. In all three structures, the most disordered fragment is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enanti­omers at each site in the ratio 0.821 (3):0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem’yanova et al., 1993a ), is a product of the inter­action of 2-amino-5-methyl­thia­zoline with methyl iodide, with alkyl­ation at the endocylic nitro­gen atom, while YITCAF (Martem’yanova et al., 1993b ) is a product of the reaction of 3-nitro-5-meth­oxy-, 3-nitro-5-chloro-, and 3-bromo-5-nitro­salicyl­aldehyde with the heterocyclic base to form the salt-like complexes.

Synthesis and crystallization  

To the solution of 3-amino-5-phenyl­thia­zolidin-2-iminium bromide (1 mmol) in 20 mL of ethanol was added benzaldehyde (1 mmol) and the mixture was refluxed for 2 h. After cooling down to room temperature, the reaction product precipitated as colourless single crystals, which were collected by filtration and washed with cold acetone (yield 76%), m.p. 519 K. Analysis calculated for C16H16BrN3S (M r = 362.29): C, 53.04; H, 4.45; N, 11.60. Found: C, 53.01; H, 4.42; N, 11.56%. 1H NMR (300 MHz, DMSO-d 6) : 4.58 (k, 1H, CH2, 3 J H–H = 6.9); 4,89 (t, 1H, CH2, 3 J H–H =8.1); 5.60 (t, 1H, CH-Ar, 3 J H–H =7.5); 7.37–8.07 (m, 10H, 10Ar-H); 8.44 (s, 1H, CH=), 10.35 (s, 2H, NH=). 13C NMR (75 MHz, DMSO-d 6): 45.36, 55.91, 127.76, 128.65, 128.82, 128.86, 129.09, 131.54, 132.85, 137.48, 151.11, 167.84. MS (ESI), m/z: 282.30 [C16H16N3S]+ and 79.88 Br.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were placed at calculated positions (N—H = 0.90 Å and C—H = 0.93–0.98 Å) and refined using a riding model, with U iso(H) = 1.2U eq(N, C). The distances between the carbon atoms of two phenyl groups were constrained with a DFIX instruction [DFIX 1.40 0.02 C C].

Table 4. Experimental details.

Crystal data
Chemical formula C16H16N3S+·Br
M r 362.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 12.138 (8), 8.336 (5), 15.872 (9)
β (°) 93.910 (16)
V3) 1602.3 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.69
Crystal size (mm) 0.21 × 0.18 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.582, 0.713
No. of measured, independent and observed [I > 2σ(I)] reflections 23979, 3314, 2742
R int 0.049
(sin θ/λ)max−1) 0.629
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.111, 1.06
No. of reflections 3314
No. of parameters 190
No. of restraints 12
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.74, −0.60

Computer programs: APEX2 and SAINT (Bruker, 2003), SHELXT2014 (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020001899/rz5269sup1.cif

e-76-00427-sup1.cif (727KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020001899/rz5269Isup2.hkl

e-76-00427-Isup2.hkl (264.7KB, hkl)

CCDC reference: 1837123

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C16H16N3S+·Br F(000) = 736
Mr = 362.29 Dx = 1.502 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.138 (8) Å Cell parameters from 9891 reflections
b = 8.336 (5) Å θ = 2.8–26.4°
c = 15.872 (9) Å µ = 2.69 mm1
β = 93.910 (16)° T = 296 K
V = 1602.3 (17) Å3 Plate, colourless
Z = 4 0.21 × 0.18 × 0.13 mm

Data collection

Bruker APEXII CCD diffractometer 2742 reflections with I > 2σ(I)
φ and ω scans Rint = 0.049
Absorption correction: multi-scan (SADABS; Bruker, 2003) θmax = 26.5°, θmin = 2.6°
Tmin = 0.582, Tmax = 0.713 h = −15→15
23979 measured reflections k = −10→10
3314 independent reflections l = −19→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: mixed
wR(F2) = 0.111 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0521P)2 + 1.4845P] where P = (Fo2 + 2Fc2)/3
3314 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.74 e Å3
12 restraints Δρmin = −0.60 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.36371 (3) 0.40930 (5) 0.77766 (2) 0.05996 (15)
S1 0.27771 (6) 0.50993 (10) 0.55109 (5) 0.0478 (2)
N1 0.52247 (19) 0.7685 (3) 0.49030 (15) 0.0411 (5)
N2 0.42403 (19) 0.6853 (3) 0.48814 (15) 0.0438 (5)
N3 0.4551 (2) 0.6390 (3) 0.63168 (16) 0.0500 (6)
H3A 0.431514 0.589059 0.677388 0.060*
H3B 0.509254 0.711959 0.640888 0.060*
C1 0.3432 (2) 0.6653 (4) 0.41558 (19) 0.0467 (7)
H1A 0.380449 0.651339 0.363896 0.056*
H1B 0.295261 0.758163 0.409430 0.056*
C2 0.2763 (3) 0.5140 (4) 0.4348 (2) 0.0489 (7)
H2A 0.315568 0.419380 0.415778 0.059*
C3 0.3971 (2) 0.6205 (3) 0.56063 (18) 0.0412 (6)
C4 0.5460 (2) 0.8450 (4) 0.42487 (19) 0.0440 (6)
H4A 0.495374 0.850348 0.378264 0.053*
C5 0.6520 (2) 0.9241 (3) 0.42299 (14) 0.0416 (6)
C6 0.7284 (2) 0.9221 (4) 0.49283 (19) 0.0513 (7)
H6A 0.710541 0.874346 0.543049 0.062*
C7 0.8319 (2) 0.9924 (4) 0.4867 (2) 0.0663 (10)
H7A 0.883751 0.988871 0.532539 0.080*
C8 0.8581 (3) 1.0679 (4) 0.41226 (19) 0.0652 (10)
H8A 0.927072 1.114885 0.408687 0.078*
C9 0.7808 (2) 1.0730 (4) 0.3432 (2) 0.0651 (10)
H9A 0.797532 1.124866 0.293831 0.078*
C10 0.6782 (2) 0.9998 (4) 0.34862 (17) 0.0551 (8)
H10A 0.626928 1.001586 0.302329 0.066*
C11 0.1609 (2) 0.5115 (3) 0.39571 (17) 0.0446 (6)
C12 0.1299 (2) 0.3891 (4) 0.3387 (2) 0.0613 (9)
H12A 0.180793 0.310914 0.325946 0.074*
C13 0.0225 (2) 0.3838 (5) 0.3009 (2) 0.0690 (10)
H13A 0.002162 0.302592 0.262799 0.083*
C14 −0.0538 (3) 0.5001 (4) 0.3205 (2) 0.0661 (10)
H14A −0.124515 0.498545 0.293897 0.079*
C15 −0.0251 (3) 0.6186 (4) 0.3794 (2) 0.0683 (10)
H15A −0.076995 0.693888 0.394077 0.082*
C16 0.0820 (2) 0.6235 (4) 0.4163 (2) 0.0631 (9)
H16A 0.101386 0.703134 0.455623 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0594 (2) 0.0700 (3) 0.0489 (2) −0.01088 (16) −0.00776 (15) 0.01409 (15)
S1 0.0461 (4) 0.0511 (4) 0.0467 (4) −0.0073 (3) 0.0065 (3) 0.0068 (3)
N1 0.0379 (12) 0.0421 (13) 0.0432 (13) −0.0028 (10) 0.0028 (10) 0.0008 (10)
N2 0.0387 (12) 0.0496 (14) 0.0429 (13) −0.0054 (10) 0.0013 (10) 0.0085 (11)
N3 0.0544 (15) 0.0552 (15) 0.0405 (13) −0.0076 (12) 0.0042 (11) 0.0037 (11)
C1 0.0426 (15) 0.0550 (17) 0.0418 (15) −0.0053 (13) −0.0020 (12) 0.0096 (13)
C2 0.0471 (16) 0.0482 (17) 0.0515 (17) −0.0002 (13) 0.0038 (13) −0.0012 (14)
C3 0.0406 (14) 0.0414 (14) 0.0419 (15) 0.0029 (11) 0.0062 (12) 0.0012 (12)
C4 0.0436 (15) 0.0431 (15) 0.0449 (15) −0.0018 (12) 0.0005 (12) 0.0055 (12)
C5 0.0422 (15) 0.0334 (14) 0.0497 (16) −0.0004 (11) 0.0063 (12) −0.0022 (12)
C6 0.0536 (18) 0.0424 (16) 0.0566 (18) −0.0077 (13) −0.0055 (15) 0.0040 (14)
C7 0.053 (2) 0.055 (2) 0.087 (3) −0.0103 (16) −0.0162 (18) −0.0012 (19)
C8 0.0486 (19) 0.059 (2) 0.089 (3) −0.0127 (16) 0.0169 (19) −0.0111 (19)
C9 0.070 (2) 0.068 (2) 0.059 (2) −0.0205 (19) 0.0244 (18) −0.0054 (17)
C10 0.059 (2) 0.060 (2) 0.0468 (17) −0.0132 (16) 0.0068 (15) −0.0005 (15)
C11 0.0407 (15) 0.0474 (16) 0.0457 (15) −0.0051 (12) 0.0039 (12) 0.0059 (13)
C12 0.061 (2) 0.059 (2) 0.065 (2) 0.0023 (16) 0.0165 (17) −0.0059 (17)
C13 0.063 (2) 0.082 (3) 0.061 (2) −0.022 (2) 0.0058 (18) −0.0193 (19)
C14 0.054 (2) 0.083 (3) 0.061 (2) −0.0111 (19) 0.0019 (17) 0.010 (2)
C15 0.055 (2) 0.062 (2) 0.088 (3) 0.0063 (17) 0.0043 (19) 0.007 (2)
C16 0.060 (2) 0.0477 (18) 0.083 (3) −0.0009 (15) 0.0096 (18) −0.0116 (17)

Geometric parameters (Å, º)

S1—C3 1.716 (3) C6—H6A 0.9300
S1—C2 1.844 (3) C7—C8 1.394 (2)
N1—C4 1.268 (4) C7—H7A 0.9300
N1—N2 1.380 (3) C8—C9 1.394 (2)
N2—C3 1.332 (4) C8—H8A 0.9300
N2—C1 1.470 (4) C9—C10 1.394 (2)
N3—C3 1.297 (4) C9—H9A 0.9300
N3—H3A 0.9000 C10—H10A 0.9300
N3—H3B 0.9001 C11—C16 1.392 (2)
C1—C2 1.542 (4) C11—C12 1.398 (2)
C1—H1A 0.9700 C12—C13 1.397 (2)
C1—H1B 0.9700 C12—H12A 0.9300
C2—C11 1.493 (4) C13—C14 1.391 (2)
C2—H2A 0.9800 C13—H13A 0.9300
C4—C5 1.447 (4) C14—C15 1.389 (2)
C4—H4A 0.9300 C14—H14A 0.9300
C5—C10 1.3944 (19) C15—C16 1.390 (2)
C5—C6 1.396 (2) C15—H15A 0.9300
C6—C7 1.395 (2) C16—H16A 0.9300
C3—S1—C2 91.65 (14) C5—C6—H6A 120.3
C4—N1—N2 118.4 (2) C8—C7—C6 120.5 (3)
C3—N2—N1 116.4 (2) C8—C7—H7A 119.8
C3—N2—C1 116.2 (2) C6—C7—H7A 119.8
N1—N2—C1 127.4 (2) C9—C8—C7 120.0 (3)
C3—N3—H3A 117.5 C9—C8—H8A 120.0
C3—N3—H3B 124.6 C7—C8—H8A 120.0
H3A—N3—H3B 116.8 C8—C9—C10 119.6 (3)
N2—C1—C2 105.7 (2) C8—C9—H9A 120.2
N2—C1—H1A 110.6 C10—C9—H9A 120.2
C2—C1—H1A 110.6 C9—C10—C5 120.4 (3)
N2—C1—H1B 110.6 C9—C10—H10A 119.8
C2—C1—H1B 110.6 C5—C10—H10A 119.8
H1A—C1—H1B 108.7 C16—C11—C12 118.8 (3)
C11—C2—C1 114.9 (3) C16—C11—C2 122.2 (2)
C11—C2—S1 111.1 (2) C12—C11—C2 118.9 (2)
C1—C2—S1 104.1 (2) C13—C12—C11 120.2 (3)
C11—C2—H2A 108.8 C13—C12—H12A 119.9
C1—C2—H2A 108.8 C11—C12—H12A 119.9
S1—C2—H2A 108.8 C14—C13—C12 119.9 (3)
N3—C3—N2 123.5 (3) C14—C13—H13A 120.1
N3—C3—S1 123.1 (2) C12—C13—H13A 120.1
N2—C3—S1 113.4 (2) C15—C14—C13 120.4 (3)
N1—C4—C5 119.7 (3) C15—C14—H14A 119.8
N1—C4—H4A 120.1 C13—C14—H14A 119.8
C5—C4—H4A 120.1 C14—C15—C16 119.3 (3)
C10—C5—C6 120.0 (3) C14—C15—H15A 120.3
C10—C5—C4 118.6 (2) C16—C15—H15A 120.3
C6—C5—C4 121.4 (2) C15—C16—C11 121.3 (3)
C7—C6—C5 119.5 (3) C15—C16—H16A 119.3
C7—C6—H6A 120.3 C11—C16—H16A 119.3
C4—N1—N2—C3 −173.3 (3) C5—C6—C7—C8 1.7 (5)
C4—N1—N2—C1 4.2 (4) C6—C7—C8—C9 −0.3 (6)
C3—N2—C1—C2 −24.6 (4) C7—C8—C9—C10 −1.1 (6)
N1—N2—C1—C2 157.9 (3) C8—C9—C10—C5 1.0 (6)
N2—C1—C2—C11 151.9 (3) C6—C5—C10—C9 0.4 (5)
N2—C1—C2—S1 30.1 (3) C4—C5—C10—C9 −177.9 (3)
C3—S1—C2—C11 −148.7 (2) C1—C2—C11—C16 −63.2 (4)
C3—S1—C2—C1 −24.5 (2) S1—C2—C11—C16 54.7 (4)
N1—N2—C3—N3 3.6 (4) C1—C2—C11—C12 119.2 (3)
C1—N2—C3—N3 −174.1 (3) S1—C2—C11—C12 −122.9 (3)
N1—N2—C3—S1 −176.5 (2) C16—C11—C12—C13 2.5 (5)
C1—N2—C3—S1 5.8 (3) C2—C11—C12—C13 −179.9 (3)
C2—S1—C3—N3 −168.0 (3) C11—C12—C13—C14 −0.4 (6)
C2—S1—C3—N2 12.1 (2) C12—C13—C14—C15 −2.1 (6)
N2—N1—C4—C5 −175.7 (3) C13—C14—C15—C16 2.5 (6)
N1—C4—C5—C10 176.5 (3) C14—C15—C16—C11 −0.3 (6)
N1—C4—C5—C6 −1.9 (5) C12—C11—C16—C15 −2.1 (6)
C10—C5—C6—C7 −1.8 (5) C2—C11—C16—C15 −179.7 (3)
C4—C5—C6—C7 176.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···Br1 0.90 2.37 3.258 (3) 168
N3—H3B···Br1i 0.90 2.55 3.399 (3) 158

Symmetry code: (i) −x+1, y+1/2, −z+3/2.

References

  1. Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018a). Acta Cryst. E74, 1168–1172. [DOI] [PMC free article] [PubMed]
  2. Akkurt, M., Maharramov, A. M., Duruskari, G. S., Toze, F. A. A. & Khalilov, A. N. (2018b). Acta Cryst. E74, 1290–1294. [DOI] [PMC free article] [PubMed]
  3. Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Duruskari, G. S., Khalilov, A. N., Akkurt, M., Mammadova, G. Z., Chyrka, T. & Maharramov, A. M. (2019a). Acta Cryst. E75, 1544–1547. [DOI] [PMC free article] [PubMed]
  5. Duruskari, G. S., Khalilov, A. N., Akkurt, M., Mammadova, G. Z., Chyrka, T. & Maharramov, A. M. (2019b). Acta Cryst. E75, 1175–1179. [DOI] [PMC free article] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.
  8. Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111.
  9. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  10. Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662–666. [DOI] [PMC free article] [PubMed]
  11. Maharramov, A. M., Duruskari, G. Sh., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447.
  12. Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011). Acta Cryst. E67, o721. [DOI] [PMC free article] [PubMed]
  13. Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
  14. Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018c). CrystEngComm, 20, 2812–2821.
  15. Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959–4971.
  16. Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. pp. 4763–4772.
  17. Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.
  18. Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121–10138. [DOI] [PubMed]
  19. Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54–72.
  20. Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1–37.
  21. Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281.
  22. Mamedov, I. G., Bayramov, M. R., Salamova, A. E. & Maharramov, A. M. (2015). Indian J. Chem. 54B, 1518–1527.
  23. Mamedov, I. G., Farzaliyeva, A. E., Mamedova, Y. V., Hasanova, N. N., Bayramov, M. R. & Maharramov, A. M. (2018). Indian J. Chem. 57B, 1310–1314.
  24. Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419.
  25. Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425.
  26. Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27.
  27. Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771.
  28. Pathania, S., Narang, R. K. & Rawal, R. K. (2019). Eur. J. Med. Chem. 180, 486–508. [DOI] [PubMed]
  29. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  30. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  32. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  33. Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  34. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020001899/rz5269sup1.cif

e-76-00427-sup1.cif (727KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020001899/rz5269Isup2.hkl

e-76-00427-Isup2.hkl (264.7KB, hkl)

CCDC reference: 1837123

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES