Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Feb 11;76(Pt 3):324–327. doi: 10.1107/S2056989020001322

Crystal structure of 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane bis­(perchlorate) dichloride from synchrotron X-ray data

Dohyun Moon a, Jong-Ha Choi b,*
PMCID: PMC7057375  PMID: 32148869

In the title salt, [C14H36N4]4+·2ClO4 ·2Cl, the macrocyclic cations lie about an inversion center. In the crystal, N–H⋯Cl, C–H⋯Cl and C–H⋯O hydrogen bonds connect the cations and anions, forming a three-dimensional network.

Keywords: crystal structure; 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­deca­ne; bis­(perchlorate) dichloride; hydrogen bonding; synchrotron radiation

Abstract

The crystal structure of title salt, C14H36N4 4+·2ClO4 ·2Cl, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at all four amine N atoms. The asymmetric unit contains one half-cation (completed by crystallographic inversion symmetry), one perchlorate anion and one chloride anion. A distortion of the perchlorate anion is due to its involvement in hydrogen-bonding inter­actions with the cations. The crystal structure is consolidated by inter­molecular hydrogen bonds involving the 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane N—H and C—H groups as donor groups, and the O atoms of the perchlorate and chloride anion as acceptor groups, giving rise to a three-dimensional network.

Chemical context  

Tetra­aza­macrocycle 1,4,8,11-tetra­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane (TMC, C14H32N4) is one of the most useful aza­macrocycles because of its ability to act as an effective metal-ion binding site and its basic properties. N-Substituted TMC is a basic amine that may form a dication, C14H34N4 2+, or a tetra­cation, C14H36N4 4+, in which the N—H bonds are generally active in hydrogen-bond formation. These di- or tetra­ammonium cations may be suitable for the removal of toxic heavy-metal ions. Because of a difference in the chirality of the secondary NH centers, the macrocyclic compounds can exhibit five conformations, viz. trans-I (RSRS), trans-II (RSRR), trans-III (RRSS), trans-IV (SRRS) and trans-V (RRRR) (Choi, 2009). Previously, the crystal structures for trans-[Ni(TMC)(H2O)2]Cl2·2H2O, [Ni(TMC)](O3SCF3) (Barefield et al., 1986), [Cu(TMC)(H2O)](ClO4)2·H2O (Lee et al., 1986), [Cu(TMC)](ClO4)2 (Maimon et al., 2001), [Ag(TMC)](ClO4)2 (Po et al., 1991), [Cu(NCS)(TMC)]ClO4 (Lu et al., 1998) and [Cu(TMC)](BF4)2 (Bucher et al., 2001b ) have been characterized crystallographically. In addition, first-row transition-metal complexes of the form [M IICl(TMC)]+ [M = Zn (Alcock et al., 1978), Mn (Bucher et al., 2001a ), Ni (Nishigaki et al., 2010), Fe (Bedford et al., 2016) and Co (Van Heuvelen et al., 2017)] have been determined. Two independent ring conformations, trans-III and trans-IV, in the crystal structure of free TMC were also found (Willey et al., 1994), but there is no report of a structure with any combination of the 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane cation and ClO4 and Cl anions. We report here the preparation of a new compound [H4TMC](ClO4)2Cl2, (I), and its structural characterization by synchrotron single-crystal X-ray diffraction.graphic file with name e-76-00324-scheme1.jpg

Structural commentary  

An ellipsoid plot of the mol­ecular components in (I) is shown in Fig. 1 along with the atom-numbering scheme. The asymmetric unit consists of one half of the macrocycle, which lies about a center of inversion, one perchlorate anion and one chloride anion. The tetra-protonated amine of the title compound has a distorted trans-IV conformation, which is comparable to the trans-I or trans-III conformations of the dications in [H2TMC][As4O2Cl10] and [H2TMC][Sb2OCl6], respectively (Willey et al., 1993). Within the centrosymmetric tetra-protonated C14H36N4 4+ amine unit, the C—C and N—C bond lengths vary from 1.522 (2) to 1.527 (2) Å and from 1.5033 (19) to 1.5181 (18) Å, respectively. The N—C—C and C—N—C angles range from 113.55 (12) to 116.19 (12)° and 108.49 (12) to 112.37 (11)°, respectively. The bond lengths and angles within the tetra­ammonium cations are comparable to the corresponding values determined for the TMC moiety in [H4TMC]2[Sb4F15][HF2]F4 (Becker & Mattes, 1996), [H2TMC][As4O2Cl10], [H2TMC][Sb2OCl6] (Willey et al., 1993), [H4TMC][H2TMC][W(CN)8]2·4H2O (Nowicka et al., 2012), [Ga2(C3H7)4(OH)2](TMC) (Boag et al., 2000), TMC (Willey et al., 1994), trans-[Ni(TMC)(H2O)2]Cl2·2H2O (Barefield et al., 1986), trans-[Os(TMC)(O)2](PF6)2 (Kelly et al., 1996), [Cu(TMC)(H2O)](ClO4)2·H2O (Lee et al., 1986), [Cu(NCS)(TMC)]ClO4 (Lu et al., 1998) and [Cu(TMC)](BF4)2 (Bucher et al., 2001b ). The Cl—O bond distances in the tetra­hedral ClO4 anion range from 1.4180 (17) to 1.4380 (16) Å and the O—Cl—O angles from 106.85 (14)–110.94 (12)°. A distortion of the ClO4 anion undoubtedly results from its involvement in hydrogen-bonding inter­actions with the cations.

Figure 1.

Figure 1

The structures of the mol­ecular components in (I), drawn with displacement ellipsoids at the 50% probability level. Dashed lines represent hydrogen-bonding inter­actions and primed atoms are related by the symmetry operation (−x + 1, −y + 1, −z).

Supra­molecular features  

Extensive N—H⋯Cl, C—H⋯Cl and C—H⋯O hydrogen-bonding inter­actions occur in the crystal structure (Table 1). A crystal packing diagram of (I) viewed perpendicular to the ab plane is shown in Fig. 2.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2 0.99 2.13 3.0701 (14) 159
N2—H2⋯Cl2 0.99 2.17 3.1038 (15) 156
C1—H1A⋯Cl2 0.98 2.77 3.6868 (17) 157
C5—H5AB⋯O3 0.98 2.39 3.351 (3) 167
C3—H3A⋯Cl2i 0.98 2.67 3.6274 (17) 164
C3—H3AB⋯O2ii 0.98 2.52 3.288 (3) 135
C4—H4A⋯O4iii 0.97 2.49 3.429 (3) 164
C4—H4C⋯O2ii 0.97 2.39 3.171 (3) 137
C5—H5A⋯O3iii 0.98 2.34 3.317 (3) 173
C6—H6AB⋯O4iv 0.98 2.31 3.231 (3) 156
C6—H6A⋯Cl2i 0.98 2.80 3.7414 (17) 161
C7—H7B⋯O3iii 0.97 2.40 3.333 (3) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

The crystal packing of compound (I), viewed perpendicular to the ab plane. Dashed lines represent N—H⋯Cl (purple), C—H⋯Cl (blue) and C—H⋯O (green) hydrogen-bonding inter­actions, respectively.

The N—H⋯Cl and C—H⋯Cl hydrogen bonds link the two Cl anions to the C14H36N4 4+ cation while C—H⋯O hydrogen bonds inter­connect neighboring cations with the ClO4 anions. An extensive array of these contacts generates a three-dimensional network of mol­ecules, and these hydrogen-bonding inter­actions help to consolidate the crystal structure.

Database survey  

A search of the Cambridge Structural Database (Version 5.41, November 2019; Groom et al., 2016) gave just seven hits for organic compounds containing C14H36N4 4+, C14H34N4 2+ or C14H32N4 macrocycles: [C14H36N4]2[Sb4F15][HF2]F4 (Becker et al., 1996), [C14H34N4][As4O2Cl10] and [C14H34N4][Sb2OCl6] (Willey et al., 1993), [C14H36N4][C14H34N4][W(CN)8]2·4H2O (Nowicka et al., 2012), [Ga2(C3H7)4(OH)2](C14H32N4) (Boag et al., 2000) and (C14H32N4) (Willey et al., 1994). However, the crystal structure of the title compound had not been deposited until now. The tetra-protonated amine of the title compound has a trans-IV conformation, which is comparable to the trans-I or trans-III conformation of the dications in [H2TMC][As4O2Cl10] and [H2TMC][Sb2OCl6], respectively (Willey et al., 1993).

Synthesis and crystallization  

The free ligand TMC (98%) was purchased from Sigma–Aldrich and used without further purification. All chemicals were reagent grade materials, and were used as received. TMC (0.128 g, 0.5 mmol) was dissolved in 15 mL of 6 M HCl, and 5 mL of a saturated solution of sodium perchlorate including chromium trioxide (0.1 g, 1 mmol) was added to the resulting solution at 298 K. The mixture was stirred for 2 h and the solution was filtered. Block-like pale yellow crystals of (I) suitable for X-ray structural analysis were unexpectedly obtained from the solution at 298 K over a period of a few days.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97–0.98 Å and N—H = 0.99 Å, and with U iso(H) values of 1.5 and 1.2 times the U eq of the parent atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C14H36N4 4+·2ClO4 ·2Cl
M r 530.27
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 220
a, b, c (Å) 7.4990 (15), 8.0790 (16), 9.980 (2)
α, β, γ (°) 81.31 (3), 77.32 (3), 78.39 (3)
V3) 574.2 (2)
Z 1
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 0.36
Crystal size (mm) 0.10 × 0.10 × 0.08
 
Data collection
Diffractometer Rayonix MX225HS CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
T min, T max 0.710, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6573, 3361, 3208
R int 0.038
(sin θ/λ)max−1) 0.706
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.052, 0.147, 1.05
No. of reflections 3361
No. of parameters 138
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.97, −0.56

Computer programs: PAL BL2D-SMDC Program (Shin et al., 2016), HKL3000sm (Otwinowski & Minor, 1997), SHELXT2014 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), DIAMOND4 (Putz & Brandenburg, 2014) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020001322/vm2227sup1.cif

e-76-00324-sup1.cif (384.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020001322/vm2227Isup2.hkl

e-76-00324-Isup2.hkl (184.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020001322/vm2227Isup3.cml

CCDC reference: 1980910

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.

supplementary crystallographic information

Crystal data

C14H36N44+·2ClO4·2Cl Z = 1
Mr = 530.27 F(000) = 280
Triclinic, P1 Dx = 1.533 Mg m3
a = 7.4990 (15) Å Synchrotron radiation, λ = 0.610 Å
b = 8.0790 (16) Å Cell parameters from 91694 reflections
c = 9.980 (2) Å θ = 0.4–33.7°
α = 81.31 (3)° µ = 0.36 mm1
β = 77.32 (3)° T = 220 K
γ = 78.39 (3)° Block, pale yellow
V = 574.2 (2) Å3 0.10 × 0.10 × 0.08 mm

Data collection

Rayonix MX225HS CCD area detector diffractometer 3208 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnet Rint = 0.038
ω scan θmax = 25.5°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements) (HKL3000sm Scalepack; Otwinowski & Minor, 1997) h = −10→10
Tmin = 0.710, Tmax = 1.000 k = −11→11
6573 measured reflections l = −14→14
3361 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.1013P)2 + 0.2815P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3361 reflections Δρmax = 0.97 e Å3
138 parameters Δρmin = −0.56 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.67545 (16) 0.40154 (15) 0.21687 (13) 0.0182 (2)
H1 0.702337 0.480395 0.131812 0.022*
N2 0.32976 (16) 0.70943 (15) 0.15397 (13) 0.0187 (2)
H2 0.447969 0.698634 0.085623 0.022*
C1 0.82761 (19) 0.26947 (19) −0.07624 (16) 0.0213 (3)
H1A 0.844476 0.382168 −0.061678 0.026*
H1AB 0.942570 0.216566 −0.133336 0.026*
C2 0.7951 (2) 0.16181 (18) 0.06343 (16) 0.0222 (3)
H2A 0.911494 0.135809 0.097951 0.027*
H2AB 0.766041 0.053719 0.048851 0.027*
C3 0.6416 (2) 0.24003 (18) 0.17554 (15) 0.0202 (3)
H3A 0.524235 0.264324 0.142544 0.024*
H3AB 0.628253 0.156392 0.257539 0.024*
C4 0.8394 (2) 0.3698 (2) 0.2869 (2) 0.0289 (3)
H4A 0.852000 0.474931 0.316837 0.043*
H4B 0.951096 0.328712 0.222555 0.043*
H4C 0.820747 0.285389 0.366416 0.043*
C5 0.5084 (2) 0.48877 (19) 0.31152 (15) 0.0219 (3)
H5A 0.541977 0.588041 0.339066 0.026*
H5AB 0.480340 0.410569 0.395386 0.026*
C6 0.3326 (2) 0.54741 (19) 0.25240 (16) 0.0220 (3)
H6A 0.315943 0.456530 0.203864 0.026*
H6AB 0.226499 0.564160 0.329274 0.026*
C7 0.3152 (2) 0.8628 (2) 0.22684 (18) 0.0267 (3)
H7A 0.305431 0.964466 0.161379 0.040*
H7B 0.424822 0.852681 0.266082 0.040*
H7C 0.205791 0.870354 0.300087 0.040*
Cl1 0.21029 (5) 0.17202 (5) 0.52791 (4) 0.02439 (13)
O1 0.2471 (3) 0.1745 (2) 0.38061 (17) 0.0494 (4)
O2 0.1539 (3) 0.0175 (3) 0.5935 (3) 0.0669 (6)
O3 0.3753 (3) 0.1946 (3) 0.5690 (2) 0.0560 (5)
O4 0.0647 (3) 0.3129 (3) 0.5618 (3) 0.0662 (6)
Cl2 0.73888 (5) 0.71235 (4) 0.00536 (4) 0.02198 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0174 (5) 0.0170 (5) 0.0224 (5) −0.0036 (4) −0.0087 (4) −0.0011 (4)
N2 0.0150 (5) 0.0180 (5) 0.0242 (5) −0.0023 (4) −0.0058 (4) −0.0042 (4)
C1 0.0144 (6) 0.0238 (6) 0.0281 (7) −0.0034 (5) −0.0074 (5) −0.0056 (5)
C2 0.0200 (6) 0.0181 (6) 0.0301 (7) 0.0004 (5) −0.0105 (5) −0.0041 (5)
C3 0.0201 (6) 0.0175 (6) 0.0263 (6) −0.0051 (5) −0.0095 (5) −0.0026 (5)
C4 0.0247 (7) 0.0285 (8) 0.0402 (8) −0.0049 (6) −0.0196 (6) −0.0047 (6)
C5 0.0237 (6) 0.0216 (6) 0.0213 (6) −0.0028 (5) −0.0066 (5) −0.0032 (5)
C6 0.0183 (6) 0.0193 (6) 0.0278 (7) −0.0035 (5) −0.0043 (5) −0.0012 (5)
C7 0.0304 (8) 0.0198 (7) 0.0346 (8) −0.0038 (5) −0.0133 (6) −0.0085 (6)
Cl1 0.0237 (2) 0.0222 (2) 0.0294 (2) −0.00633 (14) −0.00871 (15) −0.00105 (14)
O1 0.0545 (10) 0.0648 (11) 0.0346 (7) −0.0209 (8) −0.0060 (7) −0.0131 (7)
O2 0.0720 (13) 0.0481 (10) 0.0887 (15) −0.0350 (9) −0.0404 (12) 0.0356 (10)
O3 0.0533 (10) 0.0629 (11) 0.0691 (12) −0.0267 (9) −0.0400 (9) 0.0023 (9)
O4 0.0504 (10) 0.0561 (11) 0.0837 (15) 0.0128 (9) −0.0007 (10) −0.0290 (10)
Cl2 0.01828 (19) 0.0202 (2) 0.0293 (2) −0.00692 (13) −0.00735 (14) 0.00056 (13)

Geometric parameters (Å, º)

N1—C4 1.5037 (19) C4—H4A 0.9700
N1—C3 1.5095 (18) C4—H4B 0.9700
N1—C5 1.5116 (19) C4—H4C 0.9700
N1—H1 0.9900 C5—C6 1.522 (2)
N2—C7 1.5033 (19) C5—H5A 0.9800
N2—C6 1.513 (2) C5—H5AB 0.9800
N2—C1i 1.5181 (18) C6—H6A 0.9800
N2—H2 0.9900 C6—H6AB 0.9800
C1—C2 1.526 (2) C7—H7A 0.9700
C1—H1A 0.9800 C7—H7B 0.9700
C1—H1AB 0.9800 C7—H7C 0.9700
C2—C3 1.527 (2) Cl1—O2 1.4180 (17)
C2—H2A 0.9800 Cl1—O1 1.4328 (16)
C2—H2AB 0.9800 Cl1—O4 1.4342 (19)
C3—H3A 0.9800 Cl1—O3 1.4380 (16)
C3—H3AB 0.9800
C4—N1—C3 111.91 (12) N1—C4—H4A 109.5
C4—N1—C5 108.49 (12) N1—C4—H4B 109.5
C3—N1—C5 112.37 (11) H4A—C4—H4B 109.5
C4—N1—H1 108.0 N1—C4—H4C 109.5
C3—N1—H1 108.0 H4A—C4—H4C 109.5
C5—N1—H1 108.0 H4B—C4—H4C 109.5
C7—N2—C6 112.12 (12) N1—C5—C6 116.19 (12)
C7—N2—C1i 111.00 (11) N1—C5—H5A 108.2
C6—N2—C1i 109.81 (11) C6—C5—H5A 108.2
C7—N2—H2 107.9 N1—C5—H5AB 108.2
C6—N2—H2 107.9 C6—C5—H5AB 108.2
C1i—N2—H2 107.9 H5A—C5—H5AB 107.4
N2i—C1—C2 113.55 (12) N2—C6—C5 115.16 (12)
N2i—C1—H1A 108.9 N2—C6—H6A 108.5
C2—C1—H1A 108.9 C5—C6—H6A 108.5
N2i—C1—H1AB 108.9 N2—C6—H6AB 108.5
C2—C1—H1AB 108.9 C5—C6—H6AB 108.5
H1A—C1—H1AB 107.7 H6A—C6—H6AB 107.5
C1—C2—C3 116.36 (12) N2—C7—H7A 109.5
C1—C2—H2A 108.2 N2—C7—H7B 109.5
C3—C2—H2A 108.2 H7A—C7—H7B 109.5
C1—C2—H2AB 108.2 N2—C7—H7C 109.5
C3—C2—H2AB 108.2 H7A—C7—H7C 109.5
H2A—C2—H2AB 107.4 H7B—C7—H7C 109.5
N1—C3—C2 114.13 (12) O2—Cl1—O1 110.75 (13)
N1—C3—H3A 108.7 O2—Cl1—O4 110.14 (15)
C2—C3—H3A 108.7 O1—Cl1—O4 106.85 (14)
N1—C3—H3AB 108.7 O2—Cl1—O3 110.94 (12)
C2—C3—H3AB 108.7 O1—Cl1—O3 108.56 (12)
H3A—C3—H3AB 107.6 O4—Cl1—O3 109.50 (14)
N2i—C1—C2—C3 −69.05 (16) C3—N1—C5—C6 −61.62 (16)
C4—N1—C3—C2 −66.31 (16) C7—N2—C6—C5 −69.95 (16)
C5—N1—C3—C2 171.33 (11) C1i—N2—C6—C5 166.15 (12)
C1—C2—C3—N1 −62.42 (16) N1—C5—C6—N2 −77.80 (16)
C4—N1—C5—C6 174.11 (13)

Symmetry code: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl2 0.99 2.13 3.0701 (14) 159
N2—H2···Cl2 0.99 2.17 3.1038 (15) 156
C1—H1A···Cl2 0.98 2.77 3.6868 (17) 157
C5—H5AB···O3 0.98 2.39 3.351 (3) 167
C3—H3A···Cl2i 0.98 2.67 3.6274 (17) 164
C3—H3AB···O2ii 0.98 2.52 3.288 (3) 135
C4—H4A···O4iii 0.97 2.49 3.429 (3) 164
C4—H4C···O2ii 0.97 2.39 3.171 (3) 137
C5—H5A···O3iii 0.98 2.34 3.317 (3) 173
C6—H6AB···O4iv 0.98 2.31 3.231 (3) 156
C6—H6A···Cl2i 0.98 2.80 3.7414 (17) 161
C7—H7B···O3iii 0.97 2.40 3.333 (3) 161

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z+1.

References

  1. Alcock, N. W., Herron, N. & Moore, P. (1978). J. Chem. Soc. Dalton Trans. pp. 1282–1288.
  2. Barefield, E. K., Freeman, G. M. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 552–558.
  3. Becker, I. K. & Mattes, R. (1996). Z. Anorg. Allg. Chem. 622, 105–111.
  4. Bedford, R. B., Brenner, P. B., Elorriaga, D., Harvey, J. N. & Nunn, J. (2016). Dalton Trans. 45, 15811–15817. [DOI] [PubMed]
  5. Boag, N. M., Coward, K. M., Jones, A. C., Pemble, M. E. & Thompson, J. R. (2000). Acta Cryst. C56, 1438–1439. [DOI] [PubMed]
  6. Bucher, C., Duval, E., Barbe, J. M., Verpeaux, J. N., Amatore, C., Guilard, R., Le Pape, L., Latour, J.-M., Dahaoui, S. & Lecomte, C. (2001a). Inorg. Chem. 40, 5722–5726. [DOI] [PubMed]
  7. Bucher, C., Duval, E., Espinosa, E., Barbe, J. M., Verpeaux, J. N., Amatore, C. & Guilard, R. (2001b). Eur. J. Inorg. Chem. pp. 1077–1079. [DOI] [PubMed]
  8. Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Kelly, C., Szalda, D. J., Creutz, C., Schwarz, H. A. & Sutin, N. (1996). Inorg. Chim. Acta, 243, 39–45.
  11. Lee, T.-J., Lee, T.-Y., Hong, C.-Y., Wu, D.-T. & Chung, C.-S. (1986). Acta Cryst. C42, 999–1001.
  12. Lu, T.-H., Shui, W.-Z., Tung, S.-F., Chi, T.-Y., Liao, F.-L. & Chung, C.-S. (1998). Acta Cryst. C54, 1071–1072.
  13. Maimon, E., Zilbermann, I., Golub, G., Ellern, A., Shames, A. I., Cohen, H. & Meyerstein, D. (2001). Inorg. Chim. Acta, 324, 65–72.
  14. Nishigaki, J.-I., Matsumoto, T. & Tatsumi, K. (2010). Eur. J. Inorg. Chem. pp. 5011–5017.
  15. Nowicka, B., Reczyński, M., Nitek, W. & Sieklucka, B. (2012). Polyhedron, 47, 73–78.
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  17. Po, H. N., Brinkman, E. & Doedens, R. J. (1991). Acta Cryst. C47, 2310–2312.
  18. Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. [DOI] [PubMed]
  22. Van Heuvelen, K. M., Lee, I., Arriola, K., Griffin, R., Ye, C. & Takase, M. K. (2017). Acta Cryst. C73, 620–624. [DOI] [PubMed]
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  24. Willey, G. R., Asab, A., Lakin, M. T. & Alcock, N. W. (1993). J. Chem. Soc. Dalton Trans. pp. 365–370.
  25. Willey, G. R., Lakin, M. T., Alcock, N. W. & Samuel, C. J. (1994). J. Incl. Phenom. Macrocycl. Chem 15, 293-304.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020001322/vm2227sup1.cif

e-76-00324-sup1.cif (384.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020001322/vm2227Isup2.hkl

e-76-00324-Isup2.hkl (184.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989020001322/vm2227Isup3.cml

CCDC reference: 1980910

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES