In the title salt, [C14H36N4]4+·2ClO4 −·2Cl−, the macrocyclic cations lie about an inversion center. In the crystal, N–H⋯Cl, C–H⋯Cl and C–H⋯O hydrogen bonds connect the cations and anions, forming a three-dimensional network.
Keywords: crystal structure; 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane; bis(perchlorate) dichloride; hydrogen bonding; synchrotron radiation
Abstract
The crystal structure of title salt, C14H36N4 4+·2ClO4 −·2Cl−, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at all four amine N atoms. The asymmetric unit contains one half-cation (completed by crystallographic inversion symmetry), one perchlorate anion and one chloride anion. A distortion of the perchlorate anion is due to its involvement in hydrogen-bonding interactions with the cations. The crystal structure is consolidated by intermolecular hydrogen bonds involving the 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane N—H and C—H groups as donor groups, and the O atoms of the perchlorate and chloride anion as acceptor groups, giving rise to a three-dimensional network.
Chemical context
Tetraazamacrocycle 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (TMC, C14H32N4) is one of the most useful azamacrocycles because of its ability to act as an effective metal-ion binding site and its basic properties. N-Substituted TMC is a basic amine that may form a dication, C14H34N4
2+, or a tetracation, C14H36N4
4+, in which the N—H bonds are generally active in hydrogen-bond formation. These di- or tetraammonium cations may be suitable for the removal of toxic heavy-metal ions. Because of a difference in the chirality of the secondary NH centers, the macrocyclic compounds can exhibit five conformations, viz. trans-I (RSRS), trans-II (RSRR), trans-III (RRSS), trans-IV (SRRS) and trans-V (RRRR) (Choi, 2009 ▸). Previously, the crystal structures for trans-[Ni(TMC)(H2O)2]Cl2·2H2O, [Ni(TMC)](O3SCF3) (Barefield et al., 1986 ▸), [Cu(TMC)(H2O)](ClO4)2·H2O (Lee et al., 1986 ▸), [Cu(TMC)](ClO4)2 (Maimon et al., 2001 ▸), [Ag(TMC)](ClO4)2 (Po et al., 1991 ▸), [Cu(NCS)(TMC)]ClO4 (Lu et al., 1998 ▸) and [Cu(TMC)](BF4)2 (Bucher et al., 2001b
▸) have been characterized crystallographically. In addition, first-row transition-metal complexes of the form [M
IICl(TMC)]+ [M = Zn (Alcock et al., 1978 ▸), Mn (Bucher et al., 2001a
▸), Ni (Nishigaki et al., 2010 ▸), Fe (Bedford et al., 2016 ▸) and Co (Van Heuvelen et al., 2017 ▸)] have been determined. Two independent ring conformations, trans-III and trans-IV, in the crystal structure of free TMC were also found (Willey et al., 1994 ▸), but there is no report of a structure with any combination of the 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane cation and ClO4
− and Cl− anions. We report here the preparation of a new compound [H4TMC](ClO4)2Cl2, (I), and its structural characterization by synchrotron single-crystal X-ray diffraction.
Structural commentary
An ellipsoid plot of the molecular components in (I) is shown in Fig. 1 ▸ along with the atom-numbering scheme. The asymmetric unit consists of one half of the macrocycle, which lies about a center of inversion, one perchlorate anion and one chloride anion. The tetra-protonated amine of the title compound has a distorted trans-IV conformation, which is comparable to the trans-I or trans-III conformations of the dications in [H2TMC][As4O2Cl10] and [H2TMC][Sb2OCl6], respectively (Willey et al., 1993 ▸). Within the centrosymmetric tetra-protonated C14H36N4 4+ amine unit, the C—C and N—C bond lengths vary from 1.522 (2) to 1.527 (2) Å and from 1.5033 (19) to 1.5181 (18) Å, respectively. The N—C—C and C—N—C angles range from 113.55 (12) to 116.19 (12)° and 108.49 (12) to 112.37 (11)°, respectively. The bond lengths and angles within the tetraammonium cations are comparable to the corresponding values determined for the TMC moiety in [H4TMC]2[Sb4F15][HF2]F4 (Becker & Mattes, 1996 ▸), [H2TMC][As4O2Cl10], [H2TMC][Sb2OCl6] (Willey et al., 1993 ▸), [H4TMC][H2TMC][W(CN)8]2·4H2O (Nowicka et al., 2012 ▸), [Ga2(C3H7)4(OH)2](TMC) (Boag et al., 2000 ▸), TMC (Willey et al., 1994 ▸), trans-[Ni(TMC)(H2O)2]Cl2·2H2O (Barefield et al., 1986 ▸), trans-[Os(TMC)(O)2](PF6)2 (Kelly et al., 1996 ▸), [Cu(TMC)(H2O)](ClO4)2·H2O (Lee et al., 1986 ▸), [Cu(NCS)(TMC)]ClO4 (Lu et al., 1998 ▸) and [Cu(TMC)](BF4)2 (Bucher et al., 2001b ▸). The Cl—O bond distances in the tetrahedral ClO4 − anion range from 1.4180 (17) to 1.4380 (16) Å and the O—Cl—O angles from 106.85 (14)–110.94 (12)°. A distortion of the ClO4 − anion undoubtedly results from its involvement in hydrogen-bonding interactions with the cations.
Figure 1.
The structures of the molecular components in (I), drawn with displacement ellipsoids at the 50% probability level. Dashed lines represent hydrogen-bonding interactions and primed atoms are related by the symmetry operation (−x + 1, −y + 1, −z).
Supramolecular features
Extensive N—H⋯Cl, C—H⋯Cl and C—H⋯O hydrogen-bonding interactions occur in the crystal structure (Table 1 ▸). A crystal packing diagram of (I) viewed perpendicular to the ab plane is shown in Fig. 2 ▸.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1⋯Cl2 | 0.99 | 2.13 | 3.0701 (14) | 159 |
| N2—H2⋯Cl2 | 0.99 | 2.17 | 3.1038 (15) | 156 |
| C1—H1A⋯Cl2 | 0.98 | 2.77 | 3.6868 (17) | 157 |
| C5—H5AB⋯O3 | 0.98 | 2.39 | 3.351 (3) | 167 |
| C3—H3A⋯Cl2i | 0.98 | 2.67 | 3.6274 (17) | 164 |
| C3—H3AB⋯O2ii | 0.98 | 2.52 | 3.288 (3) | 135 |
| C4—H4A⋯O4iii | 0.97 | 2.49 | 3.429 (3) | 164 |
| C4—H4C⋯O2ii | 0.97 | 2.39 | 3.171 (3) | 137 |
| C5—H5A⋯O3iii | 0.98 | 2.34 | 3.317 (3) | 173 |
| C6—H6AB⋯O4iv | 0.98 | 2.31 | 3.231 (3) | 156 |
| C6—H6A⋯Cl2i | 0.98 | 2.80 | 3.7414 (17) | 161 |
| C7—H7B⋯O3iii | 0.97 | 2.40 | 3.333 (3) | 161 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Figure 2.
The crystal packing of compound (I), viewed perpendicular to the ab plane. Dashed lines represent N—H⋯Cl (purple), C—H⋯Cl (blue) and C—H⋯O (green) hydrogen-bonding interactions, respectively.
The N—H⋯Cl and C—H⋯Cl hydrogen bonds link the two Cl− anions to the C14H36N4 4+ cation while C—H⋯O hydrogen bonds interconnect neighboring cations with the ClO4 − anions. An extensive array of these contacts generates a three-dimensional network of molecules, and these hydrogen-bonding interactions help to consolidate the crystal structure.
Database survey
A search of the Cambridge Structural Database (Version 5.41, November 2019; Groom et al., 2016 ▸) gave just seven hits for organic compounds containing C14H36N4 4+, C14H34N4 2+ or C14H32N4 macrocycles: [C14H36N4]2[Sb4F15][HF2]F4 (Becker et al., 1996 ▸), [C14H34N4][As4O2Cl10] and [C14H34N4][Sb2OCl6] (Willey et al., 1993 ▸), [C14H36N4][C14H34N4][W(CN)8]2·4H2O (Nowicka et al., 2012 ▸), [Ga2(C3H7)4(OH)2](C14H32N4) (Boag et al., 2000 ▸) and (C14H32N4) (Willey et al., 1994 ▸). However, the crystal structure of the title compound had not been deposited until now. The tetra-protonated amine of the title compound has a trans-IV conformation, which is comparable to the trans-I or trans-III conformation of the dications in [H2TMC][As4O2Cl10] and [H2TMC][Sb2OCl6], respectively (Willey et al., 1993 ▸).
Synthesis and crystallization
The free ligand TMC (98%) was purchased from Sigma–Aldrich and used without further purification. All chemicals were reagent grade materials, and were used as received. TMC (0.128 g, 0.5 mmol) was dissolved in 15 mL of 6 M HCl, and 5 mL of a saturated solution of sodium perchlorate including chromium trioxide (0.1 g, 1 mmol) was added to the resulting solution at 298 K. The mixture was stirred for 2 h and the solution was filtered. Block-like pale yellow crystals of (I) suitable for X-ray structural analysis were unexpectedly obtained from the solution at 298 K over a period of a few days.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97–0.98 Å and N—H = 0.99 Å, and with U iso(H) values of 1.5 and 1.2 times the U eq of the parent atoms.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C14H36N4 4+·2ClO4 −·2Cl− |
| M r | 530.27 |
| Crystal system, space group | Triclinic, P
|
| Temperature (K) | 220 |
| a, b, c (Å) | 7.4990 (15), 8.0790 (16), 9.980 (2) |
| α, β, γ (°) | 81.31 (3), 77.32 (3), 78.39 (3) |
| V (Å3) | 574.2 (2) |
| Z | 1 |
| Radiation type | Synchrotron, λ = 0.610 Å |
| μ (mm−1) | 0.36 |
| Crystal size (mm) | 0.10 × 0.10 × 0.08 |
| Data collection | |
| Diffractometer | Rayonix MX225HS CCD area detector |
| Absorption correction | Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997 ▸) |
| T min, T max | 0.710, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 6573, 3361, 3208 |
| R int | 0.038 |
| (sin θ/λ)max (Å−1) | 0.706 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.052, 0.147, 1.05 |
| No. of reflections | 3361 |
| No. of parameters | 138 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.97, −0.56 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020001322/vm2227sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020001322/vm2227Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989020001322/vm2227Isup3.cml
CCDC reference: 1980910
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.
supplementary crystallographic information
Crystal data
| C14H36N44+·2ClO4−·2Cl− | Z = 1 |
| Mr = 530.27 | F(000) = 280 |
| Triclinic, P1 | Dx = 1.533 Mg m−3 |
| a = 7.4990 (15) Å | Synchrotron radiation, λ = 0.610 Å |
| b = 8.0790 (16) Å | Cell parameters from 91694 reflections |
| c = 9.980 (2) Å | θ = 0.4–33.7° |
| α = 81.31 (3)° | µ = 0.36 mm−1 |
| β = 77.32 (3)° | T = 220 K |
| γ = 78.39 (3)° | Block, pale yellow |
| V = 574.2 (2) Å3 | 0.10 × 0.10 × 0.08 mm |
Data collection
| Rayonix MX225HS CCD area detector diffractometer | 3208 reflections with I > 2σ(I) |
| Radiation source: PLSII 2D bending magnet | Rint = 0.038 |
| ω scan | θmax = 25.5°, θmin = 1.8° |
| Absorption correction: empirical (using intensity measurements) (HKL3000sm Scalepack; Otwinowski & Minor, 1997) | h = −10→10 |
| Tmin = 0.710, Tmax = 1.000 | k = −11→11 |
| 6573 measured reflections | l = −14→14 |
| 3361 independent reflections |
Refinement
| Refinement on F2 | 0 restraints |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
| wR(F2) = 0.147 | w = 1/[σ2(Fo2) + (0.1013P)2 + 0.2815P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.05 | (Δ/σ)max = 0.001 |
| 3361 reflections | Δρmax = 0.97 e Å−3 |
| 138 parameters | Δρmin = −0.56 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N1 | 0.67545 (16) | 0.40154 (15) | 0.21687 (13) | 0.0182 (2) | |
| H1 | 0.702337 | 0.480395 | 0.131812 | 0.022* | |
| N2 | 0.32976 (16) | 0.70943 (15) | 0.15397 (13) | 0.0187 (2) | |
| H2 | 0.447969 | 0.698634 | 0.085623 | 0.022* | |
| C1 | 0.82761 (19) | 0.26947 (19) | −0.07624 (16) | 0.0213 (3) | |
| H1A | 0.844476 | 0.382168 | −0.061678 | 0.026* | |
| H1AB | 0.942570 | 0.216566 | −0.133336 | 0.026* | |
| C2 | 0.7951 (2) | 0.16181 (18) | 0.06343 (16) | 0.0222 (3) | |
| H2A | 0.911494 | 0.135809 | 0.097951 | 0.027* | |
| H2AB | 0.766041 | 0.053719 | 0.048851 | 0.027* | |
| C3 | 0.6416 (2) | 0.24003 (18) | 0.17554 (15) | 0.0202 (3) | |
| H3A | 0.524235 | 0.264324 | 0.142544 | 0.024* | |
| H3AB | 0.628253 | 0.156392 | 0.257539 | 0.024* | |
| C4 | 0.8394 (2) | 0.3698 (2) | 0.2869 (2) | 0.0289 (3) | |
| H4A | 0.852000 | 0.474931 | 0.316837 | 0.043* | |
| H4B | 0.951096 | 0.328712 | 0.222555 | 0.043* | |
| H4C | 0.820747 | 0.285389 | 0.366416 | 0.043* | |
| C5 | 0.5084 (2) | 0.48877 (19) | 0.31152 (15) | 0.0219 (3) | |
| H5A | 0.541977 | 0.588041 | 0.339066 | 0.026* | |
| H5AB | 0.480340 | 0.410569 | 0.395386 | 0.026* | |
| C6 | 0.3326 (2) | 0.54741 (19) | 0.25240 (16) | 0.0220 (3) | |
| H6A | 0.315943 | 0.456530 | 0.203864 | 0.026* | |
| H6AB | 0.226499 | 0.564160 | 0.329274 | 0.026* | |
| C7 | 0.3152 (2) | 0.8628 (2) | 0.22684 (18) | 0.0267 (3) | |
| H7A | 0.305431 | 0.964466 | 0.161379 | 0.040* | |
| H7B | 0.424822 | 0.852681 | 0.266082 | 0.040* | |
| H7C | 0.205791 | 0.870354 | 0.300087 | 0.040* | |
| Cl1 | 0.21029 (5) | 0.17202 (5) | 0.52791 (4) | 0.02439 (13) | |
| O1 | 0.2471 (3) | 0.1745 (2) | 0.38061 (17) | 0.0494 (4) | |
| O2 | 0.1539 (3) | 0.0175 (3) | 0.5935 (3) | 0.0669 (6) | |
| O3 | 0.3753 (3) | 0.1946 (3) | 0.5690 (2) | 0.0560 (5) | |
| O4 | 0.0647 (3) | 0.3129 (3) | 0.5618 (3) | 0.0662 (6) | |
| Cl2 | 0.73888 (5) | 0.71235 (4) | 0.00536 (4) | 0.02198 (13) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N1 | 0.0174 (5) | 0.0170 (5) | 0.0224 (5) | −0.0036 (4) | −0.0087 (4) | −0.0011 (4) |
| N2 | 0.0150 (5) | 0.0180 (5) | 0.0242 (5) | −0.0023 (4) | −0.0058 (4) | −0.0042 (4) |
| C1 | 0.0144 (6) | 0.0238 (6) | 0.0281 (7) | −0.0034 (5) | −0.0074 (5) | −0.0056 (5) |
| C2 | 0.0200 (6) | 0.0181 (6) | 0.0301 (7) | 0.0004 (5) | −0.0105 (5) | −0.0041 (5) |
| C3 | 0.0201 (6) | 0.0175 (6) | 0.0263 (6) | −0.0051 (5) | −0.0095 (5) | −0.0026 (5) |
| C4 | 0.0247 (7) | 0.0285 (8) | 0.0402 (8) | −0.0049 (6) | −0.0196 (6) | −0.0047 (6) |
| C5 | 0.0237 (6) | 0.0216 (6) | 0.0213 (6) | −0.0028 (5) | −0.0066 (5) | −0.0032 (5) |
| C6 | 0.0183 (6) | 0.0193 (6) | 0.0278 (7) | −0.0035 (5) | −0.0043 (5) | −0.0012 (5) |
| C7 | 0.0304 (8) | 0.0198 (7) | 0.0346 (8) | −0.0038 (5) | −0.0133 (6) | −0.0085 (6) |
| Cl1 | 0.0237 (2) | 0.0222 (2) | 0.0294 (2) | −0.00633 (14) | −0.00871 (15) | −0.00105 (14) |
| O1 | 0.0545 (10) | 0.0648 (11) | 0.0346 (7) | −0.0209 (8) | −0.0060 (7) | −0.0131 (7) |
| O2 | 0.0720 (13) | 0.0481 (10) | 0.0887 (15) | −0.0350 (9) | −0.0404 (12) | 0.0356 (10) |
| O3 | 0.0533 (10) | 0.0629 (11) | 0.0691 (12) | −0.0267 (9) | −0.0400 (9) | 0.0023 (9) |
| O4 | 0.0504 (10) | 0.0561 (11) | 0.0837 (15) | 0.0128 (9) | −0.0007 (10) | −0.0290 (10) |
| Cl2 | 0.01828 (19) | 0.0202 (2) | 0.0293 (2) | −0.00692 (13) | −0.00735 (14) | 0.00056 (13) |
Geometric parameters (Å, º)
| N1—C4 | 1.5037 (19) | C4—H4A | 0.9700 |
| N1—C3 | 1.5095 (18) | C4—H4B | 0.9700 |
| N1—C5 | 1.5116 (19) | C4—H4C | 0.9700 |
| N1—H1 | 0.9900 | C5—C6 | 1.522 (2) |
| N2—C7 | 1.5033 (19) | C5—H5A | 0.9800 |
| N2—C6 | 1.513 (2) | C5—H5AB | 0.9800 |
| N2—C1i | 1.5181 (18) | C6—H6A | 0.9800 |
| N2—H2 | 0.9900 | C6—H6AB | 0.9800 |
| C1—C2 | 1.526 (2) | C7—H7A | 0.9700 |
| C1—H1A | 0.9800 | C7—H7B | 0.9700 |
| C1—H1AB | 0.9800 | C7—H7C | 0.9700 |
| C2—C3 | 1.527 (2) | Cl1—O2 | 1.4180 (17) |
| C2—H2A | 0.9800 | Cl1—O1 | 1.4328 (16) |
| C2—H2AB | 0.9800 | Cl1—O4 | 1.4342 (19) |
| C3—H3A | 0.9800 | Cl1—O3 | 1.4380 (16) |
| C3—H3AB | 0.9800 | ||
| C4—N1—C3 | 111.91 (12) | N1—C4—H4A | 109.5 |
| C4—N1—C5 | 108.49 (12) | N1—C4—H4B | 109.5 |
| C3—N1—C5 | 112.37 (11) | H4A—C4—H4B | 109.5 |
| C4—N1—H1 | 108.0 | N1—C4—H4C | 109.5 |
| C3—N1—H1 | 108.0 | H4A—C4—H4C | 109.5 |
| C5—N1—H1 | 108.0 | H4B—C4—H4C | 109.5 |
| C7—N2—C6 | 112.12 (12) | N1—C5—C6 | 116.19 (12) |
| C7—N2—C1i | 111.00 (11) | N1—C5—H5A | 108.2 |
| C6—N2—C1i | 109.81 (11) | C6—C5—H5A | 108.2 |
| C7—N2—H2 | 107.9 | N1—C5—H5AB | 108.2 |
| C6—N2—H2 | 107.9 | C6—C5—H5AB | 108.2 |
| C1i—N2—H2 | 107.9 | H5A—C5—H5AB | 107.4 |
| N2i—C1—C2 | 113.55 (12) | N2—C6—C5 | 115.16 (12) |
| N2i—C1—H1A | 108.9 | N2—C6—H6A | 108.5 |
| C2—C1—H1A | 108.9 | C5—C6—H6A | 108.5 |
| N2i—C1—H1AB | 108.9 | N2—C6—H6AB | 108.5 |
| C2—C1—H1AB | 108.9 | C5—C6—H6AB | 108.5 |
| H1A—C1—H1AB | 107.7 | H6A—C6—H6AB | 107.5 |
| C1—C2—C3 | 116.36 (12) | N2—C7—H7A | 109.5 |
| C1—C2—H2A | 108.2 | N2—C7—H7B | 109.5 |
| C3—C2—H2A | 108.2 | H7A—C7—H7B | 109.5 |
| C1—C2—H2AB | 108.2 | N2—C7—H7C | 109.5 |
| C3—C2—H2AB | 108.2 | H7A—C7—H7C | 109.5 |
| H2A—C2—H2AB | 107.4 | H7B—C7—H7C | 109.5 |
| N1—C3—C2 | 114.13 (12) | O2—Cl1—O1 | 110.75 (13) |
| N1—C3—H3A | 108.7 | O2—Cl1—O4 | 110.14 (15) |
| C2—C3—H3A | 108.7 | O1—Cl1—O4 | 106.85 (14) |
| N1—C3—H3AB | 108.7 | O2—Cl1—O3 | 110.94 (12) |
| C2—C3—H3AB | 108.7 | O1—Cl1—O3 | 108.56 (12) |
| H3A—C3—H3AB | 107.6 | O4—Cl1—O3 | 109.50 (14) |
| N2i—C1—C2—C3 | −69.05 (16) | C3—N1—C5—C6 | −61.62 (16) |
| C4—N1—C3—C2 | −66.31 (16) | C7—N2—C6—C5 | −69.95 (16) |
| C5—N1—C3—C2 | 171.33 (11) | C1i—N2—C6—C5 | 166.15 (12) |
| C1—C2—C3—N1 | −62.42 (16) | N1—C5—C6—N2 | −77.80 (16) |
| C4—N1—C5—C6 | 174.11 (13) |
Symmetry code: (i) −x+1, −y+1, −z.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1···Cl2 | 0.99 | 2.13 | 3.0701 (14) | 159 |
| N2—H2···Cl2 | 0.99 | 2.17 | 3.1038 (15) | 156 |
| C1—H1A···Cl2 | 0.98 | 2.77 | 3.6868 (17) | 157 |
| C5—H5AB···O3 | 0.98 | 2.39 | 3.351 (3) | 167 |
| C3—H3A···Cl2i | 0.98 | 2.67 | 3.6274 (17) | 164 |
| C3—H3AB···O2ii | 0.98 | 2.52 | 3.288 (3) | 135 |
| C4—H4A···O4iii | 0.97 | 2.49 | 3.429 (3) | 164 |
| C4—H4C···O2ii | 0.97 | 2.39 | 3.171 (3) | 137 |
| C5—H5A···O3iii | 0.98 | 2.34 | 3.317 (3) | 173 |
| C6—H6AB···O4iv | 0.98 | 2.31 | 3.231 (3) | 156 |
| C6—H6A···Cl2i | 0.98 | 2.80 | 3.7414 (17) | 161 |
| C7—H7B···O3iii | 0.97 | 2.40 | 3.333 (3) | 161 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z+1.
References
- Alcock, N. W., Herron, N. & Moore, P. (1978). J. Chem. Soc. Dalton Trans. pp. 1282–1288.
- Barefield, E. K., Freeman, G. M. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 552–558.
- Becker, I. K. & Mattes, R. (1996). Z. Anorg. Allg. Chem. 622, 105–111.
- Bedford, R. B., Brenner, P. B., Elorriaga, D., Harvey, J. N. & Nunn, J. (2016). Dalton Trans. 45, 15811–15817. [DOI] [PubMed]
- Boag, N. M., Coward, K. M., Jones, A. C., Pemble, M. E. & Thompson, J. R. (2000). Acta Cryst. C56, 1438–1439. [DOI] [PubMed]
- Bucher, C., Duval, E., Barbe, J. M., Verpeaux, J. N., Amatore, C., Guilard, R., Le Pape, L., Latour, J.-M., Dahaoui, S. & Lecomte, C. (2001a). Inorg. Chem. 40, 5722–5726. [DOI] [PubMed]
- Bucher, C., Duval, E., Espinosa, E., Barbe, J. M., Verpeaux, J. N., Amatore, C. & Guilard, R. (2001b). Eur. J. Inorg. Chem. pp. 1077–1079. [DOI] [PubMed]
- Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Kelly, C., Szalda, D. J., Creutz, C., Schwarz, H. A. & Sutin, N. (1996). Inorg. Chim. Acta, 243, 39–45.
- Lee, T.-J., Lee, T.-Y., Hong, C.-Y., Wu, D.-T. & Chung, C.-S. (1986). Acta Cryst. C42, 999–1001.
- Lu, T.-H., Shui, W.-Z., Tung, S.-F., Chi, T.-Y., Liao, F.-L. & Chung, C.-S. (1998). Acta Cryst. C54, 1071–1072.
- Maimon, E., Zilbermann, I., Golub, G., Ellern, A., Shames, A. I., Cohen, H. & Meyerstein, D. (2001). Inorg. Chim. Acta, 324, 65–72.
- Nishigaki, J.-I., Matsumoto, T. & Tatsumi, K. (2010). Eur. J. Inorg. Chem. pp. 5011–5017.
- Nowicka, B., Reczyński, M., Nitek, W. & Sieklucka, B. (2012). Polyhedron, 47, 73–78.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Po, H. N., Brinkman, E. & Doedens, R. J. (1991). Acta Cryst. C47, 2310–2312.
- Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. [DOI] [PubMed]
- Van Heuvelen, K. M., Lee, I., Arriola, K., Griffin, R., Ye, C. & Takase, M. K. (2017). Acta Cryst. C73, 620–624. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Willey, G. R., Asab, A., Lakin, M. T. & Alcock, N. W. (1993). J. Chem. Soc. Dalton Trans. pp. 365–370.
- Willey, G. R., Lakin, M. T., Alcock, N. W. & Samuel, C. J. (1994). J. Incl. Phenom. Macrocycl. Chem 15, 293-304.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989020001322/vm2227sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020001322/vm2227Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989020001322/vm2227Isup3.cml
CCDC reference: 1980910
Additional supporting information: crystallographic information; 3D view; checkCIF report



