Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2020 Feb 25;76(Pt 3):446–451. doi: 10.1107/S2056989020002327

Syntheses and crystal structures of the one-dimensional coordination polymers formed by [Ni(cyclam)]2+ cations and 1,3-bis­(3-carb­oxy­prop­yl)tetra­methyl­disiloxane anions in different degrees of deprotonation

Sergey P Gavrish a, Sergiu Shova b,*, Maria Cazacu b, Mihaela Dascalu b, Yaroslaw D Lampeka a
PMCID: PMC7057376  PMID: 32148892

The title coordination polymers show different degrees of deprotonation of the disiloxane-di­carboxyl­ate bridging ligands: both contain tetra­gonally distorted trans-NiN4O2 octa­hedra.

Keywords: crystal structure, macrocyclic ligand, cyclam, nickel, coordination polymers, hydrogen bonds

Abstract

The asymmetric units of the title compounds, namely, catena-poly[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N 1,N 4,N 8,N 11)nickel(II)]-μ-1,3-bis­(3-carboxyl­ato­prop­yl)tetra­methyl­disiloxane-κ2 O:O′], [Ni(C10H24O5Si2)(C12H24N4)]n (I), and catena-poly[[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N 1,N 4,N 8,N 11)nickel(II)]-μ-4-({[(3-carb­oxy­prop­yl)di­methyl­sil­yl]­oxy}di­methyl­sil­yl)butano­ato-κ2 O:O′] per­chlorate], {[Ni(C10H25O5Si2)(C12H24N4)]ClO4}n (II), consist of one (in I) or two crystallographically non-equivalent (in II) centrosymmetric macrocyclic cations and one centrosymmetric dianion (in I) or two centrosymmetric monoanions (in II). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and the mutually trans O atoms of the carboxyl­ate in a slightly tetra­gonally distorted trans-NiN4O2 octa­hedral coordination geometry. The crystals of both types of compounds are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] and [110] directions in I and II, respectively. In I, each polymeric chain is linked to four neighbouring ones by hydrogen bonding between the NH groups of the macrocycle and the carboxyl­ate O atoms, thus forming a three-dimensional supra­molecular network. In II, each polymeric chain contacts with only two neighbours, forming hydrogen bonds between the partially protonated carb­oxy­lic groups of the bridging ligand. As a result, a lamellar structure is formed with the layers oriented parallel to the (1Inline graphic1) plane.

Chemical context  

Transition-metal complexes of polyaza­macrocyclic ligands, in particular of 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam), are characterized by a number of unique properties, such as exceptionally high thermodynamic stability, kinetic inertness and unusual redox characteristics (Melson, 1979; Yatsimirskii & Lampeka, 1985), which have stimulated continuing inter­est in such systems for a number of decades. In conjunction with polycarboxyl­ate ligands as spacers, macrocyclic complexes have been employed successfully for the construction of metal–organic frameworks (MOFs) (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh et al., 2012; Stackhouse & Ma, 2018), which are considered to be promising materials for applications in gas storage, separation, catalysis, etc. (Farrusseng, 2011; MacGillivray & Lukehart, 2014; Kaskel, 2016).

In contrast to the widespread rigid aromatic carboxyl­ates, flexible spacers incorporating polymethyl­ene chains have rarely been used for the design of MOFs, although this could potentially lead to frameworks possessing unusual properties, the most intriguing of which is a ‘breathing’ phenomenon (Elsaidi et al., 2018; Lee et al., 2019). A representative example of such a highly flexible ligand is 1,3-bis­(3-carb­oxy­prop­yl)tetra­methyl­disiloxane – a member of a rather restricted family of silicon-containing carb­oxy­lic acids. However, no attempt has been made so far to combine this ligand with macrocyclic complexes in MOF synthesis.

Here, we report the syntheses and crystal structures of the two coordination polymers built of the nickel(II) complex of the 14-membered macrocyclic ligand 1,4,8,11-tetra­aza­cyclo­tetra­decane (L) and the di- or monoanion of 1,3-bis(3-carb­oxy­prop­yl)tetra­methyl­disiloxane (H2Cx), namely, catena-poly[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N 1,N 4,N 8,N 11)nickel(II)]-μ-1,3-bis­(3-carboxyl­atoprop­yl)tetra­methyl­disiloxane-κ2 O:O′], [Ni(L)(Cx)]n, (I) and catena-poly[[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N 1,N 4,N 8,N 11)nickel(II)]-μ-4-({[(3-carb­oxy­prop­yl)di­methyl­sil­yl]­oxy}di­methyl­sil­yl)butano­ato-κ2 O:O′] perchlorate], {[Ni(L)(HCx)]ClO4}n (II).graphic file with name e-76-00446-scheme1.jpg

Structural commentary  

The mol­ecular structures of the title compounds are shown in Figs. 1 and 2. Both complexes are one-dimensional coordination polymers consisting of centrosymmetric macrocyclic [Ni(L)]2+ cations coordinated by the oxygen atoms of the carb­oxy­lic groups of the centrosymmetric acid, completely deprotonated (in I) and monoprotonated (in II), in the axial positions. In the latter case, there are two crystallographically independent cations and anions and the H2C and H5C acidic H atoms are distributed over two carb­oxy­lic groups with site occupancies of 50%.

Figure 1.

Figure 1

View of the mol­ecular structure of I showing atom-labelling scheme with displacement ellipsoids drawn at the 30% probability level. C-bound H atoms are omitted for clarity. Hydrogen-bonding inter­actions are shown as dotted lines. [Symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z); (iii) x − 1, y, z − 1].

Figure 2.

Figure 2

View of the mol­ecular structure of II showing atom-labelling scheme with displacement ellipsoids drawn at the 30% probability level. C-bound H atoms are omitted for clarity. Hydrogen-bonding inter­actions are shown as dotted lines. [Symmetry codes: (i) −x, −y, −z; (ii) −x − 1, −y − 1, −z; (iii) −x, −y − 1, −z − 1; (iv) −x + 1, −y, −z − 1; (v) x − 1, y − 1, z; (vi) x + 1, y + 1, z.]

The macrocyclic ligands in the complex cations adopt the most energetically favourable trans-III (R,R,S,S) conformation (Bosnich et al., 1965) with five-membered chelate rings in gauche and six-membered chelate rings in chair conformations. As a result of the presence of the inversion centres, all Ni(N4) fragments are strictly planar. The equatorial Ni—N bond lengths and bite angles fall in a range typical of high-spin 3d 8 nickel(II) complexes with 14-membered tetra­amine ligands (Table 1). The axial Ni—O bond lengths are slightly longer than the Ni—N ones, and the geometry of the nickel(II) polyhedra can be described as tetra­gonally distorted trans-N4O2 octa­hedra.

Table 1. Selected geometrical parameters of the complex cations (Å, °).

I II
Ni1—N1 2.071 (4) Ni1—N1 2.058 (3) Ni2—N3 2.043 (4)
Ni1—N2 2.060 (4) Ni1—N2 2.060 (4) Ni2—N4 2.054 (4)
Ni1—O1 2.113 (4) Ni1—O1 2.125 (2) Ni2—O4 2.131 (2)
           
N1—Ni1—N2i 85.21 (19) N1—Ni1—N2ii 85.82 (17) N3—Ni2—N4iii 85.7 (2)
N1—Ni1—N2 94.79 (19) N1—Ni1—N2 94.18 (17) N3—Ni2—N4 94.3 (2)

Symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) −x, −y, −z; (iii) −x, −y − 1, −z − 1.

In two cases (Ni1 in I and Ni2 in II), a monodentate coordination of the carboxyl­ate to the complex cation is complemented by strong hydrogen bonding between the non-coordinated O atom of the carb­oxy­lic group and the NH group of the macrocycle, which is often observed in complexes of cyclam-like ligands. For the [Ni1(L)]2+ cation in II, the non-coordinated O2 atom is almost equidistant from the N1 and N2 centres [3.225 (5) and 3.143 (4) Å, respectively], so that two weak hydrogen bonds are formed in this case (Figs. 1 and 2, Tables 2 and 3).

Table 2. Hydrogen-bond geometry (Å, °) for I .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.98 1.96 2.845 (6) 150
N2—H2⋯O2i 0.98 2.07 2.883 (6) 139

Symmetry code: (i) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for II .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.98 2.51 3.225 (5) 130
N1—H1⋯O8 0.98 2.45 3.315 (6) 147
N2—H2⋯O2 0.98 2.38 3.143 (4) 134
N3—H3⋯O5 0.98 2.01 2.901 (5) 150
N4—H4⋯O7 0.98 2.18 3.012 (6) 142
O2—H2C⋯O5 0.82 1.84 2.456 (4) 131
O2—H2C⋯O8 0.82 2.65 3.260 (5) 133
O5—H5C⋯O2 0.82 1.70 2.456 (4) 151

The C—O bond lengths in the carb­oxy­lic group of the bridging ligand Cx2− in I are nearly identical [C6—O1 = 1.245 (7) and C6—O2 = 1.242 (7) Å], thus indicating essential electronic delocalization. At the same time, they differ significantly in II [C6—O1 = 1.232 (4) versus C6—O2 = 1.291 (5) Å; C17—O4 = 1.245 (4) versus C17—O5 = 1.280 (5) Å], so formally the Ni—O bonding in this compound can be treated as the inter­action of the metal ion with the carbonyl oxygen atom of the carb­oxy­lic group.

Because of the presence of flexible tri­methyl­ene fragments, the di­carboxyl­ate ligand can adopt various conformations, both symmetric and asymmetric. In the present cases the anions possess a transoid conformation of the siloxane linkages with the disordered O3 atoms [site occupancies 50%, Si1—O3—Si1 = 141.2 (7) and 137.4 (4)° in I and II, respectively], as well as with the 25% occupancy atoms O6 and O6X in II [the corresponding Si2—O6(6X)—Si2 angles are 153.1 (17) and 167 (3)°, respectively] (Figs. 1 and 2). The geometries of the two crystallographically independent anions in complex II are actually very similar, but differ from that observed in complex I (Fig. 3).

Figure 3.

Figure 3

Comparison of the conformations of the dianion Cx2− in I (green) and of the monoanions HCx in II (red and blue).

Supra­molecular features  

The crystals of both compounds are composed of parallel polymeric chains of [Ni(L)]2+ cations linked by carboxyl­ate bridging ligands. The identical chains in I with an intra-chain Ni⋯Ni separation of 14.325 Å propagate along the [101] direction (Fig. 4). In II, two crystallographically independent chains formed by the Ni1 and Ni2 macrocyclic cations propagate along the [110] direction (Fig. 5) and are characterized by a slightly larger (14.684 Å) intra-chain separation between the NiII ions.

Figure 4.

Figure 4

The packing in I viewed down the [101] direction with polymeric chains cross-linked by N—H⋯O hydrogen bonds (dotted lines) to form a three-dimensional supra­molecular network. C-bound H atoms are omitted for clarity.

Figure 5.

Figure 5

The packing in II viewed down the [110] direction with polymeric chains cross-linked by hydrogen bonds (dotted lines).

In the crystals, the inter­actions between the polymeric chains in I and II are characterized by markedly different features. In the first case, each chain is linked to four neighbouring ones as a result of hydrogen bonding between the N2—H2 groups of the macrocycles and carboxyl­ate O2 atoms (Table 2), resulting in a three-dimensional supra­molecular network. On the other hand, in II each polymeric chain contacts with only two neighbours via paired O2—H2C⋯O5/O2⋯H5C—O5 hydrogen bonds. The bonding is reinforced by the perchlorate anions bridging macrocyclic units: N1—H1⋯O8—Cl1—O7⋯H4—N4 (plus an additional very weak O2—H2C⋯O8 contact) (Table 3). As a result, a lamellar structure is formed with the layers lying parallel to the (1Inline graphic1) plane (Fig. 6).

Figure 6.

Figure 6

The hydrogen-bonded sheet in II parallel to the (1Inline graphic1) plane. C-bound H atoms are omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.40, last update February 2019; Groom et al., 2016) indicated that seven compounds formed by 1,3-bis­(3-carb­oxy­prop­yl)tetra­methyl­disiloxane itself or its anions have been characterized structurally. Two of them are co-crystals of the acid with organic bases derived from pyridine [refcodes NERTOV (Vlad et al., 2013a ) and VIPZUR (Racles et al., 2013)]. Other complexes represent one- or two-dimensional coordination polymers formed by CuII (YIGXOD; Vlad et al., 2013b ), CoII (NERTIP; Vlad et al., 2013a ), ZnII [NERTUB (Vlad et al., 2013a ), GIWSAI (Vlad et al., 2014) and GAPKOA (Zaltariov et al., 2016)]. Except for the last complex, in which the secondary building unit is a hexa­metal oxocluster bridged by salicylaldoxime ligands, all of the other compounds contain additional heterocyclic co-ligands. No attempt was made to combine this carb­oxy­lic acid with macrocyclic cations in MOF synthesis, and thus the title compounds I and II are the first examples of such compounds described so far.

Synthesis and crystallization  

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and were used without further purification. The macrocyclic nickel(II) complex Ni(L)(ClO4)2 (Barefield et al., 1976) and 1,3-bis­(3-carb­oxy­prop­yl)tetra­methyl­disiloxane (H2Cx) (Mulvaney & Marvel, 1961) were prepared by the reported methods.

{Ni( L )(Cx)} n, (I). To a solution of 48 mg (0.24 mmol) of the ligand L in 4 ml of water, 30 mg of nickel(II) hydroxide (0.32 mmol) were added and the suspension stirred for 4 d at room temperature to give a yellow-coloured solution. The excess of Ni(OH)2 was filtered off and the filtrate was treated with the solution of 75 mg (0.24 mmol) of H2Cx in 2 ml of MeOH. This solution was rotary evaporated to give an oily material. The residue was dissolved in 2 ml of MeOH, and the product precipitated with aceto­nitrile. It was recrystallized in a similar fashion from a MeOH/MeCN (1:15 v/v) solvent mixture. Yield 54 mg (40%). Analysis calculated for C22H48N4NiO5Si2: C, 46.89; H, 8.59; N, 9.94%. Found: C, 46.76; H, 8.64; N, 9.85%.

Single crystals of I suitable for X-ray diffraction analysis were obtained analogously, except that precipitation was carried out using a diffusion regime (a methano­lic solution of complex was layered with MeCN).

{[Ni( L )(HCx)]ClO4} n (II). A solution of 100 mg (0.26 mmol) of K2Cx in 1 ml of water was added to a solution of 130 mg (0.28 mmol) of [Ni(L)](ClO4)2 in 3 ml of water and the mixture was left at room temperature. Potassium perchlorate crystals, which formed after ca two weeks, were removed by filtration and the filtrate was allowed to evaporate slowly at room temperature. The crystals of the product formed after about one month. Yield 59 mg (34%). Analysis calculated for C22H49N4ClNiO9Si2: C, 39.80; H, 7.44; N, 8.44%. Found: C, 39.67; H, 7.51; N, 8.36%.

Single crystals of II suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis.

Safety note: Perchlorate salts of metal complexes are potentially explosive and should be handled with care.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms in I and II were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å, N—H = 0.98 Å and carboxyl­ate O—H = 0.82 Å, with U iso(H) values of 1.2 or 1.5U eq of the parent atoms.

Table 4. Experimental details.

  I II
Crystal data
Chemical formula [Ni(C10H24O5Si2)(C12H24N4)] [Ni(C10H25O5Si2)(C12H24N4)]ClO4
M r 563.53 663.99
Crystal system, space group Monoclinic, P21/c Triclinic, P Inline graphic
Temperature (K) 173 200
a, b, c (Å) 13.033 (5), 12.877 (10), 9.028 (3) 9.3815 (7), 12.9009 (8), 14.7604 (10)
α, β, γ (°) 90, 101.31 (3), 90 99.309 (5), 100.343 (6), 99.232 (6)
V3) 1485.7 (13) 1700.9 (2)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.77 0.77
Crystal size (mm) 0.25 × 0.25 × 0.05 0.45 × 0.35 × 0.30
 
Data collection
Diffractometer Agilent Xcalibur, Eos Agilent Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014) Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.694, 1.000 0.889, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3957, 3957, 2499 9606, 9606, 5769
R int 0.040 0.063
(sin θ/λ)max−1) 0.595 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.065, 0.143, 1.01 0.050, 0.115, 1.01
No. of reflections 3957 9606
No. of parameters 165 367
No. of restraints 6 7
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.61 0.51, −0.44

Computer programs: CrysAlis PRO (Agilent, 2014), SIR2008 (Burla et al., 2007), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989020002327/hb7892sup1.cif

e-76-00446-sup1.cif (68.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020002327/hb7892Isup2.hkl

e-76-00446-Isup2.hkl (217.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020002327/hb7892IIsup3.hkl

e-76-00446-IIsup3.hkl (526KB, hkl)

CCDC references: 1985068, 1985067

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

catena-Poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O'] (I) . Crystal data

[Ni(C10H24O5Si2)(C12H24N4)] F(000) = 608
Mr = 563.53 Dx = 1.260 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.033 (5) Å Cell parameters from 468 reflections
b = 12.877 (10) Å θ = 2.2–23.0°
c = 9.028 (3) Å µ = 0.77 mm1
β = 101.31 (3)° T = 173 K
V = 1485.7 (13) Å3 Plate, clear light colourless
Z = 2 0.25 × 0.25 × 0.05 mm

catena-Poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O'] (I) . Data collection

Agilent Xcalibur, Eos diffractometer 3957 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2499 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
Detector resolution: 16.1593 pixels mm-1 θmax = 25.0°, θmin = 2.3°
ω scans h = −15→15
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −15→15
Tmin = 0.694, Tmax = 1.000 l = −10→9
3957 measured reflections

catena-Poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O'] (I) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065 H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0618P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
3957 reflections Δρmax = 0.56 e Å3
165 parameters Δρmin = −0.61 e Å3
6 restraints

catena-Poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O'] (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

catena-Poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O'] (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 1.000000 0.500000 0.500000 0.0224 (3)
Si1 0.51530 (16) 0.4465 (2) 0.1590 (4) 0.0810 (8)
O1 0.8723 (3) 0.4020 (3) 0.4131 (4) 0.0278 (10)
O2 0.9375 (4) 0.2757 (3) 0.2920 (5) 0.0546 (13)
O3 0.4991 (12) 0.4662 (10) −0.0400 (11) 0.090 (4) 0.5
N1 1.1059 (4) 0.4111 (4) 0.4113 (5) 0.0313 (13)
H1 1.068906 0.348403 0.368383 0.038*
N2 1.0173 (4) 0.4173 (4) 0.6987 (5) 0.0302 (12)
H2 0.974805 0.354292 0.677540 0.036*
C1 1.1301 (5) 0.4718 (5) 0.2850 (7) 0.047 (2)
H1A 1.161336 0.427243 0.219319 0.057*
H1B 1.179620 0.526309 0.323016 0.057*
C2 0.9705 (5) 0.4810 (5) 0.8028 (7) 0.050 (2)
H2A 1.018601 0.535473 0.845711 0.060*
H2B 0.955552 0.438364 0.884604 0.060*
C3 1.1239 (5) 0.3849 (5) 0.7630 (7) 0.051 (2)
H3A 1.123929 0.344748 0.853931 0.061*
H3B 1.167199 0.445811 0.790758 0.061*
C4 1.1691 (6) 0.3211 (6) 0.6537 (9) 0.056 (2)
H4A 1.118692 0.267578 0.614158 0.067*
H4B 1.230881 0.286356 0.709093 0.067*
C5 1.1991 (5) 0.3767 (5) 0.5216 (8) 0.050 (2)
H5A 1.241788 0.436626 0.557967 0.061*
H5B 1.240623 0.330662 0.471842 0.061*
C6 0.8685 (5) 0.3154 (5) 0.3510 (7) 0.0354 (16)
C7 0.7696 (5) 0.2514 (5) 0.3470 (8) 0.0449 (18)
H7A 0.778986 0.208718 0.437187 0.054*
H7B 0.760544 0.205156 0.260604 0.054*
C8 0.6702 (5) 0.3156 (5) 0.3376 (7) 0.0403 (18)
H8A 0.613522 0.269978 0.350886 0.048*
H8B 0.680861 0.365496 0.419680 0.048*
C9 0.6386 (4) 0.3731 (5) 0.1896 (8) 0.0517 (19)
H9A 0.634154 0.323019 0.108349 0.062*
H9B 0.694402 0.421166 0.180578 0.062*
C10X 0.4972 (14) 0.5342 (14) 0.313 (2) 0.139 (5) 0.5
H10A 0.504595 0.495602 0.405513 0.209* 0.5
H10B 0.428590 0.564443 0.289455 0.209* 0.5
H10C 0.548903 0.588187 0.324362 0.209* 0.5
C11 0.3986 (16) 0.369 (2) 0.171 (7) 0.139 (5) 0.5
H11A 0.340588 0.414111 0.173486 0.209* 0.5
H11B 0.412287 0.327371 0.261206 0.209* 0.5
H11C 0.382182 0.324019 0.084404 0.209* 0.5
C10 0.5355 (15) 0.5612 (13) 0.283 (2) 0.139 (5) 0.5
H10D 0.581626 0.609001 0.247371 0.209* 0.5
H10E 0.565898 0.539997 0.384236 0.209* 0.5
H10F 0.469460 0.594367 0.282739 0.209* 0.5
C11X 0.4087 (17) 0.3521 (18) 0.156 (7) 0.139 (5) 0.5
H11D 0.342613 0.385730 0.121176 0.209* 0.5
H11E 0.411408 0.325433 0.255871 0.209* 0.5
H11F 0.416537 0.296006 0.088976 0.209* 0.5

catena-Poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O'] (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0285 (5) 0.0157 (5) 0.0236 (5) 0.0026 (6) 0.0068 (5) 0.0002 (6)
Si1 0.0406 (13) 0.0755 (19) 0.119 (2) −0.0021 (12) −0.0034 (15) 0.0400 (17)
O1 0.029 (2) 0.019 (3) 0.035 (3) 0.003 (2) 0.0052 (18) −0.0074 (19)
O2 0.046 (3) 0.031 (3) 0.091 (4) −0.006 (2) 0.023 (3) −0.033 (3)
O3 0.103 (8) 0.105 (14) 0.043 (9) 0.010 (10) −0.031 (9) 0.010 (6)
N1 0.037 (3) 0.014 (3) 0.046 (3) −0.002 (3) 0.017 (3) −0.012 (2)
N2 0.045 (3) 0.025 (3) 0.019 (3) −0.013 (3) 0.001 (2) 0.005 (2)
C1 0.070 (5) 0.028 (5) 0.056 (5) −0.014 (4) 0.042 (4) −0.013 (3)
C2 0.077 (6) 0.039 (6) 0.040 (4) −0.013 (4) 0.026 (4) 0.003 (4)
C3 0.060 (5) 0.046 (5) 0.040 (4) −0.002 (4) −0.007 (4) 0.023 (4)
C4 0.041 (4) 0.029 (5) 0.089 (6) 0.009 (4) −0.009 (4) 0.018 (4)
C5 0.038 (4) 0.029 (5) 0.085 (6) 0.006 (4) 0.016 (4) −0.008 (4)
C6 0.034 (4) 0.025 (5) 0.046 (4) −0.002 (3) 0.003 (3) −0.003 (3)
C7 0.038 (4) 0.022 (5) 0.074 (5) −0.001 (3) 0.009 (3) −0.008 (4)
C8 0.032 (4) 0.039 (5) 0.050 (4) −0.002 (3) 0.007 (3) −0.001 (3)
C9 0.034 (4) 0.067 (5) 0.053 (4) −0.009 (4) 0.006 (4) 0.011 (4)
C10X 0.039 (6) 0.077 (7) 0.295 (14) 0.005 (5) 0.016 (7) 0.004 (9)
C11 0.039 (6) 0.077 (7) 0.295 (14) 0.005 (5) 0.016 (7) 0.004 (9)
C10 0.039 (6) 0.077 (7) 0.295 (14) 0.005 (5) 0.016 (7) 0.004 (9)
C11X 0.039 (6) 0.077 (7) 0.295 (14) 0.005 (5) 0.016 (7) 0.004 (9)

catena-Poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O'] (I) . Geometric parameters (Å, º)

Ni1—O1 2.113 (4) C3—H3B 0.9700
Ni1—O1i 2.113 (4) C3—C4 1.491 (9)
Ni1—N1 2.071 (4) C4—H4A 0.9700
Ni1—N1i 2.071 (4) C4—H4B 0.9700
Ni1—N2 2.060 (4) C4—C5 1.508 (9)
Ni1—N2i 2.060 (4) C5—H5A 0.9700
Si1—O3 1.785 (11) C5—H5B 0.9700
Si1—O3ii 1.541 (13) C6—C7 1.524 (9)
Si1—C9 1.838 (6) C7—H7A 0.9700
Si1—C10X 1.842 (7) C7—H7B 0.9700
Si1—C11 1.842 (7) C7—C8 1.525 (8)
Si1—C10 1.842 (7) C8—H8A 0.9700
Si1—C11X 1.842 (7) C8—H8B 0.9700
O1—C6 1.245 (7) C8—C9 1.512 (8)
O2—C6 1.242 (7) C9—H9A 0.9700
O3—O3ii 1.13 (2) C9—H9B 0.9700
N1—H1 0.9800 C10X—H10A 0.9600
N1—C1 1.467 (7) C10X—H10B 0.9600
N1—C5 1.479 (7) C10X—H10C 0.9600
N2—H2 0.9800 C11—H11A 0.9600
N2—C2 1.467 (7) C11—H11B 0.9600
N2—C3 1.459 (7) C11—H11C 0.9600
C1—H1A 0.9700 C10—H10D 0.9600
C1—H1B 0.9700 C10—H10E 0.9600
C1—C2i 1.519 (8) C10—H10F 0.9600
C2—H2A 0.9700 C11X—H11D 0.9600
C2—H2B 0.9700 C11X—H11E 0.9600
C3—H3A 0.9700 C11X—H11F 0.9600
O1i—Ni1—O1 180.0 N2—C3—C4 111.3 (5)
N1—Ni1—O1 93.58 (17) H3A—C3—H3B 108.0
N1i—Ni1—O1 86.42 (17) C4—C3—H3A 109.4
N1—Ni1—O1i 86.42 (17) C4—C3—H3B 109.4
N1i—Ni1—O1i 93.58 (17) C3—C4—H4A 108.0
N1—Ni1—N1i 180.0 C3—C4—H4B 108.0
N2i—Ni1—O1 92.40 (16) C3—C4—C5 117.3 (6)
N2—Ni1—O1i 92.40 (16) H4A—C4—H4B 107.2
N2—Ni1—O1 87.60 (16) C5—C4—H4A 108.0
N2i—Ni1—O1i 87.60 (16) C5—C4—H4B 108.0
N2—Ni1—N1i 85.21 (19) N1—C5—C4 111.6 (5)
N2i—Ni1—N1i 94.79 (19) N1—C5—H5A 109.3
N2—Ni1—N1 94.79 (19) N1—C5—H5B 109.3
N2i—Ni1—N1 85.21 (19) C4—C5—H5A 109.3
N2i—Ni1—N2 180.0 (2) C4—C5—H5B 109.3
O3ii—Si1—O3 38.8 (7) H5A—C5—H5B 108.0
O3—Si1—C9 98.7 (5) O1—C6—C7 117.0 (6)
O3ii—Si1—C9 117.6 (6) O2—C6—O1 126.5 (6)
O3ii—Si1—C10X 93.6 (8) O2—C6—C7 116.5 (6)
O3—Si1—C10X 131.7 (9) C6—C7—H7A 108.7
O3—Si1—C11 102 (2) C6—C7—H7B 108.7
O3ii—Si1—C11 116.7 (16) C6—C7—C8 114.4 (5)
O3—Si1—C10 118.2 (9) H7A—C7—H7B 107.6
O3ii—Si1—C10 79.8 (9) C8—C7—H7A 108.7
O3—Si1—C11X 98 (2) C8—C7—H7B 108.7
O3ii—Si1—C11X 118.8 (18) C7—C8—H8A 108.9
C9—Si1—C10X 116.1 (7) C7—C8—H8B 108.9
C9—Si1—C11 114.8 (10) H8A—C8—H8B 107.7
C9—Si1—C10 107.7 (7) C9—C8—C7 113.3 (5)
C9—Si1—C11X 107.3 (9) C9—C8—H8A 108.9
C11—Si1—C10X 93.4 (18) C9—C8—H8B 108.9
C11X—Si1—C10 123.8 (18) Si1—C9—H9A 107.9
C6—O1—Ni1 131.4 (4) Si1—C9—H9B 107.9
Si1ii—O3—Si1 141.2 (7) C8—C9—Si1 117.6 (4)
O3ii—O3—Si1 58.8 (11) C8—C9—H9A 107.9
O3ii—O3—Si1ii 82.4 (14) C8—C9—H9B 107.9
Ni1—N1—H1 107.2 H9A—C9—H9B 107.2
C1—N1—Ni1 105.5 (4) Si1—C10X—H10A 109.5
C1—N1—H1 107.2 Si1—C10X—H10B 109.5
C1—N1—C5 114.1 (5) Si1—C10X—H10C 109.5
C5—N1—Ni1 115.3 (4) H10A—C10X—H10B 109.5
C5—N1—H1 107.2 H10A—C10X—H10C 109.5
Ni1—N2—H2 107.3 H10B—C10X—H10C 109.5
C2—N2—Ni1 106.3 (4) Si1—C11—H11A 109.5
C2—N2—H2 107.3 Si1—C11—H11B 109.5
C3—N2—Ni1 115.3 (4) Si1—C11—H11C 109.5
C3—N2—H2 107.3 H11A—C11—H11B 109.5
C3—N2—C2 112.9 (5) H11A—C11—H11C 109.5
N1—C1—H1A 109.9 H11B—C11—H11C 109.5
N1—C1—H1B 109.9 Si1—C10—H10D 109.5
N1—C1—C2i 108.9 (5) Si1—C10—H10E 109.5
H1A—C1—H1B 108.3 Si1—C10—H10F 109.5
C2i—C1—H1A 109.9 H10D—C10—H10E 109.5
C2i—C1—H1B 109.9 H10D—C10—H10F 109.5
N2—C2—C1i 108.3 (5) H10E—C10—H10F 109.5
N2—C2—H2A 110.0 Si1—C11X—H11D 109.5
N2—C2—H2B 110.0 Si1—C11X—H11E 109.5
C1i—C2—H2A 110.0 Si1—C11X—H11F 109.5
C1i—C2—H2B 110.0 H11D—C11X—H11E 109.5
H2A—C2—H2B 108.4 H11D—C11X—H11F 109.5
N2—C3—H3A 109.4 H11E—C11X—H11F 109.5
N2—C3—H3B 109.4
Ni1—O1—C6—O2 −18.8 (10) C6—C7—C8—C9 67.1 (7)
Ni1—O1—C6—C7 161.1 (4) C7—C8—C9—Si1 176.0 (4)
Ni1—N1—C1—C2i −41.9 (5) C9—Si1—O3—Si1ii −123.8 (15)
Ni1—N1—C5—C4 53.8 (7) C9—Si1—O3—O3ii −123.8 (15)
Ni1—N2—C2—C1i 41.2 (5) C10X—Si1—O3—Si1ii 13 (2)
Ni1—N2—C3—C4 −57.1 (7) C10X—Si1—O3—O3ii 13 (2)
O1—C6—C7—C8 31.8 (8) C10X—Si1—C9—C8 49.5 (9)
O2—C6—C7—C8 −148.4 (6) C11—Si1—O3—Si1ii 118.5 (18)
O3ii—Si1—O3—Si1ii 0.003 (1) C11—Si1—O3—O3ii 118.5 (18)
O3—Si1—C9—C8 −165.0 (7) C11—Si1—C9—C8 −58 (2)
O3ii—Si1—C9—C8 159.0 (6) C10—Si1—O3—Si1ii −8.3 (19)
N2—C3—C4—C5 72.9 (8) C10—Si1—O3—O3ii −8.3 (19)
C1—N1—C5—C4 176.2 (5) C10—Si1—C9—C8 71.5 (10)
C2—N2—C3—C4 −179.6 (5) C11X—Si1—O3—Si1ii 127.1 (18)
C3—N2—C2—C1i 168.6 (5) C11X—Si1—O3—O3ii 127.1 (18)
C3—C4—C5—N1 −71.1 (8) C11X—Si1—C9—C8 −64 (2)
C5—N1—C1—C2i −169.5 (5)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z.

catena-Poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O'] (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.98 1.96 2.845 (6) 150
N2—H2···O2iii 0.98 2.07 2.883 (6) 139

Symmetry code: (iii) x, −y+1/2, z+1/2.

catena-Poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O'] perchlorate] (II) . Crystal data

[Ni(C10H25O5Si2)(C12H24N4)]ClO4 Z = 2
Mr = 663.99 F(000) = 708
Triclinic, P1 Dx = 1.296 Mg m3
a = 9.3815 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.9009 (8) Å Cell parameters from 2033 reflections
c = 14.7604 (10) Å θ = 1.7–24.6°
α = 99.309 (5)° µ = 0.77 mm1
β = 100.343 (6)° T = 200 K
γ = 99.232 (6)° Block, clear light colourless
V = 1700.9 (2) Å3 0.45 × 0.35 × 0.30 mm

catena-Poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O'] perchlorate] (II) . Data collection

Agilent Xcalibur, Eos diffractometer 9606 independent reflections
Radiation source: Enhance (Mo) X-ray Source 5769 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.063
Detector resolution: 16.1593 pixels mm-1 θmax = 25.0°, θmin = 2.0°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −15→15
Tmin = 0.889, Tmax = 1.000 l = −17→17
9606 measured reflections

catena-Poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O'] perchlorate] (II) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0451P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.002
9606 reflections Δρmax = 0.51 e Å3
367 parameters Δρmin = −0.44 e Å3
7 restraints

catena-Poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O'] perchlorate] (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

catena-Poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O'] perchlorate] (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 0.000000 0.000000 0.000000 0.0241 (2)
Si1 −0.3977 (2) −0.55987 (11) −0.05469 (15) 0.0729 (6)
O1 −0.1184 (3) −0.1542 (2) −0.0727 (2) 0.0310 (8)
O2 −0.0826 (3) −0.1583 (2) −0.2165 (2) 0.0339 (8)
H2C −0.034950 −0.196653 −0.243367 0.051* 0.5
O3 −0.5535 (8) −0.5084 (6) −0.0332 (5) 0.061 (3) 0.5
N1 0.1859 (4) −0.0236 (3) −0.0499 (3) 0.0408 (11)
H1 0.157126 −0.087684 −0.099864 0.049*
N2 −0.0809 (4) 0.0725 (3) −0.1075 (3) 0.0390 (11)
H2 −0.128011 0.014955 −0.161639 0.047*
C1 0.2858 (6) −0.0494 (5) 0.0295 (4) 0.065 (2)
H1A 0.335337 0.015969 0.073702 0.078*
H1B 0.360480 −0.083840 0.006336 0.078*
C2 −0.1992 (7) 0.1219 (4) −0.0773 (4) 0.0649 (19)
H2A −0.156944 0.189771 −0.034619 0.078*
H2B −0.263674 0.135605 −0.131369 0.078*
C3 0.0282 (7) 0.1448 (4) −0.1388 (4) 0.0634 (18)
H3A 0.071451 0.206181 −0.088446 0.076*
H3B −0.020855 0.170724 −0.191801 0.076*
C4 0.1501 (7) 0.0909 (4) −0.1671 (4) 0.068 (2)
H4A 0.104405 0.025115 −0.211911 0.081*
H4B 0.205970 0.137198 −0.199462 0.081*
C5 0.2570 (6) 0.0641 (4) −0.0893 (4) 0.0608 (18)
H5A 0.339987 0.043288 −0.113487 0.073*
H5B 0.294711 0.127196 −0.039965 0.073*
C6 −0.1332 (4) −0.2035 (3) −0.1537 (3) 0.0254 (11)
C7 −0.2146 (5) −0.3171 (3) −0.1832 (3) 0.0378 (13)
H7A −0.303379 −0.319448 −0.229384 0.045*
H7B −0.153320 −0.358866 −0.214036 0.045*
C8 −0.2580 (5) −0.3700 (3) −0.1066 (3) 0.0363 (12)
H8A −0.316658 −0.327704 −0.073869 0.044*
H8B −0.169508 −0.371782 −0.061703 0.044*
C9 −0.3463 (5) −0.4842 (3) −0.1431 (3) 0.0477 (14)
H9A −0.289182 −0.524186 −0.179202 0.057*
H9B −0.436249 −0.480898 −0.185840 0.057*
C10 −0.2275 (11) −0.5710 (6) 0.0258 (5) 0.168 (4)
H10A −0.191865 −0.505635 0.071407 0.252*
H10B −0.153386 −0.583786 −0.009580 0.252*
H10C −0.248872 −0.629417 0.057238 0.252*
C11 −0.5003 (7) −0.6957 (4) −0.1124 (5) 0.102 (3)
H11A −0.442542 −0.730299 −0.150911 0.153*
H11B −0.592187 −0.690955 −0.150829 0.153*
H11C −0.519460 −0.736539 −0.065495 0.153*
Ni2 0.000000 −0.500000 −0.500000 0.0281 (2)
Si2 0.35316 (15) 0.04647 (10) −0.52679 (11) 0.0404 (4)
O4 0.0305 (3) −0.3297 (2) −0.47284 (19) 0.0333 (8)
O5 −0.0840 (3) −0.2890 (2) −0.3576 (2) 0.0376 (9)
H5C −0.095950 −0.235276 −0.324118 0.056* 0.5
N3 −0.1442 (6) −0.5206 (3) −0.4129 (4) 0.0621 (15)
H3 −0.143842 −0.449452 −0.377416 0.075*
N4 0.1844 (5) −0.4870 (3) −0.3968 (4) 0.0675 (16)
H4 0.207815 −0.412879 −0.361974 0.081*
C12 −0.2937 (7) −0.5585 (5) −0.4771 (6) 0.094 (3)
H12A −0.370162 −0.545605 −0.442664 0.113*
H12B −0.309077 −0.634809 −0.501474 0.113*
C13 0.3020 (7) −0.5012 (5) −0.4435 (7) 0.111 (4)
H13A 0.295115 −0.576820 −0.467592 0.133*
H13B 0.395995 −0.474737 −0.399517 0.133*
C14 0.1635 (10) −0.5587 (5) −0.3256 (6) 0.112 (3)
H14A 0.151266 −0.632881 −0.356424 0.134*
H14B 0.251865 −0.542354 −0.276130 0.134*
C15 0.0318 (15) −0.5454 (6) −0.2821 (5) 0.136 (4)
H15A 0.035328 −0.582999 −0.230129 0.163*
H15B 0.040102 −0.470013 −0.256570 0.163*
C16 −0.1145 (11) −0.5851 (5) −0.3474 (6) 0.116 (4)
H16A −0.117774 −0.657098 −0.380421 0.139*
H16B −0.191132 −0.588632 −0.311103 0.139*
C17 0.0036 (5) −0.2625 (3) −0.4108 (3) 0.0278 (11)
C18 0.0724 (5) −0.1463 (3) −0.3978 (3) 0.0287 (12)
H18A 0.132997 −0.123812 −0.334828 0.034*
H18B −0.006193 −0.105610 −0.401545 0.034*
C19 0.1664 (5) −0.1164 (3) −0.4662 (3) 0.0359 (12)
H19A 0.108087 −0.140813 −0.529665 0.043*
H19B 0.249045 −0.153188 −0.460348 0.043*
C20 0.2255 (5) 0.0035 (3) −0.4507 (3) 0.0373 (13)
H20A 0.276718 0.028112 −0.385648 0.045*
H20B 0.142064 0.039091 −0.460546 0.045*
C21 0.2725 (6) −0.0094 (4) −0.6529 (4) 0.0706 (18)
H21A 0.180766 0.013540 −0.670484 0.106*
H21B 0.255162 −0.086153 −0.663382 0.106*
H21C 0.339876 0.015653 −0.690111 0.106*
C22 0.3997 (6) 0.1939 (4) −0.5079 (5) 0.084 (2)
H22A 0.445438 0.222461 −0.443122 0.126*
H22B 0.311213 0.221370 −0.523912 0.126*
H22C 0.466709 0.214650 −0.546789 0.126*
O6X 0.493 (3) −0.013 (5) −0.497 (6) 0.037 (3)* 0.25
O6 0.510 (3) 0.021 (4) −0.4772 (12) 0.037 (3)* 0.25
Cl1 0.38292 (17) −0.21590 (12) −0.21055 (12) 0.0683 (5)
O7 0.3941 (6) −0.2883 (5) −0.2826 (4) 0.194 (3)
O8 0.2362 (5) −0.2323 (4) −0.1955 (4) 0.1227 (19)
O9 0.4112 (6) −0.1102 (4) −0.2279 (4) 0.147 (2)
O10 0.4768 (6) −0.2161 (4) −0.1271 (4) 0.137 (2)

catena-Poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O'] perchlorate] (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0254 (4) 0.0202 (4) 0.0226 (5) −0.0021 (4) 0.0072 (4) −0.0040 (3)
Si1 0.1134 (15) 0.0274 (8) 0.0967 (15) 0.0056 (9) 0.0774 (14) 0.0135 (8)
O1 0.0404 (19) 0.0256 (16) 0.0206 (19) −0.0064 (14) 0.0113 (15) −0.0065 (14)
O2 0.051 (2) 0.0206 (16) 0.030 (2) −0.0038 (14) 0.0228 (17) −0.0013 (14)
O3 0.085 (7) 0.051 (4) 0.069 (8) 0.020 (5) 0.056 (5) 0.020 (5)
N1 0.033 (2) 0.038 (2) 0.041 (3) −0.005 (2) 0.016 (2) −0.017 (2)
N2 0.052 (3) 0.026 (2) 0.031 (3) 0.006 (2) −0.001 (2) −0.0044 (18)
C1 0.028 (3) 0.065 (4) 0.081 (5) 0.019 (3) −0.006 (3) −0.032 (4)
C2 0.072 (4) 0.048 (3) 0.058 (4) 0.024 (3) −0.022 (4) −0.009 (3)
C3 0.119 (5) 0.027 (3) 0.032 (3) −0.010 (3) 0.006 (4) 0.003 (2)
C4 0.106 (5) 0.045 (3) 0.036 (4) −0.041 (3) 0.039 (4) −0.009 (3)
C5 0.059 (4) 0.060 (4) 0.051 (4) −0.023 (3) 0.036 (3) −0.018 (3)
C6 0.026 (3) 0.025 (2) 0.023 (3) 0.000 (2) 0.008 (2) −0.002 (2)
C7 0.053 (3) 0.027 (3) 0.027 (3) −0.010 (2) 0.018 (3) −0.004 (2)
C8 0.048 (3) 0.025 (2) 0.033 (3) −0.001 (2) 0.016 (3) −0.002 (2)
C9 0.056 (3) 0.028 (3) 0.053 (4) −0.010 (2) 0.022 (3) −0.004 (2)
C10 0.274 (12) 0.096 (6) 0.091 (7) −0.042 (7) −0.030 (7) 0.047 (5)
C11 0.075 (5) 0.042 (4) 0.192 (8) −0.006 (3) 0.039 (5) 0.034 (4)
Ni2 0.0285 (5) 0.0228 (4) 0.0292 (5) −0.0009 (4) 0.0125 (4) −0.0067 (4)
Si2 0.0330 (8) 0.0396 (8) 0.0503 (10) 0.0047 (7) 0.0090 (7) 0.0156 (7)
O4 0.0421 (19) 0.0242 (16) 0.0334 (19) 0.0031 (14) 0.0212 (16) −0.0061 (14)
O5 0.053 (2) 0.0263 (17) 0.033 (2) −0.0013 (15) 0.0258 (18) −0.0061 (14)
N3 0.099 (4) 0.026 (2) 0.073 (4) 0.007 (3) 0.064 (3) −0.002 (3)
N4 0.056 (3) 0.043 (3) 0.080 (4) 0.016 (3) −0.019 (3) −0.027 (3)
C12 0.049 (4) 0.056 (4) 0.167 (7) −0.010 (3) 0.066 (5) −0.033 (4)
C13 0.039 (4) 0.062 (5) 0.188 (10) 0.014 (4) −0.027 (5) −0.048 (5)
C14 0.164 (8) 0.055 (4) 0.088 (6) 0.040 (5) −0.055 (6) 0.004 (4)
C15 0.313 (15) 0.067 (5) 0.049 (5) 0.084 (8) 0.047 (8) 0.019 (4)
C16 0.238 (11) 0.045 (4) 0.088 (7) 0.012 (6) 0.122 (7) 0.001 (4)
C17 0.028 (3) 0.028 (2) 0.024 (3) 0.005 (2) 0.003 (2) 0.000 (2)
C18 0.033 (3) 0.018 (2) 0.036 (3) 0.003 (2) 0.014 (2) 0.001 (2)
C19 0.038 (3) 0.031 (3) 0.041 (3) 0.004 (2) 0.017 (3) 0.003 (2)
C20 0.034 (3) 0.035 (3) 0.041 (3) 0.003 (2) 0.011 (3) 0.002 (2)
C21 0.079 (4) 0.088 (4) 0.045 (4) 0.017 (4) 0.011 (3) 0.017 (3)
C22 0.082 (5) 0.048 (3) 0.116 (6) −0.012 (3) 0.023 (4) 0.021 (4)
Cl1 0.0571 (10) 0.0599 (10) 0.0695 (12) 0.0139 (8) −0.0151 (10) −0.0111 (9)
O7 0.137 (5) 0.163 (5) 0.202 (6) −0.019 (4) 0.037 (4) −0.146 (5)
O8 0.077 (3) 0.154 (5) 0.144 (5) 0.026 (3) 0.017 (3) 0.050 (4)
O9 0.176 (6) 0.079 (4) 0.158 (5) −0.006 (4) −0.005 (5) 0.016 (3)
O10 0.117 (4) 0.143 (4) 0.115 (4) 0.037 (3) −0.050 (4) −0.006 (4)

catena-Poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O'] perchlorate] (II) . Geometric parameters (Å, º)

Ni1—O1 2.125 (2) Ni2—N4 2.054 (4)
Ni1—O1i 2.125 (2) Ni2—N4iii 2.054 (4)
Ni1—N1i 2.058 (3) Si2—C20 1.864 (5)
Ni1—N1 2.058 (3) Si2—C21 1.855 (5)
Ni1—N2i 2.060 (4) Si2—C22 1.845 (5)
Ni1—N2 2.060 (4) Si2—O6Xiv 1.570 (19)
Si1—O3 1.757 (8) Si2—O6X 1.651 (19)
Si1—O3ii 1.626 (7) Si2—O6iv 1.66 (2)
Si1—C9 1.837 (5) Si2—O6 1.632 (16)
Si1—C10 1.852 (9) O4—C17 1.245 (4)
Si1—C11 1.845 (5) O5—H5C 0.8199
O1—C6 1.232 (4) O5—C17 1.280 (5)
O2—H2C 0.8200 N3—H3 0.9800
O2—C6 1.291 (5) N3—C12 1.502 (8)
O3—O3ii 1.234 (13) N3—C16 1.393 (9)
N1—H1 0.9800 N4—H4 0.9800
N1—C1 1.481 (6) N4—C13 1.422 (8)
N1—C5 1.475 (6) N4—C14 1.527 (9)
N2—H2 0.9800 C12—H12A 0.9700
N2—C2 1.467 (6) C12—H12B 0.9700
N2—C3 1.461 (6) C12—C13iii 1.502 (10)
C1—H1A 0.9700 C13—H13A 0.9700
C1—H1B 0.9700 C13—H13B 0.9700
C1—C2i 1.486 (7) C14—H14A 0.9700
C2—H2B 0.9700 C14—H14B 0.9700
C2—H2A 0.9700 C14—C15 1.512 (11)
C3—H3A 0.9700 C15—H15A 0.9700
C3—H3B 0.9700 C15—H15B 0.9700
C3—C4 1.516 (7) C15—C16 1.488 (11)
C4—H4A 0.9700 C16—H16A 0.9700
C4—H4B 0.9700 C16—H16B 0.9700
C4—C5 1.507 (7) C20—H20A 0.9700
C5—H5A 0.9700 C20—H20B 0.9700
C5—H5B 0.9700 C20—C19 1.521 (5)
C6—C7 1.496 (5) C19—H19A 0.9700
C7—H7A 0.9700 C19—H19B 0.9700
C7—H7B 0.9700 C19—C18 1.512 (6)
C7—C8 1.496 (6) C18—H18A 0.9700
C8—H8A 0.9700 C18—H18B 0.9700
C8—H8B 0.9700 C18—C17 1.501 (5)
C8—C9 1.529 (5) C21—H21A 0.9600
C9—H9A 0.9700 C21—H21B 0.9600
C9—H9B 0.9700 C21—H21C 0.9600
C10—H10A 0.9600 C22—H22A 0.9600
C10—H10B 0.9600 C22—H22B 0.9600
C10—H10C 0.9600 C22—H22C 0.9600
C11—H11A 0.9600 O6X—O6Xiv 0.38 (7)
C11—H11B 0.9600 O6—O6iv 0.77 (5)
C11—H11C 0.9600 Cl1—O7 1.329 (4)
Ni2—O4iii 2.131 (2) Cl1—O8 1.421 (5)
Ni2—O4 2.131 (2) Cl1—O9 1.420 (5)
Ni2—N3iii 2.043 (4) Cl1—O10 1.380 (5)
Ni2—N3 2.043 (4)
O1—Ni1—O1i 180.0 N3iii—Ni2—N4 85.7 (2)
N1i—Ni1—O1 88.17 (12) N4—Ni2—O4iii 91.33 (14)
N1i—Ni1—O1i 91.83 (12) N4—Ni2—O4 88.67 (14)
N1—Ni1—O1i 88.17 (12) N4iii—Ni2—O4 91.33 (14)
N1—Ni1—O1 91.83 (12) N4iii—Ni2—O4iii 88.67 (14)
N1i—Ni1—N1 180.0 N4—Ni2—N4iii 180.0
N1i—Ni1—N2 85.82 (17) C21—Si2—C20 111.6 (2)
N1—Ni1—N2i 85.82 (17) C22—Si2—C20 110.6 (2)
N1i—Ni1—N2i 94.18 (17) C22—Si2—C21 109.6 (3)
N1—Ni1—N2 94.18 (17) O6Xiv—Si2—C20 113.4 (14)
N2—Ni1—O1i 87.38 (12) O6X—Si2—C20 102.5 (13)
N2i—Ni1—O1 87.38 (12) O6X—Si2—C21 107 (3)
N2—Ni1—O1 92.62 (12) O6Xiv—Si2—C21 107 (3)
N2i—Ni1—O1i 92.62 (12) O6X—Si2—C22 116 (2)
N2—Ni1—N2i 180.0 O6Xiv—Si2—C22 104 (2)
O3ii—Si1—O3 42.6 (4) O6Xiv—Si2—O6X 13 (3)
O3ii—Si1—C9 115.6 (3) O6X—Si2—O6iv 13 (3)
O3—Si1—C9 100.2 (3) O6Xiv—Si2—O6iv 17 (2)
O3—Si1—C10 131.5 (4) O6iv—Si2—C20 111.2 (17)
O3ii—Si1—C10 89.4 (4) O6—Si2—C20 103.5 (15)
O3ii—Si1—C11 121.3 (4) O6—Si2—C21 120.4 (6)
O3—Si1—C11 95.7 (3) O6iv—Si2—C21 94.3 (5)
C9—Si1—C10 109.0 (3) O6—Si2—C22 100.3 (19)
C9—Si1—C11 110.1 (3) O6iv—Si2—C22 118.5 (19)
C11—Si1—C10 108.8 (3) O6—Si2—O6iv 26.9 (17)
C6—O1—Ni1 132.9 (3) C17—O4—Ni2 133.8 (3)
C6—O2—H2C 109.8 C17—O5—H5C 109.9
Si1ii—O3—Si1 137.4 (4) Ni2—N3—H3 106.9
O3ii—O3—Si1 63.0 (6) C12—N3—Ni2 105.1 (4)
O3ii—O3—Si1ii 74.4 (7) C12—N3—H3 106.9
Ni1—N1—H1 107.4 C16—N3—Ni2 117.3 (4)
C1—N1—Ni1 105.0 (3) C16—N3—H3 106.9
C1—N1—H1 107.4 C16—N3—C12 113.2 (6)
C5—N1—Ni1 116.2 (3) Ni2—N4—H4 106.8
C5—N1—H1 107.4 C13—N4—Ni2 106.5 (4)
C5—N1—C1 113.1 (4) C13—N4—H4 106.8
Ni1—N2—H2 106.7 C13—N4—C14 115.0 (6)
C2—N2—Ni1 105.7 (3) C14—N4—Ni2 114.4 (4)
C2—N2—H2 106.7 C14—N4—H4 106.8
C3—N2—Ni1 116.1 (3) N3—C12—H12A 109.9
C3—N2—H2 106.7 N3—C12—H12B 109.9
C3—N2—C2 114.2 (4) N3—C12—C13iii 108.8 (5)
N1—C1—H1A 109.7 H12A—C12—H12B 108.3
N1—C1—H1B 109.7 C13iii—C12—H12A 109.9
N1—C1—C2i 109.7 (4) C13iii—C12—H12B 109.9
H1A—C1—H1B 108.2 N4—C13—C12iii 109.6 (6)
C2i—C1—H1A 109.7 N4—C13—H13A 109.8
C2i—C1—H1B 109.7 N4—C13—H13B 109.8
N2—C2—C1i 109.8 (4) C12iii—C13—H13A 109.8
N2—C2—H2B 109.7 C12iii—C13—H13B 109.8
N2—C2—H2A 109.7 H13A—C13—H13B 108.2
C1i—C2—H2B 109.7 N4—C14—H14A 109.0
C1i—C2—H2A 109.7 N4—C14—H14B 109.0
H2B—C2—H2A 108.2 H14A—C14—H14B 107.8
N2—C3—H3A 109.1 C15—C14—N4 113.0 (6)
N2—C3—H3B 109.1 C15—C14—H14A 109.0
N2—C3—C4 112.3 (4) C15—C14—H14B 109.0
H3A—C3—H3B 107.9 C14—C15—H15A 108.5
C4—C3—H3A 109.1 C14—C15—H15B 108.5
C4—C3—H3B 109.1 H15A—C15—H15B 107.5
C3—C4—H4A 108.1 C16—C15—C14 115.0 (6)
C3—C4—H4B 108.1 C16—C15—H15A 108.5
H4A—C4—H4B 107.3 C16—C15—H15B 108.5
C5—C4—C3 116.7 (4) N3—C16—C15 113.1 (7)
C5—C4—H4A 108.1 N3—C16—H16A 109.0
C5—C4—H4B 108.1 N3—C16—H16B 109.0
N1—C5—C4 111.4 (4) C15—C16—H16A 109.0
N1—C5—H5A 109.4 C15—C16—H16B 109.0
N1—C5—H5B 109.4 H16A—C16—H16B 107.8
C4—C5—H5A 109.4 Si2—C20—H20A 108.3
C4—C5—H5B 109.4 Si2—C20—H20B 108.3
H5A—C5—H5B 108.0 H20A—C20—H20B 107.4
O1—C6—O2 121.4 (4) C19—C20—Si2 115.9 (3)
O1—C6—C7 120.8 (4) C19—C20—H20A 108.3
O2—C6—C7 117.7 (4) C19—C20—H20B 108.3
C6—C7—H7A 108.3 C20—C19—H19A 109.0
C6—C7—H7B 108.3 C20—C19—H19B 109.0
H7A—C7—H7B 107.4 H19A—C19—H19B 107.8
C8—C7—C6 116.0 (4) C18—C19—C20 113.1 (3)
C8—C7—H7A 108.3 C18—C19—H19A 109.0
C8—C7—H7B 108.3 C18—C19—H19B 109.0
C7—C8—H8A 109.0 C19—C18—H18A 108.1
C7—C8—H8B 109.0 C19—C18—H18B 108.1
C7—C8—C9 112.8 (4) H18A—C18—H18B 107.3
H8A—C8—H8B 107.8 C17—C18—C19 116.7 (3)
C9—C8—H8A 109.0 C17—C18—H18A 108.1
C9—C8—H8B 109.0 C17—C18—H18B 108.1
Si1—C9—H9A 108.1 O4—C17—O5 121.9 (4)
Si1—C9—H9B 108.1 O4—C17—C18 120.1 (4)
C8—C9—Si1 116.8 (3) O5—C17—C18 118.0 (3)
C8—C9—H9A 108.1 Si2—C21—H21A 109.5
C8—C9—H9B 108.1 Si2—C21—H21B 109.5
H9A—C9—H9B 107.3 Si2—C21—H21C 109.5
Si1—C10—H10A 109.5 H21A—C21—H21B 109.5
Si1—C10—H10B 109.5 H21A—C21—H21C 109.5
Si1—C10—H10C 109.5 H21B—C21—H21C 109.5
H10A—C10—H10B 109.5 Si2—C22—H22A 109.5
H10A—C10—H10C 109.5 Si2—C22—H22B 109.5
H10B—C10—H10C 109.5 Si2—C22—H22C 109.5
Si1—C11—H11A 109.5 H22A—C22—H22B 109.5
Si1—C11—H11B 109.5 H22A—C22—H22C 109.5
Si1—C11—H11C 109.5 H22B—C22—H22C 109.5
H11A—C11—H11B 109.5 Si2iv—O6X—Si2 167 (3)
H11A—C11—H11C 109.5 O6Xiv—O6X—Si2iv 96 (6)
H11B—C11—H11C 109.5 O6Xiv—O6X—Si2 71 (6)
O4—Ni2—O4iii 180.00 (3) Si2—O6—Si2iv 153.1 (17)
N3iii—Ni2—O4iii 94.96 (13) O6iv—O6—Si2 78 (2)
N3—Ni2—O4 94.96 (13) O7—Cl1—O8 110.3 (3)
N3iii—Ni2—O4 85.04 (13) O7—Cl1—O9 112.0 (4)
N3—Ni2—O4iii 85.04 (13) O7—Cl1—O10 114.2 (4)
N3iii—Ni2—N3 180.0 O9—Cl1—O8 105.3 (3)
N3iii—Ni2—N4iii 94.3 (2) O10—Cl1—O8 107.7 (4)
N3—Ni2—N4 94.3 (2) O10—Cl1—O9 106.8 (3)
N3—Ni2—N4iii 85.7 (2)
Ni1—O1—C6—O2 −7.2 (6) Ni2—N4—C14—C15 −52.9 (7)
Ni1—O1—C6—C7 174.5 (3) Si2—C20—C19—C18 176.0 (3)
Ni1—N1—C1—C2i 40.9 (4) N4—C14—C15—C16 68.4 (9)
Ni1—N1—C5—C4 −56.2 (5) C12—N3—C16—C15 −178.2 (6)
Ni1—N2—C2—C1i −39.8 (4) C13—N4—C14—C15 −176.6 (6)
Ni1—N2—C3—C4 55.3 (5) C14—N4—C13—C12iii 169.9 (5)
O1—C6—C7—C8 −7.7 (6) C14—C15—C16—N3 −71.7 (8)
O2—C6—C7—C8 174.0 (4) C16—N3—C12—C13iii −168.2 (5)
O3ii—Si1—O3—Si1ii −0.001 (2) C20—Si2—O6X—Si2iv −148 (28)
O3—Si1—C9—C8 81.0 (4) C20—Si2—O6X—O6Xiv −148 (28)
O3ii—Si1—C9—C8 39.0 (5) C20—Si2—O6—Si2iv 110 (7)
N2—C3—C4—C5 −70.0 (6) C20—Si2—O6—O6iv 110 (7)
C1—N1—C5—C4 −177.7 (4) C20—C19—C18—C17 177.2 (4)
C2—N2—C3—C4 178.7 (4) C19—C18—C17—O4 3.3 (6)
C3—N2—C2—C1i −168.7 (4) C19—C18—C17—O5 −175.7 (4)
C3—C4—C5—N1 70.1 (5) C21—Si2—C20—C19 52.0 (4)
C5—N1—C1—C2i 168.6 (4) C21—Si2—O6X—Si2iv 95 (29)
C6—C7—C8—C9 177.5 (4) C21—Si2—O6X—O6Xiv 95 (29)
C7—C8—C9—Si1 176.9 (4) C21—Si2—O6—Si2iv −15 (9)
C9—Si1—O3—Si1ii −116.9 (7) C21—Si2—O6—O6iv −15 (9)
C9—Si1—O3—O3ii −116.9 (7) C22—Si2—C20—C19 174.3 (4)
C10—Si1—O3—Si1ii 10.0 (10) C22—Si2—O6X—Si2iv −27 (30)
C10—Si1—O3—O3ii 10.0 (10) C22—Si2—O6X—O6Xiv −27 (30)
C10—Si1—C9—C8 −59.7 (5) C22—Si2—O6—Si2iv −135 (8)
C11—Si1—O3—Si1ii 131.5 (8) C22—Si2—O6—O6iv −135 (8)
C11—Si1—O3—O3ii 131.5 (8) O6Xiv—Si2—C20—C19 −70 (4)
C11—Si1—C9—C8 −179.0 (4) O6X—Si2—C20—C19 −62 (3)
Ni2—O4—C17—O5 −16.3 (6) O6Xiv—Si2—O6X—Si2iv −0.01 (14)
Ni2—O4—C17—C18 164.8 (3) O6iv—Si2—C20—C19 −51.9 (12)
Ni2—N3—C12—C13iii −39.0 (6) O6—Si2—C20—C19 −79.0 (15)
Ni2—N3—C16—C15 59.1 (7) O6iv—Si2—O6—Si2iv 0.006 (14)
Ni2—N4—C13—C12iii 42.1 (6)

Symmetry codes: (i) −x, −y, −z; (ii) −x−1, −y−1, −z; (iii) −x, −y−1, −z−1; (iv) −x+1, −y, −z−1.

catena-Poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O'] perchlorate] (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.98 2.51 3.225 (5) 130
N1—H1···O8 0.98 2.45 3.315 (6) 147
N2—H2···O2 0.98 2.38 3.143 (4) 134
N3—H3···O5 0.98 2.01 2.901 (5) 150
N4—H4···O7 0.98 2.18 3.012 (6) 142
O2—H2C···O5 0.82 1.84 2.456 (4) 131
O2—H2C···O8 0.82 2.65 3.260 (5) 133
O5—H5C···O2 0.82 1.70 2.456 (4) 151

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Barefield, E. K., Wagner, F., Herlinger, A. W. & Dahl, A. R. (1976). Inorg. Synth. 16, 220–224.
  3. Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108.
  4. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  5. Elsaidi, S. K., Mohamed, M. H., Banerjee, D. & Thallapally, P. K. (2018). Coord. Chem. Rev. 358, 125–152.
  6. Farrusseng, D. (2011). Editor. Metal-Organic Frameworks Applications from Catalysis to Gas Storage, Weinheim: Wiley-VCH.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Kaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications. Weinheim: Wiley-VCH.
  9. Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.
  10. Lee, J. H., Jeoung, S., Chung, Y. G. & Moon, H. R. (2019). Coord. Chem. Rev. 389, 161–188.
  11. MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials, Hoboken: John Wiley and Sons.
  12. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  13. Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press.
  14. Mulvaney, J. E. & Marvel, C. S. (1961). J. Polym. Sci. 50, 541–547.
  15. Racles, C., Shova, S., Cazacu, M. & Timpu, D. (2013). Polymer, 54, 6096–6104.
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.
  19. Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.
  20. Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835. [DOI] [PubMed]
  21. Vlad, A., Cazacu, M., Zaltariov, M.-F., Bargan, A., Shova, S. & Turta, C. (2014). J. Mol. Struct. 1060, 94–101.
  22. Vlad, A., Cazacu, M., Zaltariov, M.-F., Shova, S., Turta, C. & Airinei, A. (2013a). Polymer, 54, 43–53.
  23. Vlad, A., Zaltariov, M.-F., Shova, S., Novitchi, G., Varganici, C.-D., Train, C. & Cazacu, M. (2013b). CrystEngComm, 15, 5368–5375.
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  25. Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands, Kiev: Naukova Dumka. (In Russian.)
  26. Zaltariov, M.-F., Cazacu, M., Sacarescu, L., Vlad, A., Novitchi, G., Train, C., Shova, S. & Arion, V. B. (2016). Macromolecules, 49, 6163–6172.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989020002327/hb7892sup1.cif

e-76-00446-sup1.cif (68.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989020002327/hb7892Isup2.hkl

e-76-00446-Isup2.hkl (217.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989020002327/hb7892IIsup3.hkl

e-76-00446-IIsup3.hkl (526KB, hkl)

CCDC references: 1985068, 1985067

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES