Skip to main content
Redox Report : Communications in Free Radical Research logoLink to Redox Report : Communications in Free Radical Research
. 2013 Jul 19;15(5):202–206. doi: 10.1179/135100010X12826446921581

On the origin of reactive oxygen species and antioxidative mechanisms in Enterococcus faecalis

Tomas Szemes 1, Barbora Vlkova 2, Gabriel Minarik 2, Lubomira Tothova 3, Hana Drahovska 3, Jan Turna 3, Peter Celec 4
PMCID: PMC7067330  PMID: 21062535

Abstract

Enterococci cause serious infections due to a number of virulence factors and wide-spread antibiotic resistance. A molecular mechanism involved in the pathogenesis of enterococcal infections is oxidative stress. Enterococcus faecalis produces a variety of antioxidative enzymes involved in the oxidative stress response, a process that is regulated by several transcriptional regulators. In addition, direct production of free radicals derived from oxygen has been proved and hypothesized, respectively, to contribute to the pathogenesis of colorectal cancer and periodontitis. The understanding of molecular mechanisms behind the production of free radicals and the antioxidative status in E. faecalis might suggest new alternatives for the treatment of enterococcal infections and related diseases.

Keywords: ENTEROCOCCUS FAECALIS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESS, FREE RADICALS, INFECTION

Full Text

The Full Text of this article is available as a PDF (138.4 KB).

References

  • 1.Gardini F, Martuscelli M, Caruso MC et al. Effects of pH, temperature and NaC1 concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Int J Food Microbiol 2001; 64: 105-117. [DOI] [PubMed] [Google Scholar]
  • 2.Van den Berghe E, De Winter T, De Vuyst L. Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature- and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion. Int J Food Microbiol 2006; 107: 159–170. [DOI] [PubMed] [Google Scholar]
  • 3.Moreno MRF, Sarantinopoulos P, Tsakalidou E et al. The role and application of enterococci in food and health. Int J Food Microbiol 2006; 106: 1–24. [DOI] [PubMed] [Google Scholar]
  • 4.Jett BD, Huycke MM, Gilmore MS. Virulence of Enterococci. C1M Microbiol Rev 1994; 7: 462–467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Gonzales RD, Schreckenberger PC, Graham MB et al. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 2001; 357: 1179. [DOI] [PubMed] [Google Scholar]
  • 6.Paulsen IT, Banerjei L, Myers GSA et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 2003; 299: 2071–2074. [DOI] [PubMed] [Google Scholar]
  • 7.Lebreton F, Riboulet-Bisson E, Serror P et al. ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun 2009; 77: 2832–2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Giard JC, Riboulet E, Vemeuil N et al. Characterization of Ers, a PrfA-like regulator of Enterococcus faecalis. FEMS Immunol Med Microbiol 2006; 46: 410–418. [DOI] [PubMed] [Google Scholar]
  • 9.Riboulet-Bisson E, Le Jeune A, Benachour A et al. Ers a Crp/Fnr-like transcriptional regulator of Enterococcus faecalis. 15th Meeting of the Lactic-Acid-Bacteria-Club. Rennes, France, 2007; 71-74. [DOI] [PubMed]
  • 10.Riboulet-Bisson E, Hartke A, Auffray Y et al. Ers controls glycerol metabolism in Enterococcus faecalis. Curr Microbiol 2009; 58: 201–204. [DOI] [PubMed] [Google Scholar]
  • 11.Riboulet-Bisson E, Sanguinetti M, Budin-Vemeuil A et al. Characterization of the Ers regulon of Enterococcus faecalis. Infect Immun 2008; 76: 3064–3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Riboulet E, Verneuil N, La Carbona S et al. Relationships between oxidative stress response and virulence in Enterococcus faecalis. J Mol Microbiol Biotechnol 2007; 13: 140–146. [DOI] [PubMed] [Google Scholar]
  • 13.Storz G, Imlay JA. Oxidative stress. Curr Opin Microbiol 1999; 2: 188–194. [DOI] [PubMed] [Google Scholar]
  • 14.Smith JA. Neutrophils, host-defense and inflammation - a double-edged sword. J Leukoc Biol 1994; 56: 672–686. [DOI] [PubMed] [Google Scholar]
  • 15.Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev 2007; 65: S140–S146. [DOI] [PubMed] [Google Scholar]
  • 16.Sakamoto M, Komagata K. Aerobic growth of and activities of NADH oxidase and NADH peroxidase in lactic acid bacteria. J Ferment Bioeng 1996; 82: 210–216. [Google Scholar]
  • 17.Bizzini A, Zhao C, Budin-Vemeuil A et al. Glycerol is metabolized in a complex and strain dependent manner in Enterococcus faecalis. J Bacteriol 2010; 192: 779–785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Huycke MM, Abrams V, Moore DR. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis 2002; 23: 529–536. [DOI] [PubMed] [Google Scholar]
  • 19.Huycke MM, Moore D, Joyce W et al. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 2001; 42: 729–740. [DOI] [PubMed] [Google Scholar]
  • 20.Huycke MM, Moore DR. In vivo production of hydroxyl radical by Enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radic Biol Med 2002; 33: 818–826. [DOI] [PubMed] [Google Scholar]
  • 21.Huycke MM, Gilmore MS. In vivo survival of Enterococcus faecalis is enhanced by extracellular superoxide production In: Horaud T, Bouvet A, Leclercq R et al. (eds) XIII Lancefield International Symposium on Streptococci and Streptococcal Diseases. Paris, France: Plenum Press Div Plenum Publishing Corp; 1996; 781-784. [Google Scholar]
  • 22.Wang XM, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology 2007; 132: 551–561. [DOI] [PubMed] [Google Scholar]
  • 23.Wang XM, Allen TD, May RJ et al. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res 2008; 68: 9909–9917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Allen TD, Moore DR, Wang XM et al. Dichotomous metabolism of Enterococcus faecalis induced by haematin starvation modulates colonic gene expression. J Med Microbiol 2008; 57: 1193–1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Winters MD, Schlinke TL, Joyce WA et al. Prospective case-cohort study of intestinal colonization with enterococci that produce extracellular superoxide and the risk for colorectal adenomas or cancer. Am J Gastroentero11998; 93: 2491-2500. [DOI] [PubMed] [Google Scholar]
  • 26.Balamurugan R, Rajendiran E, George S et al. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 2008; 23: 1298–1303. [DOI] [PubMed] [Google Scholar]
  • 27.Slattery ML, Fitzpatrick FA. Convergence of hormones, inflammation, and energy-related factors: a novel pathway of cancer etiology. Cancer Prey Res 2009; 2: 922–930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Vemeuil N, Maze A, Sanguinetti M et al. Implication of (Mn)superoxide dismutase of Enterococcus faecalis in oxidative stress responses and survival inside macrophages. Microbiology 2006; 152: 2579–2589. [DOI] [PubMed] [Google Scholar]
  • 29.Bizzini A, Zhao C, Auffray Y et al. The Enterococcus faecalis superoxide dismutase is essential for its tolerance to vancomycin and penicillin. J Antimicrob Chemother 2009; 64: 1196–1202. [DOI] [PubMed] [Google Scholar]
  • 30.Fisher K, Phillips C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 2009; 155: 1749–1757. [DOI] [PubMed] [Google Scholar]
  • 31.Frankenberg L, Brugna M, Hederstedt L. Enterococcus faecalis heme-dependent catalase. 6th International Conference on Streptococcal, Lactococcal, and Enterococcal Genetics. Asheville, North Carolina`: Am Soc Microbiol 2002; 6351-6356. [DOI] [PMC free article] [PubMed]
  • 32.Patel MP, Marcinkeviciene J, Blanchard JS. Enterococcus faecalis glutathione reductase: purification, characterization and expression under normal and hyperbaric 0-2 conditions. FEMS Microbiol Lett 1998; 166: 155–163. [DOI] [PubMed] [Google Scholar]
  • 33.Coburn PS, Baghdayan AS, Dolan GT et al.An AraC-type transcriptional regulator encoded on the Enterococcus faecalis pathogenicity island contributes to pathogenesis and intracellular macrophage survival. Infect Immun 2008; 76: 5668–5676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Herbig AF, Helmann JD. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 2001; 41: 849–859. [DOI] [PubMed] [Google Scholar]
  • 35.Verneuil N, Rince A, Sanguinetti M et al. Contribution of a PerR-like regulator to the oxidative-stress response and virulence of Enterococcus faecalis. Microbiology 2005; 151: 3997–4004. [DOI] [PubMed] [Google Scholar]
  • 36.Ross RP, Claiborne A. Evidence for regulation of the NADH peroxidase gene (npr) from Enterococcus faecalis by OxyR. FEMS Microbiol Lett 1997; 151: 177–183. [DOI] [PubMed] [Google Scholar]
  • 37.Johnson JR, Clabots C, Rosen H. Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli 01:K1 :H7 in a mouse model of ascending urinary tract infection. Infect Immun 2006; 74: 461–468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.La Carbona S, Sauvageot N, Giard JC et al. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, alkyl hydroperoxide reductase and thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol Microbiol 2007; 66: 1148-1163. [DOI] [PubMed] [Google Scholar]
  • 39.Verneuil N, Le Breton Y, Hartke A et al. Identification of a new oxidative stress transcriptional regulator in Enterococcus faecalis. Lait 2004; 84: 69–76. [Google Scholar]
  • 40.Verneuil N, Sanguinetti M, Le Breton Y et al. Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect Immun 2004; 72: 4424–4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Verneuil N, Rince A, Sanguinetti M et al. Implication of hypR in the virulence and oxidative stress response of Enterococcus faecalis. FEMS Microbiol Lett 2005; 252: 137–141. [DOI] [PubMed] [Google Scholar]
  • 42.Kayaoglu G, Orstavik D. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Grit Rev Oral Biol Med 2004; 15: 308–320. [DOI] [PubMed] [Google Scholar]
  • 43.Vlkova B, Celec P. Does Enterococcus faecalis contribute to salivary thiobarbituric acid-reacting substances? In Vivo 2009; 23: 343–345. [PubMed] [Google Scholar]
  • 44.Tendolkar PM, Baghdayan AS, Shankar N. Pathogenic enterococci: new developments in the 21st century. Cell Mol Life Sci 2003; 60: 2622–2636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1.Gardini F, Martuscelli M, Caruso MC et al. Effects of pH, temperature and NaC1 concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Int J Food Microbiol 2001; 64: 105-117. [DOI] [PubMed] [Google Scholar]
  • 2.Van den Berghe E, De Winter T, De Vuyst L. Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature- and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion. Int J Food Microbiol 2006; 107: 159–170. [DOI] [PubMed] [Google Scholar]
  • 3.Moreno MRF, Sarantinopoulos P, Tsakalidou E et al. The role and application of enterococci in food and health. Int J Food Microbiol 2006; 106: 1–24. [DOI] [PubMed] [Google Scholar]
  • 4.Jett BD, Huycke MM, Gilmore MS. Virulence of Enterococci. C1M Microbiol Rev 1994; 7: 462–467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Gonzales RD, Schreckenberger PC, Graham MB et al. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 2001; 357: 1179. [DOI] [PubMed] [Google Scholar]
  • 6.Paulsen IT, Banerjei L, Myers GSA et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 2003; 299: 2071–2074. [DOI] [PubMed] [Google Scholar]
  • 7.Lebreton F, Riboulet-Bisson E, Serror P et al. ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun 2009; 77: 2832–2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Giard JC, Riboulet E, Vemeuil N et al. Characterization of Ers, a PrfA-like regulator of Enterococcus faecalis. FEMS Immunol Med Microbiol 2006; 46: 410–418. [DOI] [PubMed] [Google Scholar]
  • 9.Riboulet-Bisson E, Le Jeune A, Benachour A et al. Ers a Crp/Fnr-like transcriptional regulator of Enterococcus faecalis. 15th Meeting of the Lactic-Acid-Bacteria-Club. Rennes, France, 2007; 71-74.
  • 10.Riboulet-Bisson E, Hartke A, Auffray Y et al. Ers controls glycerol metabolism in Enterococcus faecalis. Curr Microbiol 2009; 58: 201–204. [DOI] [PubMed] [Google Scholar]
  • 11.Riboulet-Bisson E, Sanguinetti M, Budin-Vemeuil A et al. Characterization of the Ers regulon of Enterococcus faecalis. Infect Immun 2008; 76: 3064–3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Riboulet E, Verneuil N, La Carbona S et al. Relationships between oxidative stress response and virulence in Enterococcus faecalis. J Mol Microbiol Biotechnol 2007; 13: 140–146. [DOI] [PubMed] [Google Scholar]
  • 13.Storz G, Imlay JA. Oxidative stress. Curr Opin Microbiol 1999; 2: 188–194. [DOI] [PubMed] [Google Scholar]
  • 14.Smith JA. Neutrophils, host-defense and inflammation - a double-edged sword. J Leukoc Biol 1994; 56: 672–686. [DOI] [PubMed] [Google Scholar]
  • 15.Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev 2007; 65: S140–S146. [DOI] [PubMed] [Google Scholar]
  • 16.Sakamoto M, Komagata K. Aerobic growth of and activities of NADH oxidase and NADH peroxidase in lactic acid bacteria. J Ferment Bioeng 1996; 82: 210–216. [Google Scholar]
  • 17.Bizzini A, Zhao C, Budin-Vemeuil A et al. Glycerol is metabolized in a complex and strain dependent manner in Enterococcus faecalis. J Bacteriol 2010; 192: 779–785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Huycke MM, Abrams V, Moore DR. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis 2002; 23: 529–536. [DOI] [PubMed] [Google Scholar]
  • 19.Huycke MM, Moore D, Joyce W et al. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 2001; 42: 729–740. [DOI] [PubMed] [Google Scholar]
  • 20.Huycke MM, Moore DR. In vivo production of hydroxyl radical by Enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radic Biol Med 2002; 33: 818–826. [DOI] [PubMed] [Google Scholar]
  • 21.Huycke MM, Gilmore MS. In vivo survival of Enterococcus faecalis is enhanced by extracellular superoxide production In: Horaud T, Bouvet A, Leclercq R et al. (eds) XIII Lancefield International Symposium on Streptococci and Streptococcal Diseases Paris, France: Plenum Press Div Plenum Publishing Corp; 1996; 781-784. [Google Scholar]
  • 22.Wang XM, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology 2007; 132: 551–561. [DOI] [PubMed] [Google Scholar]
  • 23.Wang XM, Allen TD, May RJ et al. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res 2008; 68: 9909–9917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Allen TD, Moore DR, Wang XM et al. Dichotomous metabolism of Enterococcus faecalis induced by haematin starvation modulates colonic gene expression. J Med Microbiol 2008; 57: 1193–1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Winters MD, Schlinke TL, Joyce WA et al. Prospective case-cohort study of intestinal colonization with enterococci that produce extracellular superoxide and the risk for colorectal adenomas or cancer. Am J Gastroentero11998; 93: 2491-2500. [DOI] [PubMed] [Google Scholar]
  • 26.Balamurugan R, Rajendiran E, George S et al. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 2008; 23: 1298–1303. [DOI] [PubMed] [Google Scholar]
  • 27.Slattery ML, Fitzpatrick FA. Convergence of hormones, inflammation, and energy-related factors: a novel pathway of cancer etiology. Cancer Prey Res 2009; 2: 922–930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Vemeuil N, Maze A, Sanguinetti M et al. Implication of (Mn)superoxide dismutase of Enterococcus faecalis in oxidative stress responses and survival inside macrophages. Microbiology 2006; 152: 2579–2589. [DOI] [PubMed] [Google Scholar]
  • 29.Bizzini A, Zhao C, Auffray Y et al. The Enterococcus faecalis superoxide dismutase is essential for its tolerance to vancomycin and penicillin. J Antimicrob Chemother 2009; 64: 1196–1202. [DOI] [PubMed] [Google Scholar]
  • 30.Fisher K, Phillips C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 2009; 155: 1749–1757. [DOI] [PubMed] [Google Scholar]
  • 31.Frankenberg L, Brugna M, Hederstedt L. Enterococcus faecalis heme-dependent catalase. 6th International Conference on Streptococcal, Lactococcal, and Enterococcal Genetics. Asheville, North Carolina: Am Soc Microbiol 2002; 6351-6356. [DOI] [PMC free article] [PubMed]
  • 32.Patel MP, Marcinkeviciene J, Blanchard JS. Enterococcus faecalis glutathione reductase: purification, characterization and expression under normal and hyperbaric 0-2 conditions. FEMS Microbiol Lett 1998; 166: 155–163. [DOI] [PubMed] [Google Scholar]
  • 33.Coburn PS, Baghdayan AS, Dolan GT et al.An AraC-type transcriptional regulator encoded on the Enterococcus faecalis pathogenicity island contributes to pathogenesis and intracellular macrophage survival. Infect Immun 2008; 76: 5668–5676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Herbig AF, Helmann JD. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 2001; 41: 849–859. [DOI] [PubMed] [Google Scholar]
  • 35.Verneuil N, Rince A, Sanguinetti M et al. Contribution of a PerR-like regulator to the oxidative-stress response and virulence of Enterococcus faecalis. Microbiology 2005; 151: 3997–4004. [DOI] [PubMed] [Google Scholar]
  • 36.Ross RP, Claiborne A. Evidence for regulation of the NADH peroxidase gene (npr) from Enterococcus faecalis by OxyR. FEMS Microbiol Lett 1997; 151: 177–183. [DOI] [PubMed] [Google Scholar]
  • 37.Johnson JR, Clabots C, Rosen H. Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli 01:K1 :H7 in a mouse model of ascending urinary tract infection. Infect Immun 2006; 74: 461–468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.La Carbona S, Sauvageot N, Giard JC et al. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, alkyl hydroperoxide reductase and thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol Microbiol 2007; 66: 1148-1163. [DOI] [PubMed] [Google Scholar]
  • 39.Verneuil N, Le Breton Y, Hartke A et al. Identification of a new oxidative stress transcriptional regulator in Enterococcus faecalis. Lait 2004; 84: 69–76. [Google Scholar]
  • 40.Verneuil N, Sanguinetti M, Le Breton Y et al. Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect Immun 2004; 72: 4424–4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Verneuil N, Rince A, Sanguinetti M et al. Implication of hypR in the virulence and oxidative stress response of Enterococcus faecalis. FEMS Microbiol Lett 2005; 252: 137–141. [DOI] [PubMed] [Google Scholar]
  • 42.Kayaoglu G, Orstavik D. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Grit Rev Oral Biol Med 2004; 15: 308–320. [DOI] [PubMed] [Google Scholar]
  • 43.Vlkova B, Celec P. Does Enterococcus faecalis contribute to salivary thiobarbituric acid-reacting substances? In Vivo 2009; 23: 343–345. [PubMed] [Google Scholar]
  • 44.Tendolkar PM, Baghdayan AS, Shankar N. Pathogenic enterococci: new developments in the 21st century. Cell Mol Life Sci 2003; 60: 2622–2636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1.Gardini F, Martuscelli M, Caruso MC et al. Effects of pH, temperature and NaC1 concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Int J Food Microbiol 2001; 64: 105-117. [DOI] [PubMed] [Google Scholar]
  • 2.Van den Berghe E, De Winter T, De Vuyst L. Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature- and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion. Int J Food Microbiol 2006; 107: 159–170. [DOI] [PubMed] [Google Scholar]
  • 3.Moreno MRF, Sarantinopoulos P, Tsakalidou E et al. The role and application of enterococci in food and health. Int J Food Microbiol 2006; 106: 1–24. [DOI] [PubMed] [Google Scholar]
  • 4.Jett BD, Huycke MM, Gilmore MS. Virulence of Enterococci. C1M Microbiol Rev 1994; 7: 462–467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Gonzales RD, Schreckenberger PC, Graham MB et al. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 2001; 357: 1179. [DOI] [PubMed] [Google Scholar]
  • 6.Paulsen IT, Banerjei L, Myers GSA et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 2003; 299: 2071–2074. [DOI] [PubMed] [Google Scholar]
  • 7.Lebreton F, Riboulet-Bisson E, Serror P et al. ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun 2009; 77: 2832–2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Giard JC, Riboulet E, Vemeuil N et al. Characterization of Ers, a PrfA-like regulator of Enterococcus faecalis. FEMS Immunol Med Microbiol 2006; 46: 410–418. [DOI] [PubMed] [Google Scholar]
  • 9.Riboulet-Bisson E, Le Jeune A, Benachour A et al. Ers a Crp/Fnr-like transcriptional regulator of Enterococcus faecalis. 15th Meeting of the Lactic-Acid-Bacteria-Club. Rennes, France, 2007; 71-74.
  • 10.Riboulet-Bisson E, Hartke A, Auffray Y et al. Ers controls glycerol metabolism in Enterococcus faecalis. Curr Microbiol 2009; 58: 201–204. [DOI] [PubMed] [Google Scholar]
  • 11.Riboulet-Bisson E, Sanguinetti M, Budin-Vemeuil A et al. Characterization of the Ers regulon of Enterococcus faecalis. Infect Immun 2008; 76: 3064–3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Riboulet E, Verneuil N, La Carbona S et al. Relationships between oxidative stress response and virulence in Enterococcus faecalis. J Mol Microbiol Biotechnol 2007; 13: 140–146. [DOI] [PubMed] [Google Scholar]
  • 13.Storz G, Imlay JA. Oxidative stress. Curr Opin Microbiol 1999; 2: 188–194. [DOI] [PubMed] [Google Scholar]
  • 14.Smith JA. Neutrophils, host-defense and inflammation - a double-edged sword. J Leukoc Biol 1994; 56: 672–686. [DOI] [PubMed] [Google Scholar]
  • 15.Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev 2007; 65: S140–S146. [DOI] [PubMed] [Google Scholar]
  • 16.Sakamoto M, Komagata K. Aerobic growth of and activities of NADH oxidase and NADH peroxidase in lactic acid bacteria. J Ferment Bioeng 1996; 82: 210–216. [Google Scholar]
  • 17.Bizzini A, Zhao C, Budin-Vemeuil A et al. Glycerol is metabolized in a complex and strain dependent manner in Enterococcus faecalis. J Bacteriol 2010; 192: 779–785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Huycke MM, Abrams V, Moore DR. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis 2002; 23: 529–536. [DOI] [PubMed] [Google Scholar]
  • 19.Huycke MM, Moore D, Joyce W et al. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 2001; 42: 729–740. [DOI] [PubMed] [Google Scholar]
  • 20.Huycke MM, Moore DR. In vivo production of hydroxyl radical by Enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radic Biol Med 2002; 33: 818–826. [DOI] [PubMed] [Google Scholar]
  • 21.Huycke MM, Gilmore MS. In vivo survival of Enterococcus faecalis is enhanced by extracellular superoxide production In: Horaud T, Bouvet A, Leclercq R et al. (eds) XIII Lancefield International Symposium on Streptococci and Streptococcal Diseases. Paris, France: Plenum Press Div Plenum Publishing Corp; 1996; 781-784. [Google Scholar]
  • 22.Wang XM, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology 2007; 132: 551–561. [DOI] [PubMed] [Google Scholar]
  • 23.Wang XM, Allen TD, May RJ et al. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res 2008; 68: 9909–9917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Allen TD, Moore DR, Wang XM et al. Dichotomous metabolism of Enterococcus faecalis induced by haematin starvation modulates colonic gene expression. J Med Microbiol 2008; 57: 1193–1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Winters MD, Schlinke TL, Joyce WA et al. Prospective case-cohort study of intestinal colonization with enterococci that produce extracellular superoxide and the risk for colorectal adenomas or cancer. Am J Gastroentero11998; 93: 2491-2500. [DOI] [PubMed] [Google Scholar]
  • 26.Balamurugan R, Rajendiran E, George S et al. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 2008; 23: 1298–1303. [DOI] [PubMed] [Google Scholar]
  • 27.Slattery ML, Fitzpatrick FA. Convergence of hormones, inflammation, and energy-related factors: a novel pathway of cancer etiology. Cancer Prey Res 2009; 2: 922–930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Vemeuil N, Maze A, Sanguinetti M et al. Implication of (Mn)superoxide dismutase of Enterococcus faecalis in oxidative stress responses and survival inside macrophages. Microbiology 2006; 152: 2579–2589. [DOI] [PubMed] [Google Scholar]
  • 29.Bizzini A, Zhao C, Auffray Y et al. The Enterococcus faecalis superoxide dismutase is essential for its tolerance to vancomycin and penicillin. J Antimicrob Chemother 2009; 64: 1196–1202. [DOI] [PubMed] [Google Scholar]
  • 30.Fisher K, Phillips C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 2009; 155: 1749–1757. [DOI] [PubMed] [Google Scholar]
  • 31.Frankenberg L, Brugna M, Hederstedt L. Enterococcus faecalis heme-dependent catalase. 6th International Conference on Streptococcal, Lactococcal, and Enterococcal Genetics Asheville, North Carolina: Am Soc Microbiol; 2002; 6351-6356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Patel MP, Marcinkeviciene J, Blanchard JS. Enterococcus faecalis glutathione reductase: purification, characterization and expression under normal and hyperbaric 0-2 conditions. FEMS Microbiol Lett 1998; 166: 155–163. [DOI] [PubMed] [Google Scholar]
  • 33.Coburn PS, Baghdayan AS, Dolan GT et al.An AraC-type transcriptional regulator encoded on the Enterococcus faecalis pathogenicity island contributes to pathogenesis and intracellular macrophage survival. Infect Immun 2008; 76: 5668–5676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Herbig AF, Helmann JD. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 2001; 41: 849–859. [DOI] [PubMed] [Google Scholar]
  • 35.Verneuil N, Rince A, Sanguinetti M et al. Contribution of a PerR-like regulator to the oxidative-stress response and virulence of Enterococcus faecalis. Microbiology 2005; 151: 3997–4004. [DOI] [PubMed] [Google Scholar]
  • 36.Ross RP, Claiborne A. Evidence for regulation of the NADH peroxidase gene (npr) from Enterococcus faecalis by OxyR. FEMS Microbiol Lett 1997; 151: 177–183. [DOI] [PubMed] [Google Scholar]
  • 37.Johnson JR, Clabots C, Rosen H. Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli 01:K1 :H7 in a mouse model of ascending urinary tract infection. Infect Immun 2006; 74: 461–468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.La Carbona S, Sauvageot N, Giard JC et al. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, alkyl hydroperoxide reductase and thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol Microbiol 2007; 66: 1148-1163. [DOI] [PubMed] [Google Scholar]
  • 39.Verneuil N, Le Breton Y, Hartke A et al. Identification of a new oxidative stress transcriptional regulator in Enterococcus faecalis. Lait 2004; 84: 69–76. [Google Scholar]
  • 40.Verneuil N, Sanguinetti M, Le Breton Y et al. Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect Immun 2004; 72: 4424–4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Verneuil N, Rince A, Sanguinetti M et al. Implication of hypR in the virulence and oxidative stress response of Enterococcus faecalis. FEMS Microbiol Lett 2005; 252: 137–141. [DOI] [PubMed] [Google Scholar]
  • 42.Kayaoglu G, Orstavik D. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Grit Rev Oral Biol Med 2004; 15: 308–320. [DOI] [PubMed] [Google Scholar]
  • 43.Vlkova B, Celec P. Does Enterococcus faecalis contribute to salivary thiobarbituric acid-reacting substances? In Vivo 2009; 23: 343–345. [PubMed] [Google Scholar]
  • 44.Tendolkar PM, Baghdayan AS, Shankar N. Pathogenic enterococci: new developments in the 21st century. Cell Mol Life Sci 2003; 60: 2622–2636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1.Gardini F, Martuscelli M, Caruso MC et al. Effects of pH, temperature and NaC1 concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Int J Food Microbiol 2001; 64: 105-117. [DOI] [PubMed] [Google Scholar]
  • 2.Van den Berghe E, De Winter T, De Vuyst L. Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature- and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion. Int J Food Microbiol 2006; 107: 159–170. [DOI] [PubMed] [Google Scholar]
  • 3.Moreno MRF, Sarantinopoulos P, Tsakalidou E et al. The role and application of enterococci in food and health. Int J Food Microbiol 2006; 106: 1–24. [DOI] [PubMed] [Google Scholar]
  • 4.Jett BD, Huycke MM, Gilmore MS. Virulence of Enterococci. C1M Microbiol Rev 1994; 7: 462–467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Gonzales RD, Schreckenberger PC, Graham MB et al. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 2001; 357: 1179. [DOI] [PubMed] [Google Scholar]
  • 6.Paulsen IT, Banerjei L, Myers GSA et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 2003; 299: 2071–2074. [DOI] [PubMed] [Google Scholar]
  • 7.Lebreton F, Riboulet-Bisson E, Serror P et al. ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun 2009; 77: 2832–2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Giard JC, Riboulet E, Vemeuil N et al. Characterization of Ers, a PrfA-like regulator of Enterococcus faecalis. FEMS Immunol Med Microbiol 2006; 46: 410–418. [DOI] [PubMed] [Google Scholar]
  • 9.Riboulet-Bisson E, Le Jeune A, Benachour A et al. Ers a Crp/Fnr-like transcriptional regulator of Enterococcus faecalis. 15th Meeting of the Lactic-Acid-Bacteria-Club. Rennes, France, 2007; 71-74.
  • 10.Riboulet-Bisson E, Hartke A, Auffray Y et al. Ers controls glycerol metabolism in Enterococcus faecalis. Curr Microbiol 2009; 58: 201–204. [DOI] [PubMed] [Google Scholar]
  • 11.Riboulet-Bisson E, Sanguinetti M, Budin-Vemeuil A et al. Characterization of the Ers regulon of Enterococcus faecalis. Infect Immun 2008; 76: 3064–3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Riboulet E, Verneuil N, La Carbona S et al. Relationships between oxidative stress response and virulence in Enterococcus faecalis. J Mol Microbiol Biotechnol 2007; 13: 140–146. [DOI] [PubMed] [Google Scholar]
  • 13.Storz G, Imlay JA. Oxidative stress. Curr Opin Microbiol 1999; 2: 188–194. [DOI] [PubMed] [Google Scholar]
  • 14.Smith JA. Neutrophils, host-defense and inflammation - a double-edged sword. J Leukoc Biol 1994; 56: 672–686. [DOI] [PubMed] [Google Scholar]
  • 15.Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev 2007; 65: S140–S146. [DOI] [PubMed] [Google Scholar]
  • 16.Sakamoto M, Komagata K. Aerobic growth of and activities of NADH oxidase and NADH peroxidase in lactic acid bacteria. J Ferment Bioeng 1996; 82: 210–216. [Google Scholar]
  • 17.Bizzini A, Zhao C, Budin-Vemeuil A et al. Glycerol is metabolized in a complex and strain dependent manner in Enterococcus faecalis. J Bacteriol 2010; 192: 779–785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Huycke MM, Abrams V, Moore DR. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis 2002; 23: 529–536. [DOI] [PubMed] [Google Scholar]
  • 19.Huycke MM, Moore D, Joyce W et al. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 2001; 42: 729–740. [DOI] [PubMed] [Google Scholar]
  • 20.Huycke MM, Moore DR. In vivo production of hydroxyl radical by Enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radic Biol Med 2002; 33: 818–826. [DOI] [PubMed] [Google Scholar]
  • 21.Huycke MM, Gilmore MS. In vivo survival of Enterococcus faecalis is enhanced by extracellular superoxide production In: Horaud T, Bouvet A, Leclercq R et al. (eds) XIII Lancefield International Symposium on Streptococci and Streptococcal Diseases. Paris, France: Plenum Press Div Plenum Publishing Corp; 1996; 781-784. [Google Scholar]
  • 22.Wang XM, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology 2007; 132: 551–561. [DOI] [PubMed] [Google Scholar]
  • 23.Wang XM, Allen TD, May RJ et al. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res 2008; 68: 9909–9917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Allen TD, Moore DR, Wang XM et al. Dichotomous metabolism of Enterococcus faecalis induced by haematin starvation modulates colonic gene expression. J Med Microbiol 2008; 57: 1193–1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Winters MD, Schlinke TL, Joyce WA et al. Prospective case-cohort study of intestinal colonization with enterococci that produce extracellular superoxide and the risk for colorectal adenomas or cancer. Am J Gastroentero11998; 93: 2491-2500. [DOI] [PubMed] [Google Scholar]
  • 26.Balamurugan R, Rajendiran E, George S et al. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 2008; 23: 1298–1303. [DOI] [PubMed] [Google Scholar]
  • 27.Slattery ML, Fitzpatrick FA. Convergence of hormones, inflammation, and energy-related factors: a novel pathway of cancer etiology. Cancer Prey Res 2009; 2: 922–930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Vemeuil N, Maze A, Sanguinetti M et al. Implication of (Mn)superoxide dismutase of Enterococcus faecalis in oxidative stress responses and survival inside macrophages. Microbiology 2006; 152: 2579–2589. [DOI] [PubMed] [Google Scholar]
  • 29.Bizzini A, Zhao C, Auffray Y et al. The Enterococcus faecalis superoxide dismutase is essential for its tolerance to vancomycin and penicillin. J Antimicrob Chemother 2009; 64: 1196–1202. [DOI] [PubMed] [Google Scholar]
  • 30.Fisher K, Phillips C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 2009; 155: 1749–1757. [DOI] [PubMed] [Google Scholar]
  • 31.Frankenberg L, Brugna M, Hederstedt L. Enterococcus faecalis heme-dependent catalase. 6th International Conference on Streptococcal, Lactococcal, and Enterococcal Genetics Asheville, North Carolina: Am Soc Microbiol; 2002; 6351-6356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Patel MP, Marcinkeviciene J, Blanchard JS. Enterococcus faecalis glutathione reductase: purification, characterization and expression under normal and hyperbaric 0-2 conditions. FEMS Microbiol Lett 1998; 166: 155–163. [DOI] [PubMed] [Google Scholar]
  • 33.Coburn PS, Baghdayan AS, Dolan GT et al.An AraC-type transcriptional regulator encoded on the Enterococcus faecalis pathogenicity island contributes to pathogenesis and intracellular macrophage survival. Infect Immun 2008; 76: 5668–5676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Herbig AF, Helmann JD. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 2001; 41: 849–859. [DOI] [PubMed] [Google Scholar]
  • 35.Verneuil N, Rince A, Sanguinetti M et al. Contribution of a PerR-like regulator to the oxidative-stress response and virulence of Enterococcus faecalis. Microbiology 2005; 151: 3997–4004. [DOI] [PubMed] [Google Scholar]
  • 36.Ross RP, Claiborne A. Evidence for regulation of the NADH peroxidase gene (npr) from Enterococcus faecalis by OxyR. FEMS Microbiol Lett 1997; 151: 177–183. [DOI] [PubMed] [Google Scholar]
  • 37.Johnson JR, Clabots C, Rosen H. Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli 01:K1 :H7 in a mouse model of ascending urinary tract infection. Infect Immun 2006; 74: 461–468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.La Carbona S, Sauvageot N, Giard JC et al. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, alkyl hydroperoxide reductase and thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol Microbiol 2007; 66: 1148-1163. [DOI] [PubMed] [Google Scholar]
  • 39.Verneuil N, Le Breton Y, Hartke A et al. Identification of a new oxidative stress transcriptional regulator in Enterococcus faecalis. Lait 2004; 84: 69–76. [Google Scholar]
  • 40.Verneuil N, Sanguinetti M, Le Breton Y et al. Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect Immun 2004; 72: 4424–4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Verneuil N, Rince A, Sanguinetti M et al. Implication of hypR in the virulence and oxidative stress response of Enterococcus faecalis. FEMS Microbiol Lett 2005; 252: 137–141. [DOI] [PubMed] [Google Scholar]
  • 42.Kayaoglu G, Orstavik D. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Grit Rev Oral Biol Med 2004; 15: 308–320. [DOI] [PubMed] [Google Scholar]
  • 43.Vlkova B, Celec P. Does Enterococcus faecalis contribute to salivary thiobarbituric acid-reacting substances? In Vivo 2009; 23: 343–345. [PubMed] [Google Scholar]
  • 44.Tendolkar PM, Baghdayan AS, Shankar N. Pathogenic enterococci: new developments in the 21st century. Cell Mol Life Sci 2003; 60: 2622–2636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1.Gardini F, Martuscelli M, Caruso MC et al. Effects of pH, temperature and NaC1 concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Int J Food Microbiol 2001; 64: 105-117. [DOI] [PubMed] [Google Scholar]
  • 2.Van den Berghe E, De Winter T, De Vuyst L. Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature- and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion. Int J Food Microbiol 2006; 107: 159–170. [DOI] [PubMed] [Google Scholar]
  • 3.Moreno MRF, Sarantinopoulos P, Tsakalidou E et al. The role and application of enterococci in food and health. Int J Food Microbiol 2006; 106: 1–24. [DOI] [PubMed] [Google Scholar]
  • 4.Jett BD, Huycke MM, Gilmore MS. Virulence of Enterococci. C1M Microbiol Rev 1994; 7: 462–467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Gonzales RD, Schreckenberger PC, Graham MB et al. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 2001; 357: 1179. [DOI] [PubMed] [Google Scholar]
  • 6.Paulsen IT, Banerjei L, Myers GSA et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 2003; 299: 2071–2074. [DOI] [PubMed] [Google Scholar]
  • 7.Lebreton F, Riboulet-Bisson E, Serror P et al. ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun 2009; 77: 2832–2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Giard JC, Riboulet E, Vemeuil N et al. Characterization of Ers, a PrfA-like regulator of Enterococcus faecalis. FEMS Immunol Med Microbiol 2006; 46: 410–418. [DOI] [PubMed] [Google Scholar]
  • 9.Riboulet-Bisson E, Le Jeune A, Benachour A et al. Ers a Crp/Fnr-like transcriptional regulator of Enterococcus faecalis. 15th Meeting of the Lactic-Acid-Bacteria-Club. Rennes, France, 2007; 71-74.
  • 10.Riboulet-Bisson E, Hartke A, Auffray Y et al. Ers controls glycerol metabolism in Enterococcus faecalis. Curr Microbiol 2009; 58: 201–204. [DOI] [PubMed] [Google Scholar]
  • 11.Riboulet-Bisson E, Sanguinetti M, Budin-Vemeuil A et al. Characterization of the Ers regulon of Enterococcus faecalis. Infect Immun 2008; 76: 3064–3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Riboulet E, Verneuil N, La Carbona S et al. Relationships between oxidative stress response and virulence in Enterococcus faecalis. J Mol Microbiol Biotechnol 2007; 13: 140–146. [DOI] [PubMed] [Google Scholar]
  • 13.Storz G, Imlay JA. Oxidative stress. Curr Opin Microbiol 1999; 2: 188–194. [DOI] [PubMed] [Google Scholar]
  • 14.Smith JA. Neutrophils, host-defense and inflammation - a double-edged sword. J Leukoc Biol 1994; 56: 672–686. [DOI] [PubMed] [Google Scholar]
  • 15.Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev 2007; 65: S140–S146. [DOI] [PubMed] [Google Scholar]
  • 16.Sakamoto M, Komagata K. Aerobic growth of and activities of NADH oxidase and NADH peroxidase in lactic acid bacteria. J Ferment Bioeng 1996; 82: 210–216. [Google Scholar]
  • 17.Bizzini A, Zhao C, Budin-Vemeuil A et al. Glycerol is metabolized in a complex and strain dependent manner in Enterococcus faecalis. J Bacteriol 2010; 192: 779–785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Huycke MM, Abrams V, Moore DR. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis 2002; 23: 529–536. [DOI] [PubMed] [Google Scholar]
  • 19.Huycke MM, Moore D, Joyce W et al. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 2001; 42: 729–740. [DOI] [PubMed] [Google Scholar]
  • 20.Huycke MM, Moore DR. In vivo production of hydroxyl radical by Enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radic Biol Med 2002; 33: 818–826. [DOI] [PubMed] [Google Scholar]
  • 21.Huycke MM, Gilmore MS. In vivo survival of Enterococcus faecalis is enhanced by extracellular superoxide production In: Horaud T, Bouvet A, Leclercq R et al. (eds) XIII Lancefield International Symposium on Streptococci and Streptococcal Diseases Paris, France: Plenum Press Div Plenum Publishing Corp; 1996; 781-784. [Google Scholar]
  • 22.Wang XM, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology 2007; 132: 551–561. [DOI] [PubMed] [Google Scholar]
  • 23.Wang XM, Allen TD, May RJ et al. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res 2008; 68: 9909–9917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Allen TD, Moore DR, Wang XM et al. Dichotomous metabolism of Enterococcus faecalis induced by haematin starvation modulates colonic gene expression. J Med Microbiol 2008; 57: 1193–1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Winters MD, Schlinke TL, Joyce WA et al. Prospective case-cohort study of intestinal colonization with enterococci that produce extracellular superoxide and the risk for colorectal adenomas or cancer. Am J Gastroentero11998; 93: 2491-2500. [DOI] [PubMed] [Google Scholar]
  • 26.Balamurugan R, Rajendiran E, George S et al. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 2008; 23: 1298–1303. [DOI] [PubMed] [Google Scholar]
  • 27.Slattery ML, Fitzpatrick FA. Convergence of hormones, inflammation, and energy-related factors: a novel pathway of cancer etiology. Cancer Prey Res 2009; 2: 922–930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Vemeuil N, Maze A, Sanguinetti M et al. Implication of (Mn)superoxide dismutase of Enterococcus faecalis in oxidative stress responses and survival inside macrophages. Microbiology 2006; 152: 2579–2589. [DOI] [PubMed] [Google Scholar]
  • 29.Bizzini A, Zhao C, Auffray Y et al. The Enterococcus faecalis superoxide dismutase is essential for its tolerance to vancomycin and penicillin. J Antimicrob Chemother 2009; 64: 1196–1202. [DOI] [PubMed] [Google Scholar]
  • 30.Fisher K, Phillips C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 2009; 155: 1749–1757. [DOI] [PubMed] [Google Scholar]
  • 31.Frankenberg L, Brugna M, Hederstedt L. Enterococcus faecalis heme-dependent catalase. 6th International Conference on Streptococcal, Lactococcal, and Enterococcal Genetics Asheville, North Carolina: Am Soc Microbiol; 2002; 6351-6356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Patel MP, Marcinkeviciene J, Blanchard JS. Enterococcus faecalis glutathione reductase: purification, characterization and expression under normal and hyperbaric 0-2 conditions. FEMS Microbiol Lett 1998; 166: 155–163. [DOI] [PubMed] [Google Scholar]
  • 33.Coburn PS, Baghdayan AS, Dolan GT et al.An AraC-type transcriptional regulator encoded on the Enterococcus faecalis pathogenicity island contributes to pathogenesis and intracellular macrophage survival. Infect Immun 2008; 76: 5668–5676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Herbig AF, Helmann JD. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 2001; 41: 849–859. [DOI] [PubMed] [Google Scholar]
  • 35.Verneuil N, Rince A, Sanguinetti M et al. Contribution of a PerR-like regulator to the oxidative-stress response and virulence of Enterococcus faecalis. Microbiology 2005; 151: 3997–4004. [DOI] [PubMed] [Google Scholar]
  • 36.Ross RP, Claiborne A. Evidence for regulation of the NADH peroxidase gene (npr) from Enterococcus faecalis by OxyR. FEMS Microbiol Lett 1997; 151: 177–183. [DOI] [PubMed] [Google Scholar]
  • 37.Johnson JR, Clabots C, Rosen H. Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli 01:K1 :H7 in a mouse model of ascending urinary tract infection. Infect Immun 2006; 74: 461–468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.La Carbona S, Sauvageot N, Giard JC et al. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, alkyl hydroperoxide reductase and thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol Microbiol 2007; 66: 1148-1163. [DOI] [PubMed] [Google Scholar]
  • 39.Verneuil N, Le Breton Y, Hartke A et al. Identification of a new oxidative stress transcriptional regulator in Enterococcus faecalis. Lait 2004; 84: 69–76. [Google Scholar]
  • 40.Verneuil N, Sanguinetti M, Le Breton Y et al. Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect Immun 2004; 72: 4424–4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Verneuil N, Rince A, Sanguinetti M et al. Implication of hypR in the virulence and oxidative stress response of Enterococcus faecalis. FEMS Microbiol Lett 2005; 252: 137–141. [DOI] [PubMed] [Google Scholar]
  • 42.Kayaoglu G, Orstavik D. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Grit Rev Oral Biol Med 2004; 15: 308–320. [DOI] [PubMed] [Google Scholar]
  • 43.Vlkova B, Celec P. Does Enterococcus faecalis contribute to salivary thiobarbituric acid-reacting substances? In Vivo 2009; 23: 343–345. [PubMed] [Google Scholar]
  • 44.Tendolkar PM, Baghdayan AS, Shankar N. Pathogenic enterococci: new developments in the 21st century. Cell Mol Life Sci 2003; 60: 2622–2636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1.Gardini F, Martuscelli M, Caruso MC et al. Effects of pH, temperature and NaC1 concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Int J Food Microbiol 2001; 64: 105-117. [DOI] [PubMed] [Google Scholar]
  • 2.Van den Berghe E, De Winter T, De Vuyst L. Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature- and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion. Int J Food Microbiol 2006; 107: 159–170. [DOI] [PubMed] [Google Scholar]
  • 3.Moreno MRF, Sarantinopoulos P, Tsakalidou E et al. The role and application of enterococci in food and health. Int J Food Microbiol 2006; 106: 1–24. [DOI] [PubMed] [Google Scholar]
  • 4.Jett BD, Huycke MM, Gilmore MS. Virulence of Enterococci. C1M Microbiol Rev 1994; 7: 462–467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Gonzales RD, Schreckenberger PC, Graham MB et al. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 2001; 357: 1179. [DOI] [PubMed] [Google Scholar]
  • 6.Paulsen IT, Banerjei L, Myers GSA et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 2003; 299: 2071–2074. [DOI] [PubMed] [Google Scholar]
  • 7.Lebreton F, Riboulet-Bisson E, Serror P et al. ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun 2009; 77: 2832–2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Giard JC, Riboulet E, Vemeuil N et al. Characterization of Ers, a PrfA-like regulator of Enterococcus faecalis. FEMS Immunol Med Microbiol 2006; 46: 410–418. [DOI] [PubMed] [Google Scholar]
  • 9.Riboulet-Bisson E, Le Jeune A, Benachour A et al. Ers a Crp/Fnr-like transcriptional regulator of Enterococcus faecalis. 15th Meeting of the Lactic-Acid-Bacteria-Club. Rennes, France, 2007; 71-74.
  • 10.Riboulet-Bisson E, Hartke A, Auffray Y et al. Ers controls glycerol metabolism in Enterococcus faecalis. Curr Microbiol 2009; 58: 201–204. [DOI] [PubMed] [Google Scholar]
  • 11.Riboulet-Bisson E, Sanguinetti M, Budin-Vemeuil A et al. Characterization of the Ers regulon of Enterococcus faecalis. Infect Immun 2008; 76: 3064–3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Riboulet E, Verneuil N, La Carbona S et al. Relationships between oxidative stress response and virulence in Enterococcus faecalis. J Mol Microbiol Biotechnol 2007; 13: 140–146. [DOI] [PubMed] [Google Scholar]
  • 13.Storz G, Imlay JA. Oxidative stress. Curr Opin Microbiol 1999; 2: 188–194. [DOI] [PubMed] [Google Scholar]
  • 14.Smith JA. Neutrophils, host-defense and inflammation - a double-edged sword. J Leukoc Biol 1994; 56: 672–686. [DOI] [PubMed] [Google Scholar]
  • 15.Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev 2007; 65: S140–S146. [DOI] [PubMed] [Google Scholar]
  • 16.Sakamoto M, Komagata K. Aerobic growth of and activities of NADH oxidase and NADH peroxidase in lactic acid bacteria. J Ferment Bioeng 1996; 82: 210–216. [Google Scholar]
  • 17.Bizzini A, Zhao C, Budin-Vemeuil A et al. Glycerol is metabolized in a complex and strain dependent manner in Enterococcus faecalis. J Bacteriol 2010; 192: 779–785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Huycke MM, Abrams V, Moore DR. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis 2002; 23: 529–536. [DOI] [PubMed] [Google Scholar]
  • 19.Huycke MM, Moore D, Joyce W et al. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 2001; 42: 729–740. [DOI] [PubMed] [Google Scholar]
  • 20.Huycke MM, Moore DR. In vivo production of hydroxyl radical by Enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radic Biol Med 2002; 33: 818–826. [DOI] [PubMed] [Google Scholar]
  • 21.Huycke MM, Gilmore MS. In vivo survival of Enterococcus faecalis is enhanced by extracellular superoxide production In: Horaud T, Bouvet A, Leclercq R et al. (eds) XIII Lancefield International Symposium on Streptococci and Streptococcal Diseases Paris, France: Plenum Press Div Plenum Publishing Corp; 1996; 781-784. [Google Scholar]
  • 22.Wang XM, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology 2007; 132: 551–561. [DOI] [PubMed] [Google Scholar]
  • 23.Wang XM, Allen TD, May RJ et al. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res 2008; 68: 9909–9917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Allen TD, Moore DR, Wang XM et al. Dichotomous metabolism of Enterococcus faecalis induced by haematin starvation modulates colonic gene expression. J Med Microbiol 2008; 57: 1193–1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Winters MD, Schlinke TL, Joyce WA et al. Prospective case-cohort study of intestinal colonization with enterococci that produce extracellular superoxide and the risk for colorectal adenomas or cancer. Am J Gastroentero11998; 93: 2491-2500. [DOI] [PubMed] [Google Scholar]
  • 26.Balamurugan R, Rajendiran E, George S et al. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 2008; 23: 1298–1303. [DOI] [PubMed] [Google Scholar]
  • 27.Slattery ML, Fitzpatrick FA. Convergence of hormones, inflammation, and energy-related factors: a novel pathway of cancer etiology. Cancer Prey Res 2009; 2: 922–930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Vemeuil N, Maze A, Sanguinetti M et al. Implication of (Mn)superoxide dismutase of Enterococcus faecalis in oxidative stress responses and survival inside macrophages. Microbiology 2006; 152: 2579–2589. [DOI] [PubMed] [Google Scholar]
  • 29.Bizzini A, Zhao C, Auffray Y et al. The Enterococcus faecalis superoxide dismutase is essential for its tolerance to vancomycin and penicillin. J Antimicrob Chemother 2009; 64: 1196–1202. [DOI] [PubMed] [Google Scholar]
  • 30.Fisher K, Phillips C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 2009; 155: 1749–1757. [DOI] [PubMed] [Google Scholar]
  • 31.Frankenberg L, Brugna M, Hederstedt L. Enterococcus faecalis heme-dependent catalase. 6th International Conference on Streptococcal, Lactococcal, and Enterococcal Genetics Asheville, North Carolina: Am Soc Microbiol; 2002; 6351-6356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Patel MP, Marcinkeviciene J, Blanchard JS. Enterococcus faecalis glutathione reductase: purification, characterization and expression under normal and hyperbaric 0-2 conditions. FEMS Microbiol Lett 1998; 166: 155–163. [DOI] [PubMed] [Google Scholar]
  • 33.Coburn PS, Baghdayan AS, Dolan GT et al.An AraC-type transcriptional regulator encoded on the Enterococcus faecalis pathogenicity island contributes to pathogenesis and intracellular macrophage survival. Infect Immun 2008; 76: 5668–5676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Herbig AF, Helmann JD. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 2001; 41: 849–859. [DOI] [PubMed] [Google Scholar]
  • 35.Verneuil N, Rince A, Sanguinetti M et al. Contribution of a PerR-like regulator to the oxidative-stress response and virulence of Enterococcus faecalis. Microbiology 2005; 151: 3997–4004. [DOI] [PubMed] [Google Scholar]
  • 36.Ross RP, Claiborne A. Evidence for regulation of the NADH peroxidase gene (npr) from Enterococcus faecalis by OxyR. FEMS Microbiol Lett 1997; 151: 177–183. [DOI] [PubMed] [Google Scholar]
  • 37.Johnson JR, Clabots C, Rosen H. Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli 01:K1 :H7 in a mouse model of ascending urinary tract infection. Infect Immun 2006; 74: 461–468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.La Carbona S, Sauvageot N, Giard JC et al. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, alkyl hydroperoxide reductase and thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol Microbiol 2007; 66: 1148-1163. [DOI] [PubMed] [Google Scholar]
  • 39.Verneuil N, Le Breton Y, Hartke A et al. Identification of a new oxidative stress transcriptional regulator in Enterococcus faecalis. Lait 2004; 84: 69–76. [Google Scholar]
  • 40.Verneuil N, Sanguinetti M, Le Breton Y et al. Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect Immun 2004; 72: 4424–4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Verneuil N, Rince A, Sanguinetti M et al. Implication of hypR in the virulence and oxidative stress response of Enterococcus faecalis. FEMS Microbiol Lett 2005; 252: 137–141. [DOI] [PubMed] [Google Scholar]
  • 42.Kayaoglu G, Orstavik D. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Grit Rev Oral Biol Med 2004; 15: 308–320. [DOI] [PubMed] [Google Scholar]
  • 43.Vlkova B, Celec P. Does Enterococcus faecalis contribute to salivary thiobarbituric acid-reacting substances? In Vivo 2009; 23: 343–345. [PubMed] [Google Scholar]
  • 44.Tendolkar PM, Baghdayan AS, Shankar N. Pathogenic enterococci: new developments in the 21st century. Cell Mol Life Sci 2003; 60: 2622–2636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1.Gardini F, Martuscelli M, Caruso MC et al. Effects of pH, temperature and NaC1 concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Int J Food Microbiol 2001; 64: 105-117. [DOI] [PubMed] [Google Scholar]
  • 2.Van den Berghe E, De Winter T, De Vuyst L. Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature- and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion. Int J Food Microbiol 2006; 107: 159–170. [DOI] [PubMed] [Google Scholar]
  • 3.Moreno MRF, Sarantinopoulos P, Tsakalidou E et al. The role and application of enterococci in food and health. Int J Food Microbiol 2006; 106: 1–24. [DOI] [PubMed] [Google Scholar]
  • 4.Jett BD, Huycke MM, Gilmore MS. Virulence of Enterococci. C1M Microbiol Rev 1994; 7: 462–467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Gonzales RD, Schreckenberger PC, Graham MB et al. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 2001; 357: 1179. [DOI] [PubMed] [Google Scholar]
  • 6.Paulsen IT, Banerjei L, Myers GSA et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 2003; 299: 2071–2074. [DOI] [PubMed] [Google Scholar]
  • 7.Lebreton F, Riboulet-Bisson E, Serror P et al. ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun 2009; 77: 2832–2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Giard JC, Riboulet E, Vemeuil N et al. Characterization of Ers, a PrfA-like regulator of Enterococcus faecalis. FEMS Immunol Med Microbiol 2006; 46: 410–418. [DOI] [PubMed] [Google Scholar]
  • 9.Riboulet-Bisson E, Le Jeune A, Benachour A et al. Ers a Crp/Fnr-like transcriptional regulator of Enterococcus faecalis. 15th Meeting of the Lactic-Acid-Bacteria-Club. Rennes, France, 2007; 71-74.
  • 10.Riboulet-Bisson E, Hartke A, Auffray Y et al. Ers controls glycerol metabolism in Enterococcus faecalis. Curr Microbiol 2009; 58: 201–204. [DOI] [PubMed] [Google Scholar]
  • 11.Riboulet-Bisson E, Sanguinetti M, Budin-Vemeuil A et al. Characterization of the Ers regulon of Enterococcus faecalis. Infect Immun 2008; 76: 3064–3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Riboulet E, Verneuil N, La Carbona S et al. Relationships between oxidative stress response and virulence in Enterococcus faecalis. J Mol Microbiol Biotechnol 2007; 13: 140–146. [DOI] [PubMed] [Google Scholar]
  • 13.Storz G, Imlay JA. Oxidative stress. Curr Opin Microbiol 1999; 2: 188–194. [DOI] [PubMed] [Google Scholar]
  • 14.Smith JA. Neutrophils, host-defense and inflammation - a double-edged sword. J Leukoc Biol 1994; 56: 672–686. [DOI] [PubMed] [Google Scholar]
  • 15.Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev 2007; 65: S140–S146. [DOI] [PubMed] [Google Scholar]
  • 16.Sakamoto M, Komagata K. Aerobic growth of and activities of NADH oxidase and NADH peroxidase in lactic acid bacteria. J Ferment Bioeng 1996; 82: 210–216. [Google Scholar]
  • 17.Bizzini A, Zhao C, Budin-Vemeuil A et al. Glycerol is metabolized in a complex and strain dependent manner in Enterococcus faecalis. J Bacteriol 2010; 192: 779–785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Huycke MM, Abrams V, Moore DR. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis 2002; 23: 529–536. [DOI] [PubMed] [Google Scholar]
  • 19.Huycke MM, Moore D, Joyce W et al. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 2001; 42: 729–740. [DOI] [PubMed] [Google Scholar]
  • 20.Huycke MM, Moore DR. In vivo production of hydroxyl radical by Enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radic Biol Med 2002; 33: 818–826. [DOI] [PubMed] [Google Scholar]
  • 21.Huycke MM, Gilmore MS. In vivo survival of Enterococcus faecalis is enhanced by extracellular superoxide production In: Horaud T, Bouvet A, Leclercq R et al. (eds) XIII Lancefield International Symposium on Streptococci and Streptococcal Diseases Paris, France: Plenum Press Div Plenum Publishing Corp; 1996; 781-784. [Google Scholar]
  • 22.Wang XM, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology 2007; 132: 551–561. [DOI] [PubMed] [Google Scholar]
  • 23.Wang XM, Allen TD, May RJ et al. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res 2008; 68: 9909–9917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Allen TD, Moore DR, Wang XM et al. Dichotomous metabolism of Enterococcus faecalis induced by haematin starvation modulates colonic gene expression. J Med Microbiol 2008; 57: 1193–1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Winters MD, Schlinke TL, Joyce WA et al. Prospective case-cohort study of intestinal colonization with enterococci that produce extracellular superoxide and the risk for colorectal adenomas or cancer. Am J Gastroentero11998; 93: 2491-2500. [DOI] [PubMed] [Google Scholar]
  • 26.Balamurugan R, Rajendiran E, George S et al. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 2008; 23: 1298–1303. [DOI] [PubMed] [Google Scholar]
  • 27.Slattery ML, Fitzpatrick FA. Convergence of hormones, inflammation, and energy-related factors: a novel pathway of cancer etiology. Cancer Prey Res 2009; 2: 922–930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Vemeuil N, Maze A, Sanguinetti M et al. Implication of (Mn)superoxide dismutase of Enterococcus faecalis in oxidative stress responses and survival inside macrophages. Microbiology 2006; 152: 2579–2589. [DOI] [PubMed] [Google Scholar]
  • 29.Bizzini A, Zhao C, Auffray Y et al. The Enterococcus faecalis superoxide dismutase is essential for its tolerance to vancomycin and penicillin. J Antimicrob Chemother 2009; 64: 1196–1202. [DOI] [PubMed] [Google Scholar]
  • 30.Fisher K, Phillips C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 2009; 155: 1749–1757. [DOI] [PubMed] [Google Scholar]
  • 31.Frankenberg L, Brugna M, Hederstedt L. Enterococcus faecalis heme-dependent catalase. 6th International Conference on Streptococcal, Lactococcal, and Enterococcal Genetics Asheville, North Carolina: Am Soc Microbiol; 2002; 6351-6356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Patel MP, Marcinkeviciene J, Blanchard JS. Enterococcus faecalis glutathione reductase: purification, characterization and expression under normal and hyperbaric 0-2 conditions. FEMS Microbiol Lett 1998; 166: 155–163. [DOI] [PubMed] [Google Scholar]
  • 33.Coburn PS, Baghdayan AS, Dolan GT et al.An AraC-type transcriptional regulator encoded on the Enterococcus faecalis pathogenicity island contributes to pathogenesis and intracellular macrophage survival. Infect Immun 2008; 76: 5668–5676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Herbig AF, Helmann JD. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 2001; 41: 849–859. [DOI] [PubMed] [Google Scholar]
  • 35.Verneuil N, Rince A, Sanguinetti M et al. Contribution of a PerR-like regulator to the oxidative-stress response and virulence of Enterococcus faecalis. Microbiology 2005; 151: 3997–4004. [DOI] [PubMed] [Google Scholar]
  • 36.Ross RP, Claiborne A. Evidence for regulation of the NADH peroxidase gene (npr) from Enterococcus faecalis by OxyR. FEMS Microbiol Lett 1997; 151: 177–183. [DOI] [PubMed] [Google Scholar]
  • 37.Johnson JR, Clabots C, Rosen H. Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli 01:K1 :H7 in a mouse model of ascending urinary tract infection. Infect Immun 2006; 74: 461–468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.La Carbona S, Sauvageot N, Giard JC et al. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, alkyl hydroperoxide reductase and thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol Microbiol 2007; 66: 1148-1163. [DOI] [PubMed] [Google Scholar]
  • 39.Verneuil N, Le Breton Y, Hartke A et al. Identification of a new oxidative stress transcriptional regulator in Enterococcus faecalis. Lait 2004; 84: 69–76. [Google Scholar]
  • 40.Verneuil N, Sanguinetti M, Le Breton Y et al. Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect Immun 2004; 72: 4424–4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Verneuil N, Rince A, Sanguinetti M et al. Implication of hypR in the virulence and oxidative stress response of Enterococcus faecalis. FEMS Microbiol Lett 2005; 252: 137–141. [DOI] [PubMed] [Google Scholar]
  • 42.Kayaoglu G, Orstavik D. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Grit Rev Oral Biol Med 2004; 15: 308–320. [DOI] [PubMed] [Google Scholar]
  • 43.Vlkova B, Celec P. Does Enterococcus faecalis contribute to salivary thiobarbituric acid-reacting substances? In Vivo 2009; 23: 343–345. [PubMed] [Google Scholar]
  • 44.Tendolkar PM, Baghdayan AS, Shankar N. Pathogenic enterococci: new developments in the 21st century. Cell Mol Life Sci 2003; 60: 2622–2636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1.Gardini F, Martuscelli M, Caruso MC et al. Effects of pH, temperature and NaC1 concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Int J Food Microbiol 2001; 64: 105-117. [DOI] [PubMed] [Google Scholar]
  • 2.Van den Berghe E, De Winter T, De Vuyst L. Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature- and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion. Int J Food Microbiol 2006; 107: 159–170. [DOI] [PubMed] [Google Scholar]
  • 3.Moreno MRF, Sarantinopoulos P, Tsakalidou E et al. The role and application of enterococci in food and health. Int J Food Microbiol 2006; 106: 1–24. [DOI] [PubMed] [Google Scholar]
  • 4.Jett BD, Huycke MM, Gilmore MS. Virulence of Enterococci. C1M Microbiol Rev 1994; 7: 462–467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Gonzales RD, Schreckenberger PC, Graham MB et al. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 2001; 357: 1179. [DOI] [PubMed] [Google Scholar]
  • 6.Paulsen IT, Banerjei L, Myers GSA et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 2003; 299: 2071–2074. [DOI] [PubMed] [Google Scholar]
  • 7.Lebreton F, Riboulet-Bisson E, Serror P et al. ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun 2009; 77: 2832–2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Giard JC, Riboulet E, Vemeuil N et al. Characterization of Ers, a PrfA-like regulator of Enterococcus faecalis. FEMS Immunol Med Microbiol 2006; 46: 410–418. [DOI] [PubMed] [Google Scholar]
  • 9.Riboulet-Bisson E, Le Jeune A, Benachour A et al. Ers a Crp/Fnr-like transcriptional regulator of Enterococcus faecalis. 15th Meeting of the Lactic-Acid-Bacteria-Club. Rennes, France, 2007; 71-74.
  • 10.Riboulet-Bisson E, Hartke A, Auffray Y et al. Ers controls glycerol metabolism in Enterococcus faecalis. Curr Microbiol 2009; 58: 201–204. [DOI] [PubMed] [Google Scholar]
  • 11.Riboulet-Bisson E, Sanguinetti M, Budin-Vemeuil A et al. Characterization of the Ers regulon of Enterococcus faecalis. Infect Immun 2008; 76: 3064–3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Riboulet E, Verneuil N, La Carbona S et al. Relationships between oxidative stress response and virulence in Enterococcus faecalis. J Mol Microbiol Biotechnol 2007; 13: 140–146. [DOI] [PubMed] [Google Scholar]
  • 13.Storz G, Imlay JA. Oxidative stress. Curr Opin Microbiol 1999; 2: 188–194. [DOI] [PubMed] [Google Scholar]
  • 14.Smith JA. Neutrophils, host-defense and inflammation - a double-edged sword. J Leukoc Biol 1994; 56: 672–686. [DOI] [PubMed] [Google Scholar]
  • 15.Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev 2007; 65: S140–S146. [DOI] [PubMed] [Google Scholar]
  • 16.Sakamoto M, Komagata K. Aerobic growth of and activities of NADH oxidase and NADH peroxidase in lactic acid bacteria. J Ferment Bioeng 1996; 82: 210–216. [Google Scholar]
  • 17.Bizzini A, Zhao C, Budin-Vemeuil A et al. Glycerol is metabolized in a complex and strain dependent manner in Enterococcus faecalis. J Bacteriol 2010; 192: 779–785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Huycke MM, Abrams V, Moore DR. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis 2002; 23: 529–536. [DOI] [PubMed] [Google Scholar]
  • 19.Huycke MM, Moore D, Joyce W et al. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 2001; 42: 729–740. [DOI] [PubMed] [Google Scholar]
  • 20.Huycke MM, Moore DR. In vivo production of hydroxyl radical by Enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radic Biol Med 2002; 33: 818–826. [DOI] [PubMed] [Google Scholar]
  • 21.Huycke MM, Gilmore MS. In vivo survival of Enterococcus faecalis is enhanced by extracellular superoxide production In: Horaud T, Bouvet A, Leclercq R et al. (eds) XIII Lancefield International Symposium on Streptococci and Streptococcal Diseases Paris, France: Plenum Press Div Plenum Publishing Corp; 1996; 781-784. [Google Scholar]
  • 22.Wang XM, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology 2007; 132: 551–561. [DOI] [PubMed] [Google Scholar]
  • 23.Wang XM, Allen TD, May RJ et al. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res 2008; 68: 9909–9917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Allen TD, Moore DR, Wang XM et al. Dichotomous metabolism of Enterococcus faecalis induced by haematin starvation modulates colonic gene expression. J Med Microbiol 2008; 57: 1193–1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Winters MD, Schlinke TL, Joyce WA et al. Prospective case-cohort study of intestinal colonization with enterococci that produce extracellular superoxide and the risk for colorectal adenomas or cancer. Am J Gastroentero11998; 93: 2491-2500. [DOI] [PubMed] [Google Scholar]
  • 26.Balamurugan R, Rajendiran E, George S et al. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 2008; 23: 1298–1303. [DOI] [PubMed] [Google Scholar]
  • 27.Slattery ML, Fitzpatrick FA. Convergence of hormones, inflammation, and energy-related factors: a novel pathway of cancer etiology. Cancer Prey Res 2009; 2: 922–930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Vemeuil N, Maze A, Sanguinetti M et al. Implication of (Mn)superoxide dismutase of Enterococcus faecalis in oxidative stress responses and survival inside macrophages. Microbiology 2006; 152: 2579–2589. [DOI] [PubMed] [Google Scholar]
  • 29.Bizzini A, Zhao C, Auffray Y et al. The Enterococcus faecalis superoxide dismutase is essential for its tolerance to vancomycin and penicillin. J Antimicrob Chemother 2009; 64: 1196–1202. [DOI] [PubMed] [Google Scholar]
  • 30.Fisher K, Phillips C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 2009; 155: 1749–1757. [DOI] [PubMed] [Google Scholar]
  • 31.Frankenberg L, Brugna M, Hederstedt L. Enterococcus faecalis heme-dependent catalase. 6th International Conference on Streptococcal, Lactococcal, and Enterococcal Genetics Asheville, North Carolina: Am Soc Microbiol; 2002; 6351-6356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Patel MP, Marcinkeviciene J, Blanchard JS. Enterococcus faecalis glutathione reductase: purification, characterization and expression under normal and hyperbaric 0-2 conditions. FEMS Microbiol Lett 1998; 166: 155–163. [DOI] [PubMed] [Google Scholar]
  • 33.Coburn PS, Baghdayan AS, Dolan GT et al.An AraC-type transcriptional regulator encoded on the Enterococcus faecalis pathogenicity island contributes to pathogenesis and intracellular macrophage survival. Infect Immun 2008; 76: 5668–5676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Herbig AF, Helmann JD. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 2001; 41: 849–859. [DOI] [PubMed] [Google Scholar]
  • 35.Verneuil N, Rince A, Sanguinetti M et al. Contribution of a PerR-like regulator to the oxidative-stress response and virulence of Enterococcus faecalis. Microbiology 2005; 151: 3997–4004. [DOI] [PubMed] [Google Scholar]
  • 36.Ross RP, Claiborne A. Evidence for regulation of the NADH peroxidase gene (npr) from Enterococcus faecalis by OxyR. FEMS Microbiol Lett 1997; 151: 177–183. [DOI] [PubMed] [Google Scholar]
  • 37.Johnson JR, Clabots C, Rosen H. Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli 01:K1 :H7 in a mouse model of ascending urinary tract infection. Infect Immun 2006; 74: 461–468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.La Carbona S, Sauvageot N, Giard JC et al. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, alkyl hydroperoxide reductase and thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol Microbiol 2007; 66: 1148-1163. [DOI] [PubMed] [Google Scholar]
  • 39.Verneuil N, Le Breton Y, Hartke A et al. Identification of a new oxidative stress transcriptional regulator in Enterococcus faecalis. Lait 2004; 84: 69–76. [Google Scholar]
  • 40.Verneuil N, Sanguinetti M, Le Breton Y et al. Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect Immun 2004; 72: 4424–4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Verneuil N, Rince A, Sanguinetti M et al. Implication of hypR in the virulence and oxidative stress response of Enterococcus faecalis. FEMS Microbiol Lett 2005; 252: 137–141. [DOI] [PubMed] [Google Scholar]
  • 42.Kayaoglu G, Orstavik D. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Grit Rev Oral Biol Med 2004; 15: 308–320. [DOI] [PubMed] [Google Scholar]
  • 43.Vlkova B, Celec P. Does Enterococcus faecalis contribute to salivary thiobarbituric acid-reacting substances? In Vivo 2009; 23: 343–345. [PubMed] [Google Scholar]
  • 44.Tendolkar PM, Baghdayan AS, Shankar N. Pathogenic enterococci: new developments in the 21st century. Cell Mol Life Sci 2003; 60: 2622–2636. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Redox Report : Communications in Free Radical Research are provided here courtesy of Taylor & Francis

RESOURCES