Skip to main content
Sensors (Basel, Switzerland) logoLink to Sensors (Basel, Switzerland)
. 2020 Feb 14;20(4):1049. doi: 10.3390/s20041049

Modelling, Analysis, and Simulation of the Micro-Doppler Effect in Wideband Indoor Channels with Confirmation Through Pendulum Experiments

Ahmed Abdelgawwad 1,*, Alireza Borhani 1, Matthias Pätzold 1
PMCID: PMC7070821  PMID: 32075188

Abstract

This paper is about designing a 3D no n-stationary wideband indoor channel model for radio-frequency sensing. The proposed channel model allows for simulating the time-variant (TV) characteristics of the received signal of indoor channel in the presence of a moving object. The moving object is modelled by a point scatterer which travels along a trajectory. The trajectory is described by the object’s TV speed, TV horizontal angle of motion, and TV vertical angle of motion. An expression of the TV Doppler frequency caused by the moving scatterer is derived. Furthermore, an expression of the TV complex channel transfer function (CTF) of the received signal is provided, which accounts for the influence of a moving object and fixed objects, such as walls, ceiling, and furniture. An approximate analytical solution of the spectrogram of the CTF is derived. The proposed channel model is confirmed by measurements obtained from a pendulum experiment. In the pendulum experiment, the trajectory of the pendulum has been measured by using an inertial-measurement unit (IMU) and simultaneously collecting CSI data. For validation, we have compared the spectrogram of the proposed channel model fed with IMU data with the spectrogram characteristics of the measured CSI data. The proposed channel model paves the way towards designing simulation-based activity recognition systems.

Keywords: spectrogram, 3D no n-stationary channels, indoor channels, doppler frequency, channel state information, Wi-Fi 802.11n, inertial measurement units, micro-doppler effect, CSI

1. Introduction

In wireless communications, the compound Doppler effect caused by the moving objects or bodies opened up opportunities for many applications. These applications track the scattered wave components by the moving bodies for drone detection [1], gesture recognition [2], human gait assessment for diagnosis and rehabilitation [3], and tracking human activities using no n-wearable radio-frequency-based (RF-based) elder-care [4]. Such waves contain the micro-Doppler effects corresponding to the moving bodies.

In channel modelling, the Doppler effect caused by moving scatterers has been modelled in two-dimensional (2D) stationary fixed-to-mobile radio in [5]. Then, this model has been extended for 2D no n-stationary fixed-to-fixed (F2F) indoor channels by considering the time-variant (TV) speed of the moving scatterer, angle of motion, angle of arrival, and angle of departure [6]. Later on, the TV Doppler frequency caused by the moving scatterer has been incorporated in three-dimensional (3D) channels by taking into account the TV azimuth angles of motion (AAOM), elevation angle of motion (EAOM), azimuth angle of departure (AAOD), elevation angle of departure (EAOD), azimuth angle of arrival (AAOA), and elevation angle of arrival (EAOA) for fixed-to-fixed channel models [6,7] and vehicle-to-vehicle channels [8]. To reveal the TV Doppler power characteristics of non-stationary multicomponent signals, a time-frequency distribution such as the spectrogram can be employed. The authors of [9] distinguished between aided and unaided gaits by means of the spectrogram. In [10] the angular velocities and lengths of rotating blades have been estimated by using the spectrogram. The spectrogram has been employed in gesture recognition [11] and human activity recognition (HAR) [12]. It has been used for the detection of gait asymmetry in [3,13], distinguishing between armed and unarmed persons for security services [14], and fall detection [15,16,17], as well.

The authors of [18] developed a software tool that captures the complex channel state information (CSI) of 30 subcarriers corresponding to orthogonal-frequency-division-multiplexing (OFDM). This software tool is compatible with commercial devices equipped with Intel NIC 5300 network interface cards and operates on the Wi-Fi 802.11n protocol [19]. An overview of studies on signal recognition, action recognition, and activity recognition by utilizing the amplitude of the measured CSI can be found in [20]. One of the challenges faced while processing CSI data to extract the micro-Doppler signatures is that the phases of such data are distorted as the transmitter and receiver are not clock synchronized [21,22,23,24,25,26,27,28]. To overcome this issue, one of the attempts is to apply the principle component analysis (PCA) [29,30,31,32] on the magnitude of the complex CSI data to denoise it, then to apply a one-sided spectrogram on the denoised data to reveal the positive frequency components of the spectrogram. Another attempt has been applied by using a phase sanitization technique [32,33,34] by employing linear transformation operation on the distorted phases of the 30 subcarriers. Such an operation gives a better pattern of the transformed phases. These attempts do not help to reveal the true Doppler power characteristics of the preprocessed CSI data. In [35] the phase distortions of CSI data have been eliminated by using a back-to-back (B2B) connection between the transmitter and receiver stations. This approach allows for revealing the true Doppler power characteristics of the measured CSI data.

The micro-Doppler effect of pendulum motion in bistatic and monostatic radar systems has been investigated in [36,37]. In [36], the micro-Doppler effect was analyzed by means of the one-sided spectrogram of both simulated radar signal and verified with the experiment. According to the best of the authors’ knowledge, there are no studies on the micro-Doppler effect of a swinging pendulum on measured calibrated CSI with B2B connection. There are no simultaneous conducted measurements by using the CSI tool and an IMU attached to the swinging pendulum, as well.

The Fresnel zone diffraction model has been described in [38,39,40,41]. Such a model has been used for CSI-based human activity recognition [42], human respiration sensing [43], and indoor human detection [44]. The Fresnel zone model is an envelope model that does not contain any phase information. The phase information is important for the analysis of the micro-Doppler signatures, which is our main focus in this paper. The motivation of this paper is to present a non-stationary wideband F2F channel model that has Doppler power characteristics similar to experimental data. According to the best of the authors’ knowledge, RF-based HAR, gesture recognition, and fall detection systems are designed based on experimental data, i.e., the machine used for detection or classification is trained by using experimental data. Thus, proposing such a model will help for simulation-based activity recognition systems by using it for training instead of using experimental data. This approach is time efficient and cost-effective. Instead of wasting too much time for collecting RF data for training, one can generate data sets of different scenarios by using lab simulations. In order to design such a realistic channel model with Doppler power characteristics close to experimental data, the TV trajectory of a moving object plays an important role as the Doppler shift depends on the TV speed, AAOM, EAOM, EAOD, AAOD, EAOA, and AAOA. The trajectory of the moving object can be measured by using an IMU which captures linear accelerations, and Euler angles simultaneously. The Euler angles are used to rotate the measured linear accelerations from the frame of the IMU to the reference frame. Then the rotated linear accelerations can be integrated to obtain TV velocities and displacements (trajectories). The TV velocities and displacements suffer from linear and quadratic drifts, respectively. In [45,46], these drift problems were addressed by employing zero update algorithms.

In this paper, we design a 3D no n-stationary wideband channel model for activity recognition. We model a‘moving object as a moving scatterer. The expressions for the TV speed, AAOM, EAOM, EAOD, AAOD, EAOA, and AAOA corresponding to the moving scatterer are presented. Then, the expression for the TV Doppler frequency caused by the moving scatterer is provided. Furthermore, the instantaneous channel phase of the moving scatterer and the complex channel transfer function (CTF) of the no n-stationary F2F channels are determined. Next, an approximate solution of the spectrogram of the complex CTF is presented to provide insight into the TV Doppler power characteristics of this model. We perform measurements of the calibrated CSI and IMU, simultaneously during a moving object experiment. The CSI data is calibrated by using a B2B connection to eliminate the TV phase distortions. Then, we feed the proposed channel model with the measured trajectory using the IMU. Finally, we show that the spectrogram of the calibrated measured CSI data and the channel model are matching. The TV mean Doppler shifts computed from both spectrograms are matching as well. The proposed channel model paves the way towards the design of software-RF-based human activity recognition and fall detection systems.

The rest of the paper is structured as follows. Section 2 exhibits the 3D multipath propagation scenario with moving and fixed objects. Section 3 presents the expressions of the TV channel parameters and the complex channel transfer function. The approximate analytical solution of the spectrogram of the complex channel function is provided in Section 4. Section 5 discusses the numerical and measurement results. The conclusion and future work are discussed in Section 6.

2. The 3D Geometrical Model

We consider the 3D geometrical model of a 3D multipath propagation channel shown in Figure 1. This figure shows a fixed Wi-Fi transmitter Tx and a fixed Wi-Fi receiver Rx which operate according to the IEEE 802.11n standard [19] with carrier frequency f0=5.32 GHz and bandwidth B=20 MHz. The positions of Tx and Rx are denoted by xT,yT,zT and xR,yR,zR, respectively. A moving object whose center of mass (CoM) is modelled for simplicity by a single moving (point) scatterer SM initially located at xM,yM,zM. The trajectory of the moving scatterer SM is described by a TV velocity vector vM(t) which can be expressed by the TV speed vM(t), the TV AAOM αvM(t), and the TV EAOM βvM(t). Each fixed object is modelled by a fixed scatterer SmF () for m=1,2,,M, where M denotes the number of fixed scatterers (objects). The TV parameters βMT(t), αMT(t), βMR(t), and αMR(t) designate the TV EAOD, TV AAOD, TV EAOA, and TV AAOA, respectively. We assume single-bounce scattering, i.e., each wave that is launched from Tx is bounced by either a fixed scatterer SmF or a moving scatterer SM before arriving at Rx.

Figure 1.

Figure 1

Geometrical model of a 3D multipath propagation scenario with one moving scatterer SM and M fixed scatterers SmF, m=1,2,,M.

3. The Channel Transfer Function

The TV velocity vector vMt of the moving scatterer SM is presented as

vMt=vM,xt,vM,yt,vM,ztT (1)

where [·]T denotes the vector transpose operation. The velocities vM,xt, vM,yt, and vM,zt can be expressed in terms of the TV speed vM(t), TV EAOM βvM(t), and TV AAOM αvM(t) as

vM,xt=vMtcosβvMtcosαvMt (2)
vM,yt=vMtcosβvMtsinαvMt (3)
vM,zt=vMtsinβvMt (4)

where

αvM(t)=atan2vM,y(t),vM,x(t) (5)
βvM(t)=arcsinvM,z(t)vM,x2(t)+vM,y2(t)+vM,z2(t). (6)

The function atan2(·) in (5) represents the four-quadrant inverse trigonometric tangent function that provides an azimuth angle αvM(t) ranging from π to π, unlike the regular arctan(·) function that provides an angle ranging from π/2 to π/2. Note that the elevation angle βvM(t) is within the range from π/2 to π/2. By using the components of the TV velocity vector vM(t) in (2)–(4), one can compute the displacements xM(t), yM(t), and zM(t) of the moving scatterer SM as

xM(t)=xM+0tvM,x(t)dt (7)
yM(t)=yM+0tvM,y(t)dt (8)
zM(t)=zM+0tvM,z(t)dt. (9)

From the displacements in (7)–(9), the TV Euclidean distance dMT(t) between the transmitter Tx and the moving scatterer SM can be computed by

dMT(t)=(xM(t)xT)2+(yM(t)yT)2+(zM(t)zT)2. (10)

Analogously, the Euclidean distance dMR(t) between the receiver Rx and the moving scatterer SM is given by

dMR(t)=(xM(t)xR)2+(yM(t)yR)2+(zM(t)zR)2. (11)

By using the expressions of the displacements in (7)–(9) and the distances in (10) and (11), the TV EAOD βMT(t), TV AAOD αMT(t), TV EAOA βMR(t), and TV AAOA αMR(t) can be computed as follows:

βMT(t)=arcsinzM(t)zTdMT(t) (12)
αMT(t)=atan2yM(t)yT,xM(t)xT (13)
βMR(t)=arcsinzM(t)zRdMR(t) (14)
αMR(t)=atan2yM(t)yR,xM(t)xR (15)

where αMT(t),αMR(t)π,π and βMT(t),βMR(t)π/2,π/2. The TV propagation delay τM(t) of the propagation path from Tx via SM to Rx is given by

τM(t)=dMT(t)+dMR(t)c0. (16)

In (16), the parameter c0 denotes the speed of light. The CTF H(t,Δf(q)) is given by

Ht,Δf(q)=HMt,Δf(q)+m=1MHF,m (17)

where

HMt,Δf(q)=cMejθM2πf0+Δf(q)τM(t) (18)
HF,m=cF,mejθF,m. (19)

The superscript q in (17) represents the subcarrier index of OFDM communication systems that follows the IEEE 802.11n standard [19]. The parameter Δf(q) in (17) designates the subcarrier frequency which is given by

Δf(q)=q·Δ (20)

for q{28,26,,2,1,1,3,,27,28}. In (20), the parameter Δ represents the subcarrier frequencies difference which has a value of 312.5 kHz [19]. The function HM(t,Δf(q)) designates the complex CTF of the moving scatterer SM and the parameter HF,m denotes the complex CTF corresponding the mth fixed scatterer SmF. The expression in (17) is similar to the one in [47] [Equation (21)]. The only difference is that the multipath effect associated with the fixed scatterers is taken into account by adding the second term in (17). The first term in (17) designates the TV part of the CTF corresponding to the moving scatterer SM with a fixed path gain cM and stochastic phase process θM2π(f0+Δf(q))τM(t) associated with the qth subcarrier [see (18)]. The second term in (17) is time-invariant and represents the sum of the M received multipath components corresponding to the M fixed scatterers. Each component of the second term in (17) is characterized by a fixed path gain cm,F and a random phase variable θm,F due to the interaction with the mth fixed scatterer SmF [see (19)]. It should be mentioned that the phases θM and θm,F are identically and independently distributed (i.i.d), each follows a uniform distribution over π and π, i.e., θM,θm,FUπ,π. The model presented in (17) is a stochastic model of the TV CTF H(t,Δf(q)). The TV Doppler shift fM(q)(t) of the moving scatterer SM and associated with the qth subcarrier index is expressed by using (16) in combination with the relationship fM(q)(t)=(f0+Δf(q))τ˙M(t), which can be found in [47] [Equation (22)] as [48]

fM(q)(t)=fmax(q)t{cosβvMt[cosβMT(t)cosαT(t)αvMt+cosβMR(t)cosαvMtαMR(t)]+sinβvMtsinβMT(t)+sinβMR(t)} (21)

where function fmax(q)(t) designates the maximum Doppler shift caused by the moving scatterer SM which is given by

fmax(q)t=f0+Δf(q)vMtc0. (22)

From the expression in (21) and the relationship fM(q)(t)=(f0+Δf(q))τ˙M(t), one can conclude that if the moving scatterer SM moves away from the Tx and Rx vicinity, the TV propagation delay τM(t) and its slope τ˙M(t) increase and the Doppler effect fM(t) has negative values, and vice versa. To obtain an approximate solution for the spectrogram of the CTF H(t,Δf(q)) that will be discussed in Section 4, the Doppler frequency fM(q)(t) in (21) can be approximated by L linear piecewise functions according to

fM(q)(t)fM,l(q)(t)=fM(q)(tl)+kM,l(q)(ttl) (23)

for tl<ttl+1 and l=0,1,,L1, where kM,l(q) denotes the slope of the approximated Doppler frequency fM(q)(t) which is given by

kM,l(q)=fM(q)(tl+1)fM(q)(tl)tl+1tl. (24)

The difference between two consecutive time instances tl+1 and tl, i.e., δ=tl+1tl is the same for all values of l=0,1,,L1.

The TV mean Doppler shift Bf(q)(1)(t) of the proposed 3D channel model can be computed by using (21) as [49]

Bf(q)(1)(t)=cM2fM(q)(t)cM2+m=1McF,m2. (25)

The expression in (25) denotes the squared path gain cM2 multiplied by the Doppler frequency caused by the moving scatterer fM(q)(t) divided by the sum of the squared path gain of all of the scatterers. Note that, if the sum of the squared path gains m=1McF,m2 is much less than the squared path gain of the moving scatterer cM2 of the moving scatterer SM, i.e., m=1McF,m2cM2, then the TV mean Doppler shift Bf(q)(1)(t) will have values closer to those of the Doppler frequency of the moving scatterer fM(q)(t), i.e., Bf(q)(1)(t)fM(q)(t).

4. Spectrogram Analysis

In this paper, we employ the spectrogram approach [50] to reveal the TV Doppler power spectrum of the proposed channel model. The spectrogram SH(q)(f,t) of the CTF H(t,Δf(q)) corresponding to the qth subcarrier index is computed in three steps. First, a sliding window w(t) is multiplied by the CTF H(t,Δf(q)). In this paper, we choose a Gaussian window function [50] [Equation (2.3.1)]

w(t)=1σwπet22σw2 (26)

where the parameter σw is called the Gaussian window spread. The window function w(t) is real, positive, and even. It has a no rmalized energy, i.e., w2(t)=1. By multiplying the window function w(t) by the CTF H(t,Δf(q)), the short-time CTF xH(q)(t,t) is obtained as

xH(q)(t,t)=Ht,Δf(q)w(tt) (27)

where the variables t and t are the local time and the running time, respectively. The second step is to compute the short-time Fourier transform (STFT) XH(q)(f,t) of xH(q)(t,t). By using the approximation of the TV Doppler shift provided in (23), the STFT XH(q)(f,t) associated with the qth subcarrier is obtained as

XH(q)(f,t)=xH(q)(t,t)ej2πftdtej2πftσwπ1/4HMt,Δf(q)Gf,fM,l(q)(t),σx,M,l2+m=1MHF,mGf,0,σx,F,m2 (28)

for tl<ttl+1l=0,1,,L1, where

Gf,fM,l(q)(t),σx,M,l2=12πσx,M,le(ffM,l(q)(t))22σx,M,l2 (29)
σx,M,l2=1j2πσw2kM,l(q)(2πσw)2 (30)
σx,F,m2=1(2πσw)2. (31)

The expression in (29) is a complex Gaussian function with a TV mean fM,l(q)(t) and a complex variance σx,M,l2. Note that the complex variance σx,M,l2 in (30) is dependent on the slope kM,l(q) of the Doppler frequency fM,l(q)(t) [see (23)]. The last step is to obtain the spectrogram SH(q)(f,t) associated with the qth subcarrier by squaring the magnitude of the STFT XH(q)(f,t);, i.e.,

SH(q)(f,t)|XH(q)(f,t)|2=SH(q)(a)(f,t)+SH(q)(c)(f,t) (32)

where the functions SH(q)(a)(f,t) and SH(q)(c)(f,t) are called the auto-term and the cross-term of the spectrogram SH(q)(f,t), respectively. The auto-term is given by

SH(q)(a)(f,t)cM2Gf,fM,l(q)(t),σM,l2+m=1McF,m2Gf,0,σF,m2 (33)

for tl<ttl+1, where

σM,l2=1+2πσw2kM,l(q)22(2πσw)2 (34)
σF,m2=12(2πσw)2. (35)

The auto-term SH(q)(a)(f,t) in (33) is an approximation that provides insight into the Doppler power spectrum of the proposed 3D no n-stationary channel model presented in Section 2. This term is real, positive, and consists of a sum of M+1 weighted Gaussian functions. The first Gaussian function, which is due to the moving scatterer SM is weighted by the squared path gain cM2 and centered on the approximated TV Doppler frequency fM,l(q)(t). The second term of the auto-term SH(q)(a)(f,t) in (33) is the sum of weighted Gaussian functions, which capture the effect of the M fixed scatterers SmF. The weighting factors are the squared path gains cF,m2 and each Gaussian function is centered on zero-frequency as the fixed scatterers do not cause Doppler shifts in F2F channels.

The cross-term SH(q)(c)(f,t) of the spectrogram corresponding to the qth subcarrier is given by

SH(q)(c)(f,t)2σwπ{n=1M1m=n+1MGf,0,σx,F,n2G*f,0,σx,F,m2HF,nHF,m*+m=1MGf,fn,l(q)(t),σx,n,l,M2G*f,0,σx,F,m2HM(t,Δf(q))HF,m*}. (36)

The cross-term SH(q)(c)(f,t) in (36) represents the undesired spectral interference term consisting of M(M+1)/2 components which reduce the resolution of the spectrogram. This term is real but not necessarily positive. The operators {·} and (·)* denote the real value operator and the complex conjugate operator, respectively. The cross-term in (36) consists of two terms. The first term of (36) designates the sum of the components corresponding to the spectral interference caused by the fixed scatterers. The mth component of the second term denotes the spectral interference between the moving scatterer SM and the mth fixed scatterer SmF. The cross-term SH(q)(c)(f,t) in (36) is dependent on the random phases θM and θF,m unlike the auto-term SH(q)(a)(f,t). Hence, the cross-term SH(q)(c)(f,t) can be eliminated by taking the average over the random phases, i.e., E{SH(q)(c)(f,t)}|θM,θF,m=0, and thus, E{SH(q)(f,t)}|θM,θF,m=SH(q)(a)(f,t).

The TV mean Doppler shift can be obtained by using the spectrogram as follows

BH(q)(1)(t)=fSH(q)(f,t)dfSH(q)(f,t)df. (37)

If the spectrogram SH(q)(f,t) in (37) is replaced by the auto-term SH(q)(a)(f,t), the TV mean Doppler shift BH(q)(1)(t) becomes equal to Bf(q)(1)(t), i.e., BH(q)(1)(t)=Bf(q)(1)(t).

5. Measurements and Numerical Results

In this section, we discuss and compare the TV Doppler power characteristics of our proposed channel model with those of measured CSI data. We will describe the processing of the measured trajectory during the measurements.

5.1. Measurement Scenario

To complement the TV Doppler power characteristics of the proposed channel model, measurements have been performed. The CSI data and the trajectory of a pendulum (moving object) have been measured simultaneously. Two laptops have been used for measuring the CSI as Wi-Fi Tx and Rx. An IMU sensor fusion has been used to measure the trajectory of the pendulum. Figure 2 illustrate the measurement scenario in xy and xz planes, respectively. The pendulum was a 3 kg medicine ball, covered with aluminum foil and attached to the ceiling by a rope, and was swinging in a horizontal direction perpendicular to the line-of-sight (LoS). The distance between the ceiling and the center of mass (CoM) of the ball L was 1.17 m and the horizontal distance between Wi-Fi Tx antenna and the CoM of the ball was 1.5 m. The distance between Wi-Fi Tx and Rx antennas was 2 m and they had the same height value of 1.18 m. The initial location of the moving scatterer (ball) was the origin. The pendulum displacements xM(t) and zM(t) are computed as follows [36]:

xM(t)=LsinarcsinxmaxLcosgLt (38)
yM(t)=0 (39)
zM(t)=L1cosarcsinxM(t)L (40)

where g denotes the acceleration of gravity. The parameters xmax and L in (38)–(40) were set to 0.55 m and 1.17 m according to Figure 2a,b respectively.

Figure 2.

Figure 2

A presentation of the experiment scenario in the (a) xy plane and (b) xz plane.

5.2. Motion Capturing Using IMU

A MetaMotionR sensor fusion (IMU) [51] was attached to the swinging ball. A smartphone was connected via Bluetooth to control the IMU and log the data files. The IMU was used to record quaternions and linear accelerations during the experiment. Euler angles were computed by using the recorded quaternions to rotate the measured linear accelerations. Next, the raw rotated linear accelerations were smoothed by using quadratic regression provided by the signal analysis toolbox in MATLAB 2019a. After that, the rotated linear accelerations were integrated and double integrated to obtain the velocities and the displacements (trajectories), respectively. Due to measurement errors of the IMU, the velocities and the displacements suffer from linear and quadratic drifts, respectively. To overcome this drift issue, zero-update (ZUPT) algorithms [45] were employed. Since the pendulum motion is periodic, its horizontal and vertical velocities reach zero when the horizontal and vertical accelerations approach their maximum or minimum values. Similarly, the values of horizontal and vertical displacements approach zero values when the velocities tend to their maximum or minimum values. Hence, by searching for the indices corresponding to the local maximum or minimum values of the accelerations, the velocity drift is removed between two consecutive indices. Also, by knowing the indices of the local maximum or minimum values of the drift-eliminated velocities, the drift of the displacement is removed. The source code of the ZUPT algorithm, where the sensors are placed on the toes of a walking person for position tracking, is available online [46]. This algorithm was repeated to also eliminate the drift of the displacement. Figure 3a depicts the TV drift-free horizontal displacements xM(t) of the captured data from the IMU and the mechanical model of the pendulum in (38) by using the pendulum parameters shown in Figure 2. The TV drift-free vertical displacements zM(t) of the captured data from the IMU and the mechanical model of the pendulum in (40) by using the pendulum parameters shown in Figure 2, are depicted in Figure 3b. A minimal error is noticed between the IMU data and the model in the order of centimeters during the whole interval of 15 s.

Figure 3.

Figure 3

Trajectories of the mechanical model and measured IMU data in (a) horizontal direction xM(t) and (b) vertical direction zM(t).

5.3. Capturing CSI Data

The CSI tool in [18] was installed to capture the CSI data (RF signals). Two HP Elitebook 6930p laptops equipped with Intel NIC5300 were used. An Ubuntu 14.04 LTS operating system was installed on both laptops. One laptop was the transmitter station in injector mode and the other laptop was the receiver operating in monitor mode. The carrier frequency f0 was set to 5.32 GHz corresponding to channel 64 according to IEEE 802.11n standards [19]. The sampling frequency and the bandwidth were set to 1 KHz and 20 MHz, respectively. TV phase distortions exist due to carrier frequency offset [21,22,23], sampling frequency offset [24,25,26], and packet boundary delay [27,28]. These TV phase distortions were eliminated by using a B2B connection between the transmitter station and the receiver station as described in [35]. Since there was only one RF transmission port in the Wi-Fi Tx, an RF power splitter ZFSC-2-10G+ from with two output ports was used. One of the output ports was used for the B2B connection and the other one was connected to the transmitting antenna. At the Wi-Fi receiver laptop, one of the ports was used for the B2B connection, and another port was connected to the receiver antenna. The port used for the B2B connection was connected to a 30 dB attenuator. RF cables 141-1MSM+ from Mini-Circuits® were used as well. The processing of the captured CSI data was done by using MATLAB R2019a. Two matrices are stored in a file. One matrix contains the CSI data that corresponds to the captured signal with the fingerprint information associated with the motion of the pendulum and TV phase distortions. The other matrix corresponds to the B2B connection, i.e., it only contains the TV phase distortions. Then, the matrix that contains the fingerprint information and TV phase distortions is divided by the matrix corresponding to the B2B connection in elementwise form. The output matrix resulting from the elementwise division only contains the fingerprint information. After the elementwise division, a highpass filter has been used to reduce the power of zero-frequency components associated with the fixed scatterers and/or the line-of-sight.

Regarding the channel model and its spectrogram, Figure 4a shows the block diagram of the proposed channel model discussed in Section 3 fed with IMU data as inputs and the computation of the spectrogram. Figure 4b shows the block diagram of the proposed channel model discussed in Section 3 fed with the mechanical model as inputs and the computation of the spectrogram. Note that the difference between Figure 4a and Figure 4b is how the trajectories are obtained to feed the channel model. If they are measured using IMU, then the preprocessing mentioned Section 5.2 should be considered before feeding them to the simulator. If they are computed using the expressions in (38)–(40), then they can be fed into the simulator directly. The channel model can be fed with the TV displacements from either the IMU (after applying ZUPT) or the mechanical model presented earlier in Section 5.2, as inputs. The carrier frequency of the simulator f0 was set to 5.32 GHz for consistency with CSI measurement scenario. The number of the fixed scatterers M was chosen to be 6. The initial location of the moving scatterer SM and the locations of the Wi-Fi Tx, Wi-Fi Rx were set according to the experiment scenario as presented in Figure 2, i.e., they can be located anywhere, but the distances should be the same as those illustrated in Figure 2. Then, the TV displacements as presented in Figure 3 were added to the initial location of the moving scatterer SM. After that, the TV Doppler frequency fM(q)(t) caused by the moving scatterer SM was computed according to (21). The path gains of the moving scatterer SM and each fixed scatterer SmF were computed by

cM=2ηandcF,m=21ηM (41)

respectively. The parameter η is used to balance the contribution of the fixed and moving scatterers and was set to 0.8. The phases θM and θF,m were generated as realizations of random variables with uniform distribution from π to π. Next, the STFT XH(q)(f,t) for each subcarrier index q was computed according to (28). The window spread parameter σw was set 31.1 ms. Finally, the spectrogram S(f,t) (or S˜(f,t) in case of using IMU data as inputs) was computed as the squared magnitude of the sum of the STFT over the subcarriers by the following expression

S(f,t)=qXH(q)(f,t)2. (42)

Figure 4.

Figure 4

Block diagrams illustrating steps to compute the spectrograms S˜(f,t), S(f,t), and S^(f,t) of (a) the channel model with the IMU data as input, (b) the channel model with the trajectories of the mechanical model as inputs, and (c) measured CSI data, respectively.

For computing the spectrogram of the recorded CSI as exhibited in Figure 4c, the CTF H^(q)(t,Δf(q)) is recorded. Then, the STFT X^H(q)(f,t) was computed for each subcarrier q. After that the spectrogram S^(f,t) is computed according to (42).

Figure 5a–c exhibit the spectrograms of S˜(f,t), S(f,t), and S^(f,t) of the channel model with IMU data as inputs, the channel model fed with the mechanical model as inputs, and the recorded CSI data, respectively. It is shown that the TV Doppler power characteristics depicted by the spectrograms S˜(f,t), S(f,t), and S^(f,t) in Figure 5a–c are fairly similar to each other, respectively. In Figure 5a–c, the Doppler frequency associated with the moving scatterer (pendulum) SM has negative values when the pendulum swings away from the Wi-Fi Tx and Wi-Fi Rx antennas and has positive values when it swings towards them. The Doppler frequency corresponding to the moving scatterer (pendulum) SM approaches zero values at the time instants in which the moving scatterer reach its local maximum and minimum displacement values [see Figure 3a,b]. Therefore, the speed of the pendulum vM(t) approaches zero values. Thus, the Doppler shift at these instants is zero according to (22).

Figure 5.

Figure 5

Spectrograms S˜(f,t), S(f,t), and S^(f,t) (a) the channel model with IMU data as inputs, (b) the channel model with the mechanical model of the pendulum as inputs, and (c) measured CSI, respectively.

Figure 6 depicts the TV mean Doppler shifts B˜(1)(t), B(1)(t), and B^(1)(t) computed from the spectrograms S˜(f,t), S(f,t), and S^(f,t) using (37), respectively. There is a good match between B˜(1)(t), B(1)(t), and B^(1)(t). The mean Doppler shifts have negative values at the time instants in which the pendulum (moving scatterer SM) swings away from the Wi-Fi Tx and Wi-Fi Rx antennas. They have positive values when the pendulum swings towards the Wi-Fi Tx and Wi-Fi Rx antennas. The TV mean Doppler shifts B˜(1)(t), B(1)(t), and B^(1)(t) approach zero values at the moments when the pendulum reaches its local maximum and minimum displacement values. There exists a slight drift in the values of the mean Doppler shift B^(1)(t) in between the time instants t11.5 s and t12.7 s due to the no ise of the measured CSI signal.

Figure 6.

Figure 6

TV mean Doppler shifts B˜(1)(t), B(1)(t), and B^(1)(t) computed from the spectrograms of the channel model with IMU data as inputs, mechanical model as inputs, and the measured CSI, respectively.

For quantitative evaluation, we collected CSI and IMU data for 20 experiments, i.e., K=20. From the collected data measurement, we computed the normalized-mean-square-error (NMSE) γk between the TV mean Doppler shift B˜k(1)(t) of the proposed channel model fed with the IMU data as inputs and the TV mean Doppler shift B^k(1)(t) of the CSI data according to

γk=0TobsB˜k(1)(t)B^k(1)(t)2dt0TobsB^k(1)(t)2dt (43)

for k=1,2,,K, where the parameter Tobs denotes the observation interval which was set to 15 s, i.e., Tobs=15 s. Figure 7 depicts the NMSE γk for each experiment. The maximum NMSE belongs to the first experiment and has a value of 0.1829, whereas the minimum NMSE, with a value of 0.0477, belongs to fourteenth experiment. The average NMSE equals 0.0932, and the variance of the NMSE is 0.0013.

Figure 7.

Figure 7

NMSE γk of each experiment computed from the TV mean Doppler shift B˜k(1)(t) of the channel model fed with IMU data as inputs and the measured TV mean Doppler shift B^k(1)(t) for k=1,2,,K.

6. Conclusions

In this paper, we proposed a no n-stationary wideband channel model and its TV Doppler power characteristics when there is a moving object in the 3D space. We derived the TV Doppler shift caused by the moving object in terms of the TV speed, AAOM, EAOM, AAOD, EAOD, AAOA, and EAOA. The TV Doppler characteristics of the proposed channel model were analyzed by using the spectrogram. Furthermore, we provided the approximate solution of the spectrogram of the channel model. We validated the proposed channel model by measuring the trajectory of the moving object using an IMU and calibrated CSI with B2B connection, simultaneously. Then, we fed the channel model with the trajectory data extracted form the IMU. The results showed a good agreement between the measured CSI and the channel model in terms of the spectrogram and the mean Doppler shift. We conclude that the proposed channel model can be used for designing simulation-based HAR systems. For the future, we aim to extend the proposed channel model for human activity recognition by modelling the moving human as multiple moving scatterers.

Acknowledgments

The authors would like to acknowledge Takada Lab in the Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Japan. In particular, the doctoral student, Nopphon Keerativoranan, and his supervisor, Jun-ichi Takada, consulted us with establishing the B2B connection in the measurement setup. Their contribution is highly appreciated.

Author Contributions

For Conceptualization, A.A.; Data curation, A.A.; Methodology, A.A., A.B. and M.P.; Supervision, A.B. and M.P.; Visualization, A.A.; Writing—original draft, A.A. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  • 1.Jian M., Lu Z., Chen V.C. Drone detection and tracking based on phase-interferometric Doppler radar; Proceedings of the IEEE Radar Conference (RadarConf18); Oklahoma City, OK, USA. 23–27 April 2018; pp. 1146–1149. [DOI] [Google Scholar]
  • 2.Amin M.G., Zeng Z., Shan T. Hand Gesture Recognition based on Radar Micro-Doppler Signature Envelopes; Proceedings of the IEEE Radar Conference (RadarConf); Boston, MA, USA. 22–26 April 2019; pp. 1–6. [DOI] [Google Scholar]
  • 3.Seifert A., Zoubir A.M., Amin M.G. Detection of gait asymmetry using indoor Doppler radar; Proceedings of the IEEE Radar Conference (RadarConf); Boston, MA, USA. 22–26 April 2019; pp. 1–6. [DOI] [Google Scholar]
  • 4.Adib F., Kabelac Z., Katabi D., Miller R.C. 3D tracking via body radio reflections; Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation NSDI’14; Seattle, WA, USA. 2–4 April 2014; Berkeley, CA, USA: USENIX Association; 2014. pp. 317–329. [Google Scholar]
  • 5.Pham V.H., Taieb M.H., Chouinard J.Y., Roy S., Huynh H.T. On the double Doppler effect generated by scatterer motion. REV J. Electron. Commun. 2011;1:30–37. doi: 10.21553/rev-jec.6. [DOI] [Google Scholar]
  • 6.Abdelgawwad A., Pätzold M. On the influence of walking people on the Doppler spectral characteristics of indoor channels; Proceedings of the 28th IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, PIMRC 2017; Montreal, QC, Canada. 8–13 October 2017. [Google Scholar]
  • 7.Abdelgawwad A., Paetzold M. A 3D non-Stationary cluster channel model for human activity recognition; Proceedings of the IEEE 89th Vehicular Technology Conference (VTC2019-Spring); Kuala Lumpur, Malaysia. 28 April–1 May 2019; pp. 1–7. [DOI] [Google Scholar]
  • 8.Bian J., Wang C., Zhang M., Ge X., Gao X. A 3-D Non-stationary wideband MIMO channel model allowing for velocity variations of the mobile station; Proceedings of the IEEE International Conference on Communications (ICC); Paris, France. 21–25 May 2017; pp. 1–6. [DOI] [Google Scholar]
  • 9.Gurbuz S.Z., Clemente C., Balleri A., Soraghan J.J. Micro-Doppler-based in-home aided and unaided walking recognition with multiple radar and sonar systems. IET Radar Sonar Navig. 2017;11:107–115. doi: 10.1049/iet-rsn.2016.0055. [DOI] [Google Scholar]
  • 10.Wang X., Wang P., Cao X., Chen V.C. Interferometric angular velocity measurement of rotating blades: Theoretical analysis, modeling and simulation study. IET Radar Sonar Navig. 2019;13:438–444. doi: 10.1049/iet-rsn.2018.5205. [DOI] [Google Scholar]
  • 11.Ritchie M., Jones A.M. Micro-Doppler gesture recognition using Doppler, time and range based features; Proceedings of the IEEE Radar Conference (RadarConf); Boston, Ma, USA. 22–26 April 2019; pp. 1–6. [DOI] [Google Scholar]
  • 12.Erol B., Amin M.G. Radar data cube processing for human activity recognition using multi subspace learning. IEEE Trans. Aerosp. Electron. Syst. 2019 doi: 10.1109/TAES.2019.2910980. [DOI] [Google Scholar]
  • 13.Seifert A., Amin M.G., Zoubir A.M. Toward unobtrusive in-home gait analysis based on radar micro-Doppler signatures. IEEE Trans. Biomed. Eng. 2019;66:2629–2640. doi: 10.1109/TBME.2019.2893528. [DOI] [PubMed] [Google Scholar]
  • 14.Fioranelli F., Ritchie M., Gürbüz S.Z., Griffiths H. Feature diversity for optimized human micro-Doppler classification using multistatic radar. IEEE Trans. Aerosp. Electron. Syst. 2017;53:640–654. doi: 10.1109/TAES.2017.2651678. [DOI] [Google Scholar]
  • 15.Wu M., Dai X., Zhang Y.D., Davidson B., Amin M.G., Zhang J. Fall detection based on sequential modeling of radar signal time-frequency features; Proceedings of the IEEE International Conference on Healthcare Informatics; Philadelphia, PA, USA. 9–11 September 2013; pp. 169–174. [DOI] [Google Scholar]
  • 16.Amin M.G., Zhang Y.D., Ahmad F., Ho K.C.D. Radar signal processing for elderly fall detection: The future for in-home monitoring. IEEE Signal Process. Mag. 2016;33:71–80. doi: 10.1109/MSP.2015.2502784. [DOI] [Google Scholar]
  • 17.Jokanović B., Amin M. Fall detection using deep learning in range-Doppler radars. IEEE Trans. Aeros. Electron. Syst. 2018;54:180–189. doi: 10.1109/TAES.2017.2740098. [DOI] [Google Scholar]
  • 18.Halperin D., Hu W., Sheth A., Wetherall D. Tool Release: Gathering 802.11n traces with channel state information. ACM SIGCOMM CCR. 2011;41:53. doi: 10.1145/1925861.1925870. [DOI] [Google Scholar]
  • 19.IEEE Std 802.11n-2009 (Amendment to IEEE Std 802.11-2007 as Amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-2009) IEEE; Piscataway, NJ, USA: 2009. IEEE Standard for Information technology—Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput; pp. 1–565. [DOI] [Google Scholar]
  • 20.Wang Z., Guo B., Yu Z., Zhou X. Wi-Fi CSI-based behavior recognition: From signals and actions to activities. IEEE Commun. Mag. 2018;56:109–115. doi: 10.1109/MCOM.2018.1700144. [DOI] [Google Scholar]
  • 21.Wang X., Yang C., Mao S. PhaseBeat: Exploiting CSI phase data for vital sign monitoring with commodity WiFi devices; Proceedings of the IEEE 37th International Conference on Distributed Computing Systems (ICDCS); Atlanta, GA, USA. 5–8 June 2017; pp. 1230–1239. [DOI] [Google Scholar]
  • 22.Xie Y., Li Z., Li M. Precise power delay profiling with commodity WiFi; Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, MobiCom ’15; Beijing, China. 20–25 September 2015; New York, NY, USA: ACM; 2015. pp. 53–64. [DOI] [Google Scholar]
  • 23.Vasisht D., Kumar S., Katabi D. Decimeter-level localization with a single WiFi access point; Proceedings of the 13th Usenix Conference on Networked Systems Design and Implementation, NSDI’16; Santa Clara, CA, USA. 16–18 March 2016; Berkeley, CA, USA: USENIX Association; 2016. pp. 165–178. [Google Scholar]
  • 24.Gong L., Yang W., Man D., Dong G., Yu M., Lv J. WiFi-based real-time calibration-free passive human motion detection. Sensors. 2015;15:32213–32229. doi: 10.3390/s151229896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Mahfoudi M.N., Turletti T., Parmentelat T., Ferrero F., Lizzi L., Staraj R., Dabbous W. ORION: Orientation estimation using commodity Wi-Fi; Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops); Paris, France. 21–25 May 2017; pp. 1233–1238. [DOI] [Google Scholar]
  • 26.Kotaru M., Joshi K., Bharadia D., Katti S. SpotFi: Decimeter level localization using WiFi. SIGCOMM Comput. Commun. Rev. 2015;45:269–282. doi: 10.1145/2829988.2787487. [DOI] [Google Scholar]
  • 27.Qian K., Wu C., Yang Z., Zhou Z., Wang X., Liu Y. Tuning by turning: Enabling phased array signal processing for WiFi with inertial sensors; Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications; San Francisco, CA, USA. 10–15 April 2015–2016; pp. 1–9. [DOI] [Google Scholar]
  • 28.Zhuo Y., Zhu H., Xue H. Identifying a new non-ninear CSI phase measurement error with commodity WiFi devices; Proceedings of the 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS); Wuhan, China. 13–16 December 2016; pp. 72–79. [DOI] [Google Scholar]
  • 29.Wang W., Liu A.X., Shahzad M. Gait recognition using Wifi signals; Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’16; Heidelberg, Germany. 12–16 September 2016; New York, NY, USA: ACM; 2016. pp. 363–373. [DOI] [Google Scholar]
  • 30.Wu X., Chu Z., Yang P., Xiang C., Zheng X., Huang W. TW-See: Human activity recognition through the wall with commodity Wi-Fi devices. IEEE Trans. Veh/ Technol. 2019;68:306–319. doi: 10.1109/TVT.2018.2878754. [DOI] [Google Scholar]
  • 31.Du C., Yuan X., Lou W., Hou Y.T. Context-free fine-grained motion sensing using WiFi; Proceedings of the 15th Annual IEEE International Conference on Sensing, Communication and Networking (SECON); Hong Kong. 11–13 June 2018; pp. 1–9. [DOI] [Google Scholar]
  • 32.Chen J., Li F., Chen H., Yang S., Wang Y. Dynamic gesture recognition using wireless signals with less disturbance. Pers. Ubiquitous Comput. 2019;23:17–27. doi: 10.1007/s00779-018-1182-x. [DOI] [Google Scholar]
  • 33.Sen S., Radunovic B., Choudhury R.R., Minka T. You are facing the mona lisa: Spot localization using PHY layer information; Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, MobiSys ’12; Ambleside, UK. 25–29 June 2012; New York, NY, USA: ACM; 2012. pp. 183–196. [DOI] [Google Scholar]
  • 34.Qian K., Wu C., Yang Z., Liu Y., Zhou Z. PADS: Passive detection of moving targets with dynamic speed using PHY layer information; Proceedings of the 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS); Hsinchu, Taiwan. 16–19 December 2014; pp. 1–8. [DOI] [Google Scholar]
  • 35.Keerativoranan N., Haniz A., Saito K., Takada J.I. Mitigation of CSI temporal phase rotation with B2B calibration method for fine-grained motion detection analysis on commodity Wi-Fi devices. Sensors. 2018;18:3795. doi: 10.3390/s18113795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Abdullah R.S.A.R., Alnaeb A., Salah A.A., Rashid N.E.A., Sali A., Pasya I. Micro-Doppler estimation and analysis of slow moving objects in forward scattering radar system. Remote Sens. 2017;9:699. doi: 10.3390/rs9070699. [DOI] [Google Scholar]
  • 37.Chen V. The Micro-Doppler Effect in Radar. 2nd ed. Artech House; Norwood, MA, USA: 2019. Artech House Radar Library. [Google Scholar]
  • 38.Dauger D.E. Simulation and study of Fresnel diffraction for arbitrary two-dimensional apertures. Comput. Phys. 1996;10:591–604. doi: 10.1063/1.168584. [DOI] [Google Scholar]
  • 39.He R., Zhong Z., Ai B., Ding J., Guan K. Analysis of the relation between Fresnel zone and path loss exponent based on two-ray Model. IEEE Antennas Wirel. Propag. Lett. 2012;11:208–211. doi: 10.1109/LAWP.2012.2187270. [DOI] [Google Scholar]
  • 40.Goldsmith A. Wireless Communications. Cambridge University Press; Cambridge, UK: 2004. [DOI] [Google Scholar]
  • 41.Rappaport T. Wireless Communications: Principles and Practice. 2nd ed. Prentice Hall PTR; Upper Saddle River, PJ, USA: 2001. [Google Scholar]
  • 42.Zhang F., Niu K., Xiong J., Jin B., Gu T., Jiang Y., Zhang D. Towards a diffraction-based sensing approach on human activity recognition. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019;3 doi: 10.1145/3314420. [DOI] [Google Scholar]
  • 43.Zhang F., Zhang D., Xiong J., Wang H., Niu K., Jin B., Wang Y. From Fresnel diffraction model to fine-grained human respiration sensing with commodity Wi-Fi devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018;2:1–23. doi: 10.1145/3191785. [DOI] [Google Scholar]
  • 44.Xin T., Guo B., Wang Z., Wang P., Lam J.C.K., Li V.O.K., Yu Z. FreeSense: A robust approach for indoor human detection using Wi-Fi signals. IMWUT. 2018;2:143:1–143:23. doi: 10.1145/3264953. [DOI] [Google Scholar]
  • 45.Yun X., Bachmann E.R., Moore H., Calusdian J. Self-contained position tracking of human movement using small inertial/magnetic sensor modules; Proceedings of the 2007 IEEE International Conference on Robotics and Automation; Roma, Italy. 10–14 April 2007; pp. 2526–2533. [DOI] [Google Scholar]
  • 46.MATLAB Code for 3D Tracking with IMU. [(accessed on 13 February 2020)]; Available online: https://github.com/xioTechnologies/Gait-Tracking-With-x-IMU.
  • 47.Pätzold M., Gutierrez C.A. Modelling of non-WSSUS channels with time-variant Doppler and delay characteristics; Proceedings of the IEEE Seventh International Conference on Communications and Electronics (ICCE); Hue, Vietnam. 18–20 July 2018; pp. 1–6. [DOI] [Google Scholar]
  • 48.Abdelgawwad A., Pätzold M. A framework for activity monitoring and fall detection based on the characteristics of indoor channels; Proceedings of the IEEE 87th Vehicular Technology Conference (VTC Spring); Porto, Portugal. 3–6 June 2018; [DOI] [Google Scholar]
  • 49.Pätzold M., Gutiérrez C.A., Youssef N. On the consistency of non-stationary multipath fading channels with respect to the average Doppler shift and the Doppler spread; Proceedings of the IEEE Wireless Communications and Networking Conference, WCNC; San Francisco, CA, USA. 19–22 March 2017; [DOI] [Google Scholar]
  • 50.Boashash B. Time-Frequency Signal Analysis and Processing—A Comprehensive Reference. 2nd ed. Elsevier; Amsterdam, The Netherlands: Academic Press; Cambridge, MA, USA: 2015. [Google Scholar]
  • 51.Sensors for Motion Capture, Biomechanics, Industrial Control, Robotics, Facility Management, Cold Storage, Research, and Product Development. [(accessed on 13 February 2020)]; Available online: https://mbientlab.com/

Articles from Sensors (Basel, Switzerland) are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES