Skip to main content
Data in Brief logoLink to Data in Brief
. 2020 Mar 2;29:105359. doi: 10.1016/j.dib.2020.105359

Data for simultaneous fermentation of galacturonic acid and five-carbon sugars by engineered Saccharomyces cerevisiae

Deokyeol Jeong 1, Suji Ye 1, Heeyoung Park 1, Soo Rin Kim 1,
PMCID: PMC7078300  PMID: 32195298

Abstract

Saccharomyces cerevisiae expressing heterologous pathways for xylose, arabinose, and galacturonic acid metabolism has been constructed by a Cas9-based genome editing technology [1]. The fermentation performance of the final strain (YE9) was tested under various substrate conditions, and the fermentation parameters were calculated. The dataset can be used for designing bioprocesses for pectin-rich biomass.

Keywords: Citrus peel waste, Sugar beet pulp, Pectin, Metabolic engineering, CRISPR/Cas9, Bioethanol


Specifications Table

Subject Applied Microbiology and Biotechnology
Specific subject area Yeast metabolic engineering
Type of data Tables and Figures
How data were acquired The fermentation data were obtained by HPLC (Agilent Technologies 1260 series).
Data format Raw and Analysed
Parameters for data collection Fermentation conditions at 30oC and 130 rpm.
Description of data collection Time series analysis of fermentation samples.
Data source location Institution: Kyungpook National University
City/Town/Region: Daegu
Country: Korea
Data accessibility With the article
Related research article Author’s name: Deokyeol Jeong, Suji Ye, Heeyoung Park, and Soo Rin Kim
Title: Simultaneous fermentation of galacturonic acid and five-carbon sugars by engineered Saccharomyces cerevisiae
Journal: Bioresource Technology
https://doi.org/10.1016/j.biortech.2019.122259
Value of the Data
  • The dataset contains the construction strategy and fermentation data for the engineered strain simultaneously fermenting representative three carbon sources (xylose, arabinose, galacturonic acid) in pectin-rich biomass.

  • The fermentation data of the YE9 strain expressing the three pathways can be useful for process design utilizing pectin-rich biomass consisting mainly of galacturonic acid and arabinose.

  • Based on the fermentation data of the YE9 strain, feasible options for strain engineering can be broadened for industrial bioprocesses.

1. Data

This dataset contains 1) the construction of engineered Saccharomyces cerevisiae strain (YE9) capable of fermenting galacturonic acid, arabionse, and xylose, and 2) its fermentation data with different carbon sources (galacturonic acid, arabinose, xylose, galactose, glucose, and fructose) and their mixtures, all of which present in pectin-rich biomass. In Fig. 1, the fermentation patterns of the YE9 strain with natively fermentable sugars (glucose, fructose, and galactose) as a sole carbon source are presented. In Table 1, the fermentation profiles of the YE9 strain with xylose, arabinose, and galacturonic acid in comparison to its wild type strain (D452-2). In Fig. 2, the YE9 strain was tested for xylose and galacturonic acid consumption rates in a mixture of 40 g/L xylose and various galactornic acid concentrations. In Table 2, the fermentation parameters of the YE9 strain with a mixture of galacturonic acid and co-substrates.

Fig. 1.

Fig. 1

Fermentation profiles of the YE9 strain in a complex medium containing (A) 40 g/L d-glucose, (B) 40 g/L d-fructose, and (C) 40 g/L d-galactose as the sole carbon sources. Fermentations were performed under oxygen-limited conditions (130 rpm) with a starting cell density of 25 g/L. All experiments were performed in biological triplicate, and the error bars indicate the standard deviations.

Table 1.

Fermentation profiles of the native S. cerevisiae strain (D452-2) and engineered strain (YE9) expressing heterologous pathways for metabolizing d-xylose, l-arabinose, and d-galacturonic acid (galUA).

Strain Substrate Substrate consumed (g/L) Substrate consumption rate (g/L/h) Products (g/L)
Parametersb)
Glycerol Ethanol YGlycerol YEthanol PEthanol
D452-2 D-xylosea) 5.9 ± 0.2 0.19 ± 0.01 0.3 ± 0.0 n. d. 0.07 ± 0.02 n. d. n. d.
l-arabinose 1.3 ± 0.6 0.08 ± 0.03 n. d. n. d. n. d. n. d. n. d.
galUA < 0.0 < 0.00 n. d. n. d. n. d. n. d. n. d.
YE9 d-xylose 33.7 ± 0.5 1.41 ± 0.02 0.6 ± 0.1 11.3 ± 0.1 0.02 ± 0.00 0.34 ± 0.01 0.05 ± 0.00
l-arabinose 30.2 ± 0.1 0.63 ± 0.07 n. d. 1.9 ± 0.1 n. d. 0.07 ± 0.00 <0.00
galUA 6.7 ± 0.7 0.27 ± 0.01 0.3 ± 0.1 0.3 ± 0.0 0.04 ± 0.01 0.08 ± 0.02 < 0.00
a)

Fermentations were performed in a complex medium containing 40 g/L d-xylose, 40 g/L l-arabinose, or 20 g/L d-galacturonic acid under oxygen-limited conditions (130 rpm) with a starting cell density of 25 g/L. Substrate consumption rate was calculated for 24 h and the others were calculated for 72 h.

b)

YGlycerol, glycerol yield (g glycerol/g substrate); YEthanol, ethanol yield (g ethanol/g substrate); PEthanol∗, specific ethanol productivity (g ethanol/g cell/h); n. d., not detected.

Fig. 2.

Fig. 2

Effect of d-galacturonic acid on the rate of d-xylose consumption in the YE9 strain. Consumption rate of d-xylose (A) and d-galacturonic acid (B) was evaluated under 40 g/L D-xylose and different d-galacturonic acid concentrations (0–100 g/L). All experiments were performed in biological triplicate, and error bars indicate standard deviations and were not visible when smaller than the symbol size.

Table 2.

Fermentation profiles of mixed culture by engineered S. cerevisiae YE9 strain expressing heterologous pathways metabolizing d-xylose, l-arabinose, and d-galacturonic acid (galUA).

Mediuma) Substrate consumed (g/L)
galUA consumption rate (g/L/h) Products (g/L)
Parametersb)
galUA Sugars Glycerol Ethanol YGlycerol YEthanol PGlycerol PEthanol
galUA 6.7 ± 0.7 0.27 ± 0.01 0.3 ± 0.1 0.3 ± 0.0 0.04 ± 0.01 0.08 ± 0.02 < 0.00 < 0.00
galUA + Glucose 3.3 ± 0.2 36.7 ± 0.1 0.14 ± 0.01 2.4 ± 0.3 16.9 ± 0.2 0.06 ± 0.01 0.40 ± 0.01 0.06 ± 0.00 0.66 ± 0.01
galUA + Fructose 4.5 ± 0.3 36.1 ± 0.8 0.18 ± 0.02 2.9 ± 0.1 16.9 ± 0.5 0.07 ± 0.00 0.36 ± 0.01 < 0.00 0.65 ± 0.03
galUA + Galactose 4.6 ± 1.2 25.4 ± 7.3 0.17 ± 0.03 1.6 ± 0.7 2.4 ± 1.1 0.04 ± 0.01 0.05 ± 0.02 < 0.00 < 0.00
galUA+ Xylose 13.1 ± 0.4 33.3 ± 0.5 0.49 ± 0.02 4.5 ± 0.1 12.8 ± 0.3 0.08 ± 0.00 0.23 ± 0.01 0.01 ± 0.00 0.04 ± 0.00
galUA+ Arabinose 11.9 ± 0.7 28.4 ± 0.1 0.32 ± 0.03 4.2 ± 0.2 4.1 ± 0.5 0.11 ± 0.01 0.11 ± 0.02 < 0.00 < 0.00
galUA
+Xylose (X)
+Arabinose (A)
15.3 ± 0.6 33.7 ± 0.1 (X)
25.9 ± 4.4 (A)
0.49 ± 0.04 5.3 ± 0.6 16.5 ± 1.2 0.07 ± 0.00 0.22 ± 0.01 < 0.00 0.02 ± 0.00
a)

Fermentations were performed in a complex medium containing 20 g/L d-galacturonic acid (galUA) and 40 g/L sugar (d-glucose, d-fructose, d-galactose, d-xylose, l-arabinose, and mixture of d-xylose and l-arabinose) under oxygen-limited conditions (130 rpm) with a starting cell density of 25 g/L. d-galacturonic acid consumption rate was calculated for 24 h and the others were calculated for 72 h.

b)

YGlycerol, glycerol yield (g glycerol/g substrates); YEthanol, ethanol yield (g ethanol/g substrates); PGlycerol∗, specific glycerol productivity (g glycerol/g cell/h); PEthanol∗, specific ethanol productivity (g ethanol/g cell/h).

2. Experimental design, materials, and methods

2.1. Strain construction by Cas9-based genome editing

To construct the YE9 strain, four consecutive transformations were performed as summarized in Fig. 3 using strains listed in Table 3. Briefly, the strain construction includes three parts: 1) guide RNA (gRNA) plasmid construction, 2) donor DNA preparation, and 3) yeast transformation.

  • 1)

    Guide RNA (gRNA) plasmid construction

Fig.3.

Fig.3

Construction of engineered S. cerevisiae YE9 strains expressing heterologous d-xylose, d-galacturonic acid, and l-arabinose pathways. (A) Strain construction using Cas9-based in vivo assembly and genome integration strategy. (B) Confirmation primers for correct assembly and integration by yeast colony PCR. The primer sequences are listed in Table S5.

Table 3.

Saccharomyces cerevisiae strains used for the construction of YE9.

Strains Description/relevant genotypea Ref.
D452-2 Wild type; Matα leu2 his3 ura3 [7]
DY02 Expressing the heterologous d-xylose pathway;
D452-2 ald6::TDH3P-XYL1-TDH3T-PGK1P-XYL2-PGK1Tpho13::TEF1P-XYL3-TEF1T
YE3 DY02 int#4::CCW12P-gaaA-CCW12T
YE4 DY02 int#4::PGK1P-lgd1-PGK1T
YE5 DY02 int#4::TDH3P-gaaC-TDH3T
YE6 Expressing the heterologous D-xylose and d-galacturonic acid pathway;
DY02 int#4::CCW12P-gaaA-CCW12T-PGK1P-lgd1-PGK1T-TDH3P-gaaC-TDH3T
YE6 YPR1 YE6 CCW12P-YPR1
YE6 gaaD YE6 int#6::CCW12P-gaaD-CCW12T
YE01 Expressing the heterologous d-xylose, and l-arabinose pathway;
D452-2 ald6::TDH3P-XYL1-TDH3T-PGK1P-XYL2-PGK1Tint#1::TEF1P-XYL3-TEF1Tsor1::FBA1P-LAD1-FBA1T-PGK1P-ALX1-CYC1T
[8]
YE9 Expressing the heterologous d-xylose, l-arabinose, and d-galacturonic acid pathway;YE6 int#7::FBA1P-lad1-FBA1T-PGK1P-alx1-CYC1T
a

XYL1, XYL2, and XYL3 are derived from Pichia stipitis; gaaA, gaaC, and gaaD are derived from Aspergillus niger; lgd1 and lad1 are derived from Trichoderma reesei; alx1 is derived from Ambrosiozyma monospora.

gRNA sequences are designed to be target cut site-specific and 20-bp long, as listed in Table 4. The plasmids expressing each gRNA sequence were constructed by the fast cloning method [2], which is a PCR-based protocol for plasmid mutagenesis. To construct the pRS42H-ALD6.1 plasmid, for example, the pRS42H-GND1.1 plasmid (a template plasmid) [3] was amplified with the primers Kim044/Kim045 (Table 5). The PCR products were treated with DpnI and used to transform E. coli TOP10 (Invitrogen, Carlsbad, CA, USA). The transformants were selected on an LBA (5 g/L yeast extract, 10 g/L tryptone, 10 g/L NaCl, and 100 μg/mL ampicillin) agar plate. The gRNA sequence of the resulting plasmid was confirmed by Sanger sequencing using a universal primer for the T3 promoter. All other gRNA plasmids were constructed using the same procedure but different primers, as listed in Table 5.

  • 2)

    Donor DNA preparation

Table 4.

Guide RNA (gRNA) plasmids.

gRNA Target cut site gRNA and PAM sequences (5’-) Plasmid name
ALD6.1 ALD6 GTCAAGATCACACTTCCAAA TGG pRS42H-ALD6.1
PHO13.1 PHO13 TCCCTTATCTATTAACTTTC CGG pRS42H-PHO13.1
YPR1.1 YPR1 CATGGTAGATTATTATCTGT GGG pRS42H-YPR1.1
INT#4 Intergenic region upstream ASF1 CTCTCGAAGTGGTCACGTGC GGG pRS42H-INT#4
INT#6 Intergenic region upstream ATG33 TTGTCACAGTGTCACATCAG CGG pRS42H-INT#6
INT#7 Intergenic region downstream YGR190C GATACTTATCATTAAGAAAA TGG pRS42H-INT#7

Table 5.

Primers used for construction of guide RNA plasmids.

Plasmid name Primers Sequences (5’-)
pRS42H-ALD6.1 Kim044 AAGATCACACTTCCAAAGTTTTAGAGCTAGAAATAGCAAG
Kim045 TTGGAAGTGTGATCTTGACGATCATTTATCTTTCACTGCG
pRS42H-PHO13.1 Kim624 CTTATCTATTAACTTTCGTTTTAGAGCTAGAAATAGCAAG
Kim625 AAAGTTAATAGATAAGGGAGATCATTTATCTTTCACTGCG
pRS42H-YPR1.1 Kim535 GGTAGATTATTATCTGTGTTTTAGAGCTAGAAATAGCAAG
Kim536 CAGATAATAATCTACCATGGATCATTTATCTTTCACTGCG
pRS42H-INT#4 Kim310 TCGAAGTGGTCACGTGCGTTTTAGAGCTAGAAATAGCAAG
Kim311 CACGTGACCACTTCGAGAGGATCATTTATCTTTCACTGCG
pRS42H-INT#6 Kim314 TCACAGTGTCACATCAGGTTTTAGAGCTAGAAATAGCAAG
Kim315 TGATGTGACACTGTGACAAGATCATTTATCTTTCACTGCG
pRS42H-INT#7 Kim486 AGGAATTATGTTCGCCCGTTTTAGAGCTAGAAATAGCAAG
Kim487 GGCGAACATAATTCCTTACGATCATTTATCTTTCACTGCG

Donor DNA fragments were prepared by PCR using the primers listed in Table 6. Each of the fragments was flanked by 40–50 bp to allow in vivo assembly and genome integration through homologous recombination. Each assembly was an expression cassette of a heterologous gene as described in Fig. 3A. The donor DNAs for the xylose expression cassettes were designed to achieve complete removal of a target gene when genome integrated. On the other hand, the expression cassettes of the arabinose pathway and galacturonic acid pathway were integrated into an intergenic region without interfering neighboring genes.

  • 3)

    Yeast transformation

Table 6.

Primers used for construction of donor DNA fragments.

Template genomic DNAa Donor DNA fragments Primers Sequences (5’-)
XYL1 and XYL2 expression cassettes for deleting ALD6 (ald6::TDH3P-XYL1-TDH3T-PGK1P-XYL2-PGK1T)
S. cerevisiae TDH3P Kim626 TAACATACACAAACACATACTATCAGAATACACTATTTTCGAGGACCTTGTC
SOO384 TCAACTTAATAGAAGGCATTTTTAGATCTCCTAGGTTTGTTTGTTTATGTGTGTTTAT TC
P. stipitis XYL1 SOO385 ATAAACACACATAAACAAACAAACCTAGGAGATCTAAAAATGCCTTCTATTAAGTTGA AC
SOO386 AAT GCAAGATTTAAAGTAAATTCACTGTTAACGCATGCTTAGACGAAGATAGGAATCTTG
S. cerevisiae TDH3T SOO387 GGA CAAGATTCCTATCTTCGTCTAAGCATGCGTTAACAGTGAATTTACTTTAAATCTTGC
SOO388 ATTCTTTGAAGGTACTT CTTCGAAAAATTCGCGTCTGCTAGCTCCTGGCGGAAAAAATTC
S. cerevisiae PGK1P SOO389 TTTTAAAGTTTACAAAT GAATTTTTTCCGCCAGGAGCTAGCAGACGCGAATTTTTCGAAG
SOO390 CACCAA GGAAGGGTTAGCAGTCATTTTTTCTAGATGTTTTATATTTGTTGTAAAAAGTAG
P. stipitis XYL2 SOO391 AATTAT CTACTTTTTACAACAAATATAAAACATCTAGAAAAAATGACTGCTAACCCTTCC
SOO392 AAAAAATTGAT CTATCGATTTCAATTCAATTCAATACTAGTTTACTCAGGGCCGTCAATG
S. cerevisiae PGK1T SOO393 GTCAAGTGTCT CATTGACGGCCCTGAGTAAACTAGTATTGAATTGAATTGAAATCGATAG
Kim627 GTATATGACGGAAAGAAATGCAGGTTGGTACA AAATAATATCCTTCTCGAAAG
XYL3 expression cassette for deleting PHO13 (pho13::TDH3P-XYL1-TDH3T-PGK1P-XYL2-PGK1T)
S. cerevisiae TDH3P Kim628 ATGTGACATCTTTACTATTCTCCAGCACGTTT CTTCATCGGTATCTTCGC
SOO374 AA TGGGGTAGTGGTCATTTTTAAGCTTGAATTCTTTGTAATTAAAACTTAGATTAGATTG
P. stipitis XYL3 SOO375 AT CTAATCTAAGTTTTAATTACAAAGAATTCAAGCTTAAAAATGACCACTACCCCATTTG
SOO376 GCAACTA GAAAAGTCTTATCAATCTCCGTCGACATCGATTTAGTGTTTCAATTCACTTTC
S. cerevisiae TDH3T SOO377 CAAGATG GAAAGTGAATTGAAACACTAAATCGATGTCGACGGAGATTGATAAGACTTTTC
Kim629 CTATAACTCATTATTGGTTAAGGTGTAGATG AAGTTGGGTAACGCCAGG
gaaA expression cassette (int#4::CCW12P-gaaA-CCW12T)
S. cerevisiae CCW12P Kim379 TTCCTCGGGCAGAGAAACTCGCAGGCAACTTG CACGCAAAAGAAAACCTT
Kim380 TCAACA CAGCTGGGGGAGCCATTTTTTATTGATATAGTGTTTAAGCGAAT
A. niger gaaA Kim381 TCTGTC ATTCGCTTAAACACTATATCAATAAAAAATGGCTCCCCCAGCTG
Kim382 TAGA ATGTATAAATAATAATAAACTAAGTCTACTTCAGCTCCCACTTTCC
S. cerevisiae CCW12T Kim383 GGAT GGAAAGTGGGAGCTGAAGTAGACTTAGTTTATTATTATTTATACAT
Kim384 TGTGAGGGCCGATTATGCAGGCCTAGA TGTTCTAGTGTGTTTATATTATC
lgd1 expression cassette (int#4::PGK1P-lgd1-PGK1T)
S. cerevisiae PGK1P Kim385 CCTCGGGCAGAGAAACTCGCAGGCAACTTG GTGAGTAAGGAAAGAGTGAG
Kim386 GTGATGGTGACTTCAGACATTTTTTGTTTTATATTTGTTGTAAAAAGTAG
T. reesei lgd1 Kim387 CTACTTTTTACAACAAATATAAAACAAAAAATGTCTGAAGTCACCATCAC
Kim388 ATTGATCTAT CGATTTCAATTCAATTCAATTCAGATCTTCTCTCCGTTCA
S. cerevisiae PGK1T Kim389 CTGCCCATCT TGAACGGAGAGAAGATCTGAATTGAATTGAATTGAAATCG
Kim390 CTCTGTGAGGGCCGATTATGCAGGCCTAGA AAATAATATCCTTCTCGAAA
gaaC expression cassette (int#4::TDH3P-gaaC-TDH3T)
S. cerevisiae TDH3P Kim391 CTCGGGCAGAGAAACTCGCAGGCAACTTG GAATAAAAAACACGCTTTTTC
Kim392 GACTCCGGGGCG GAGCGGGGTAAAAGGCATTTTTTTTGTTTGTTTATGTGTGTT
A. niger gaaC Kim393 TTCGAATA AACACACATAAACAAACAAAAAAAATGCCTTTTACCCCGCTC
Kim394 ATTTAAAT GCAAGATTTAAAGTAAATTCACCTAAGCAATATCCGGCAACG
S. cerevisiae TDH3T Kim395 TGAGAAGT CGTTGCCGGATATTGCTTAGGTGAATTTACTTTAAATCTTGC
Kim396 CCTCTGTGAGGGCCGATTATGCAGGCCTAGA ATCCTGGCGGAAAAAATTC
gaaA, lgd1, and gaaC expression cassettes (int#4::CCW12P-gaaA-CCW12T-PGK1P-lgd1-PGK1T-TDH3P-gaaC-TDH3T)
S. cerevisiae YE3 CCW12P-gaaA-CCW12T Kim410 TCTTTAGGTTAATTGTCGCTGTTATTGTCTA GATTTTTTCTCGGAGATGG
Kim411 TAGTTC CTCACTCTTTCCTTACTCACTGTTCTAGTGTGTTTATATTATCC
S. cerevisiae YE4 PGK1P-lgd1-PGK1T Kim412 AGCCAA GGATAATATAAACACACTAGAACA GTGAGTAAGGAAAGAGTGAG
Kim413 AAACTCGAA CTGAAAAAGCGTGTTTTTTATTCCCGATTATGCAGGCCTAG
S. cerevisiae YE5 TDH3P-gaaC-TDH3T Kim414 TATTATTTT CTAGGCCTGCATAATCGGGAATAAAAAACACGCTTTTTCAG
Kim415 CTACTCTCTTCCTAGTCGCCCGGTTGTT GAAAGTTTAATTGTGGGTTTTC
lad1 and alx1 expression cassettes (int#7::FBA1P-lad1-FBA1T-PGK1P-alx1-CYC1T)
S. cerevisiae YE01 FBA1P-lad1-FBA1T-PGK1P-alx1-CYC1T Kim553 CTTACACTTGTGTAATGACAAATGTTTTT TGAACAACAATACCAGCCTTC
Kim554 TGTTTCACGTTATCAAGATTATGTCATCTATT GGCCGCAAATTAAAGCCT
Overexpression of YPR1 (CCW12P-YPR1)
S. cerevisiae CCW12P Kim537 GTAACTTTGCAATATAATCAGGTCGCAAATAT CACGCAAAAGAAAACCTT
Kim538 GAAGAATTCTTTAACGTAGCAGGCAT TATTGATATAGTGTTTAAGCGAAT
gaaD expression cassette (int#6::CCW12P-gaaD-CCW12T)
S. cerevisiae CCW12P Kim541 CGGAGGAGACCGCTATAACCGGTTTGAATTTA CACGCAAAAGAAAACCTT
Kim542 TA ACCTTCTTTCCGAGAGACATTTTTTATTGATATAGTGTTTAAGCGAAT
A. niger gaaD Kim543 TC ATTCGCTTAAACACTATATCAATAAAAAATGTCTCTCGGAAAGAAGGT
Kim544 GT ATAAATAATAATAAACTAAGTTTATTAAACAATCACCTTATGACCAGC
S. cerevisiae CCW12T Kim545 TG GTCATAAGGTGATTGTTTAATAAACTTAGTTTATTATTATTTATACAT
Kim546 CTTGCTTGCTGTCAAACTTCTGAGTTG TGTTCTAGTGTGTTTATATTATC

The flanking region is underlined.

a

Saccharomyces cerevisiae D452-2; Pichia stipitis CBS 6054; Aspergillus niger CBS 120.49; Trichoderma reesei ATCC 5676.

For yeast transformation, a gRNA plasmid (4 μg) and donor DNA fragments (4 μg each) were used to transform a designated strain harboring pRS41N-Cas9 [3]. The resulting transformants were selected on a YPD agar plate supplemented with 100 μg/mL nourseothricin sulfate (Gold Biotechnology, St. Louis, MO, USA) and 300 μg/mL hygromycin B (Invitrogen, Carlsbad, CA, USA). Selected transformants were serially sub-cultured in YPD medium supplemented with 100 μg/mL nourseothricin sulfate to only remove the existing gRNA plasmids. Correct assembly and integration was then confirmed by yeast colony PCR with the primers listed in Table 7. Through four consecutive transformations, as described in Fig. 3, the YE9 strain was finally constructed.

Table 7.

Primers used for confirmation of correct assembly and integration.

Primers Sequences (5’-) Primers Sequences (5’-)
Introduction of d-xylose pathway Introduction of d-galacturonic acid pathway
Kim049 GGAACGGTGAGTGCAACG Kim322 GCGCATCTATTTGCCGTC
Kim427 AAACTGTTCACCCAGACACC Kim397 GCTGGGGGAGCCATTTTTTATTG
Kim194 AGCGCAACTACAGAGAACAGG Kim398 GTGGGAGCTGAAGTAGACTTAG
Kim100 CGGCACCGTCGAACAATCTG Kim323 TCACGACACACCTCACTG
Kim101 CCGCTTACTCTTCGTTCGGTCC Kim399 CCTGTGATGGTGACTTCAGAC
Kim193 CTCAGCATCCACAATGTATCAG Kim401 GAACGGAGAGAAGATCTGAATTG
Kim426 GCGCTATTGCATTGTTCTTGTC Kim400 ACAGCCTGTTCTCACACAC
Kim547 AGGTATGCGATAGTTCCTCAC Kim402 GCGGGGTAAAAGGCATTTTTTTTG
Kim125 TGCAGCTTCCAATTTCGTCAC Kim408 GCCGGATATTGCTTAGGTG
Kim630 GAGGTGACACCCTTACCAAC
Kim631 CTGCTACTCACACCTTCAACTC Introduction of l-arabinose pathway
Kim632 CGCTGAACCCGAACATAGAAATATC Kim490 GGCACTAGGAGCATTTGTCG
Kim633 TCGATATTTCTATGTTCGGGTTCAG Kim304 GCTTCGCTAATCCAGAGGTC
Kim078 GATTGGAATTGGTTCGCAGTG Kim400 ACAGCCTGTTCTCACACAC
Kim048 GAGGAAGACGTTGAAGGTGG Kim491 GTCCCTTAGGGTGCGTATAATG
Kim149 TTTGAAGTGGTACGGCGATG
Kim577 CACCCAAGCACAGCATAC Overexpression of YPR1
Kim634 TGGCTCGATAACGAAGATTCAG Kim539 CAATTCCGTGAAACCCTTTTCTT
Kim635 GTCTTGTAGATTGAGAACTGGTCC Kim540 CTGCCAACTTCTTCTTCATTCAA
Kim636 TCTATGAGGCAAGTAAGAGGCAC
Kim492 AACAGGCGACAGTCCAAATG Introduction of gaaD gene cassette
Kim077 TTGGAGTTCAAACTGGCGAG Kim326 GGTTCTGACTCCTACTGAGC
Kim093 GCAAAGATAGCGGCGTAGGTG
Kim549 GCATCCTTTGCCTCCGTTC
Kim327 AGCATCGAGTACGGCAGTTC

2.2. Fermentation

For fermentation of the YE9 strain, one colony was pre-cultured in YP medium (10 g/L yeast extract and 20 g/L peptone) supplemented with 20 g/L of glucose for 36 h at 30oC and 250 rpm. Cells were centrifuged, washed twice, and re-suspended in YP medium supplemented with desired carbon sources. The initial cell density of fermentation was 25 g/L dry weight, which corresponds to approximately 125 g/L wet weight, and this conversion factor was obtained from a prior study [4]. In the industrial bioethanol processes, >90% cells are recycled in repeated batch-type fermentation; therefore, very high cell density of up to 170 g/L wet weight [5] is often achieved. The concentrations of the carbon sources were selected to reflect the typical chemical composition of pectin-rich biomass (Table 8).

Table 8.

Chemical composition of pectin-rich biomass.

Source Arabinose Galacturonic acid Ratio Reference
Orange peel hydrolysate (g/L, ∼ 10% solid loading) 32.6 13.2 2.47 [9]
Sugar beet pulp hydrolysate (g/100 g dry matter) 22.5 22.5 1.00 [10]

2.3. HPLC analysis

Quantitation of glucose, fructose, galactose, xylose, arabinose, galacturonic acid, glycerol, and ethanol was performed by high-performance liquid chromatography (HPLC; Agilent Technologies, 1260 series, USA) device equipped with a RI detector and a Rezex-ROA Organic Acid H+ (8%) (150 mm × 4.6 mm) column (Phenomenex Inc., Torrance, CA, USA). The column was eluted with 0.005 N H2SO4 at 0.6 mL/min and 50oC [1,6].

Footnotes

Appendix A

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2020.105359.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

The following are the Supplementary data to this article:

Multimedia component 1
mmc1.xlsx (122.9KB, xlsx)
Multimedia component 2
mmc2.xlsx (185.4KB, xlsx)
Multimedia component 3
mmc3.xlsx (44.2KB, xlsx)
Multimedia component 4
mmc4.xlsx (99.7KB, xlsx)
Multimedia component 5
mmc5.xml (376B, xml)

References

  • 1.Jeong D., Ye S., Park H., Kim S.R. Simultaneous fermentation of galacturonic acid and five-carbon sugars by engineered Saccharomyces cerevisiae. Bioresour. Technol. 2020;295:122259. doi: 10.1016/j.biortech.2019.122259. [DOI] [PubMed] [Google Scholar]
  • 2.Li C., Wen A., Shen B., Lu J., Huang Y., Chang Y. FastCloning: a highly simplified, purification-free, sequence-and ligation-independent PCR cloning method. BMC Biotechnol. 2011;11(1):92. doi: 10.1186/1472-6750-11-92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Kim S.R., Xu H., Lesmana A., Kuzmanovic U., Au M., Florencia C., Oh E.J., Zhang G., Kim K.H., Jin Y.-S. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2015;81(5):1601–1609. doi: 10.1128/AEM.03474-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Aon J.C., Sun J., Leighton J.M., Appelbaum E.R. Hypoxia-elicited impairment of cell wall integrity, glycosylation precursor synthesis, and growth in scaled-up high-cell density fed-batch cultures of Saccharomyces cerevisiae. Microb. Cell Factories. 2016;15(1):142. doi: 10.1186/s12934-016-0542-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Basso L.C., De Amorim H.V., De Oliveira A.J., Lopes M.L. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res. 2008;8(7):1155–1163. doi: 10.1111/j.1567-1364.2008.00428.x. [DOI] [PubMed] [Google Scholar]
  • 6.Park J.-B., Kim J.-S., Jang S.-W., Kweon D.-H., Hong E.K., Shin W.C., Ha S.-J. Sequence analysis of KmXYL1 genes and verification of thermotolerant enzymatic activities of xylose reductase from four Kluyveromyces marxianus strains. Biotechnol. Bioproc. Eng. 2016;21(5):581–586. [Google Scholar]
  • 7.Hosaka K., Nikawa J.-i., Kodaki T., Yamashita S. A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J. Biochem. 1992;111(3):352–358. doi: 10.1093/oxfordjournals.jbchem.a123761. [DOI] [PubMed] [Google Scholar]
  • 8.Ye S., Jeong D., Shon J.C., Liu K.-H., Kim K.H., Shin M., Kim S.R. Deletion of PHO13 improves aerobic l-arabinose fermentation in engineered Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 2019:1–7. doi: 10.1007/s10295-019-02233-y. [DOI] [PubMed] [Google Scholar]
  • 9.Li P.P.-j., Xia J.-l., Nie Z.-y., Shan Y. Pectic oligosaccharides hydrolyzed from orange peel by fungal multi-enzyme complexes and their prebiotic and antibacterial potentials. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 2016;69:203–210. [Google Scholar]
  • 10.Zykwinska A., Boiffard M.-H.l.n., Kontkanen H., Buchert J., Thibault J.-F.o., Bonnin E. Extraction of green labeled pectins and pectic oligosaccharides from plant byproducts. J. Agric. Food Chem. 2008;56(19):8926–8935. doi: 10.1021/jf801705a. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Multimedia component 1
mmc1.xlsx (122.9KB, xlsx)
Multimedia component 2
mmc2.xlsx (185.4KB, xlsx)
Multimedia component 3
mmc3.xlsx (44.2KB, xlsx)
Multimedia component 4
mmc4.xlsx (99.7KB, xlsx)
Multimedia component 5
mmc5.xml (376B, xml)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES