Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2012 Mar 30;66(6):1123–1153. doi: 10.1007/s00285-012-0526-9

High host density favors greater virulence: a model of parasite–host dynamics based on multi-type branching processes

K Borovkov 1,, R Day 2, T Rice 1
PMCID: PMC7080088  PMID: 22461126

Abstract

We use a multitype continuous time Markov branching process model to describe the dynamics of the spread of parasites of two types that can mutate into each other in a common host population. While most mathematical models for the virulence of infectious diseases focus on the interplay between the dynamics of host populations and the optimal characteristics for the success of the pathogen, our model focuses on how pathogen characteristics may change at the start of an epidemic, before the density of susceptible hosts decline. We envisage animal husbandry situations where hosts are at very high density and epidemics are curtailed before host densities are much reduced. The use of three pathogen characteristics: lethality, transmissibility and mutability allows us to investigate the interplay of these in relation to host density. We provide some numerical illustrations and discuss the effects of the size of the enclosure containing the host population on the encounter rate in our model that plays the key role in determining what pathogen type will eventually prevail. We also present a multistage extension of the model to situations where there are several populations and parasites can be transmitted from one of them to another. We conclude that animal husbandry situations with high stock densities will lead to very rapid increases in virulence, where virulent strains are either more transmissible or favoured by mutation. Further the process is affected by the nature of the farm enclosures.

Keywords: Epidemics, Virulence, Multitype branching process

Contributor Information

K. Borovkov, Email: borovkov@unimelb.edu.au

R. Day, Email: r.day@unimelb.edu.au

T. Rice, Email: t.rice@ms.unimelb.edu.au

References

  1. Alexander HK, Day T. Risk factors for the evolutionary emergence of pathogens. J R Soc Interface. 2010;7:1455–1474. doi: 10.1098/rsif.2010.0123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alizon S, Hurford A, Mideo N, van Baalen M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J Evol Biol. 2009;22:245–259. doi: 10.1111/j.1420-9101.2008.01658.x. [DOI] [PubMed] [Google Scholar]
  3. Allen LJS (2008) An introduction to stochastic epidemic models. In: Mathematical epidemiology, Lecture Notes in Math, Springer, Berlin, vol 1945, pp 81–130
  4. Anderson RM, May RM. Coevolution of hosts and parasites. Parasitology. 1982;85:411–426. doi: 10.1017/S0031182000055360. [DOI] [PubMed] [Google Scholar]
  5. Anderson RM, May RM. Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press; 1991. [Google Scholar]
  6. Andersson H, Britton T. Stochastic epidemic models and their statistical analysis. Lecture Notes in Statistics, 151. New York: Springer; 2000. [Google Scholar]
  7. André J-B, Hochberg ME. Virulence evolution in emerging infectious diseases. Evolution. 2005;59:1406–1412. [PubMed] [Google Scholar]
  8. Athreya KB, Ney PE. Branching processes. New York: Springer; 1972. [Google Scholar]
  9. Ball FG, Donelly P. Strong approximations for epidemic models. Stoch Process Appl. 1995;55:1–21. doi: 10.1016/0304-4149(94)00034-Q. [DOI] [Google Scholar]
  10. Bartlett MS. Some evolutionary stochastic processes. J R Stat Soc B. 1949;11:211–229. [Google Scholar]
  11. Bartlett MS. An introduction to stochastic processes. Cambridge: Cambridge Univeristy Press; 1955. [Google Scholar]
  12. Becker NG. Analysis of infectious disease data. London: Chapman and Hall; 1989. [Google Scholar]
  13. Becker NG, Marschner I (1990) The effect of heterogeneity on the spread of disease. In: Gabriel J-P et al (eds) Stochastic processes in epidemic theory 86. Lecture Notes in Biomathematics, pp 90–103
  14. Bergh O. The dual myths of the healthy wild fish and the unhealthy farmed fish. Dis Aquat Org. 2007;75:159–164. doi: 10.3354/dao075159. [DOI] [PubMed] [Google Scholar]
  15. Bernoulli D (1760) Essai d’une nouvelle analyse de la mortalité causée par la petit vérole et des advanteges de l’inoculation pour la prévenir. Mém. Math Phys Acad R Sci, Paris, pp 1–45
  16. Bharucha-Reid AT. Comparison of populations whose growth can be described by a branching stochastic process. Sankhyā. 1958;19:1–14. [Google Scholar]
  17. Biggs PM. Infectious animal disease and its control. Phil Trans R Soc Lond B. 1985;310:259–274. doi: 10.1098/rstb.1985.0115. [DOI] [PubMed] [Google Scholar]
  18. Bolker BM, Nanda A, Shah D. Transient virulence of emerging pathogens. J R Soc Interface. 2010;7:811–822. doi: 10.1098/rsif.2009.0384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Bull JJ, Ebert D. Invasion thresholds and the evolution of non-equilibrium virulence. Evol Appl. 2008;1:172–182. doi: 10.1111/j.1752-4571.2007.00003.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Crawford D. Deadly companions: how microbes shaped our history. Oxford: Oxford University Press; 2007. [Google Scholar]
  21. Daley DJ, Gani J. Epidemic modelling: an introduction. Cambridge: Cambridge University Press; 1999. [Google Scholar]
  22. Day T. On the evolution of virulence and the relationship between various measures of mortality. Proc R Soc Lond B. 2002;269:1317–1323. doi: 10.1098/rspb.2002.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Day T. Virulence evolution and the timing of disease life-history events. Trends Ecol Evol. 2003;18:113–118. doi: 10.1016/S0169-5347(02)00049-6. [DOI] [Google Scholar]
  24. Day T, Gandon S (2006) Insights from Price’s equation into evolutionary epidemiology. In: Feng Z, Dieckmann U, Levin SA (eds) Disease evolution: models, concepts, and data analyses 71. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, , pp 23–43
  25. Day T, Proulx SR. A general theory for the evolutionary dynamics of virlence. Am Nat. 2004;163:E41–E63. doi: 10.1086/382548. [DOI] [PubMed] [Google Scholar]
  26. de Roode JC, Yates AJ, Altizer S. Virulence—transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proc Natl Acad Sci USA. 2008;105:7489–7494. doi: 10.1073/pnas.0710909105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dietz K, Schenke D. Mathematical models for infectious disease statistics. In: Atkinson AC, Fienberg SE, editors. A celebration of statistics. New York: Springer; 1985. pp. 167–204. [Google Scholar]
  28. Ebert D. The evolution and expression of parasite virulence. In: Stearns SC, editor. Evolution in health and disease. Oxford: Oxford University Press; 1999. pp. 161–172. [Google Scholar]
  29. Ewald PW. Host–parasite relations, vectors, and the evolution of disease severity. Annu Rev Ecol Syst. 1983;14:465–485. doi: 10.1146/annurev.es.14.110183.002341. [DOI] [Google Scholar]
  30. Ewald PW. Evolution of infectious disease. Oxford: Oxford University Press; 1994. [Google Scholar]
  31. Frank SA. Models of parasite virulence. Q Rev Biol. 1996;71:37–78. doi: 10.1086/419267. [DOI] [PubMed] [Google Scholar]
  32. Fraser D. Animal welfare and the intensification of animal production: an alternative interpretation. Rome: UN Food and Agriculture Organization; 2005. [Google Scholar]
  33. Fraser C, Hollingsworth TD, Chapman R, de Wolf F, Hanage WP. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. Proc Natl Acad Sci USA. 2007;104:17441–17446. doi: 10.1073/pnas.0708559104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Gandon S, Mackinnon MJ, Nee S, Read AF. Imperfect vaccines and the evolution of pathogen virulence. Nature. 2001;414:751–756. doi: 10.1038/414751a. [DOI] [PubMed] [Google Scholar]
  35. Gantmakher FR. The theory of matrices, vol 1. New York: Chelsea; 1989. [Google Scholar]
  36. Gerbier G (1999) Effect of animal density on FMD spread. European Commission for the Control of Foot-and-Mouth Disease Report. Research Group of the Standing Technical Committee, Maisons-Alfort
  37. Getz WM, Lloyd-Smith JO (2006) Basic methods for modeling the invasion and spread of contagious diseases. In: Disease evolution, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 71. Am. Math. Soc., Providence, RI, pp 87–109
  38. Girvan M, Callaway DS, Newman MEJ, Strogatz SH. A simple model of epidemics with pathogen mutation. Phys Rev E. 2002;65:031915. doi: 10.1103/PhysRevE.65.031915. [DOI] [PubMed] [Google Scholar]
  39. Greenwood M. On the statistical measure of infectiousness. J Hyg Camb. 1931;31:336–351. doi: 10.1017/S002217240001086X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Guan Y, Zheng BJ, He YQ, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302:276–278. doi: 10.1126/science.1087139. [DOI] [PubMed] [Google Scholar]
  41. Haccou P, Jagers P, Vatutin VA. Branching processes: variation, growth, and extinction of populations. Cambridge: Cambridge University Press; 2005. [Google Scholar]
  42. Hanski IA, Gaggiotti OE, editors. Ecology, genetics and evolution of metapopulations. Burlington, MA: Elsevier Academic Press; 2004. [Google Scholar]
  43. Harvell CD, Kim K, Burkholder JM, et al. Emerging marine diseases—climate links and anthropogenic factors. Science. 1999;285:1505–1510. doi: 10.1126/science.285.5433.1505. [DOI] [PubMed] [Google Scholar]
  44. Harvell D, Aronson R, Baron N, et al. The rising tide of ocean diseases: unsolved problems and research priorities. Front Ecol Environ. 2004;2:375–382. doi: 10.1890/1540-9295(2004)002[0375:TRTOOD]2.0.CO;2. [DOI] [Google Scholar]
  45. Heinzmann D. Extinction times in multitype Markov branching processes. J Appl Probab. 2009;46:296–307. doi: 10.1239/jap/1238592131. [DOI] [Google Scholar]
  46. Hethcote HW (1994) A thousand and one epidemic models. In: Lecture Notes in Biomathematics 100, pp 504–515
  47. Jagers P. Branching processes with biological applications. London: Wiley; 1975. [Google Scholar]
  48. Jeltsch F, Müller MS, Grimm V, Wissel C, Brandl R. Pattern formation triggered by rare events: lessons from the spread of rabies. Proc R Soc Lond B. 1997;264:495–503. doi: 10.1098/rspb.1997.0071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Karlin S, Taylor HM. A second course in stochastic processes. New York: Academic Press; 1981. [Google Scholar]
  50. Kendall D (1956) Deterministic and stochastic epidemics in closed popultaions. In: Proceedings of third Berkeley symposium in mathematics and statistics and probability 4, pp 149–165
  51. Kermack WO, McKendrick AG. A contribution to the mathematcial theory of epidemics. Proc R Soc Lond A. 1927;115:700–721. doi: 10.1098/rspa.1927.0118. [DOI] [Google Scholar]
  52. Kijima M. Markov processes for stochastic modeling. London: Chapman and Hall; 1997. [Google Scholar]
  53. Knolle H. Host density and the evolution of parasite virulence. J Theor Biol. 1989;136:199–207. doi: 10.1016/S0022-5193(89)80226-7. [DOI] [PubMed] [Google Scholar]
  54. Lenski RE, May RM. The evolution of virulence in parasites and pathogens: reconciliation between two competing hypotheses. J Theor Biol. 1994;169:253–265. doi: 10.1006/jtbi.1994.1146. [DOI] [PubMed] [Google Scholar]
  55. Lion S, Boots M. Are parasites ‘prudent’ in space. Ecol Lett. 2010;13:1245–1255. doi: 10.1111/j.1461-0248.2010.01516.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Lipsitch M, Moxon ER. Virulence and transmissibility of pathogens: what is the relationship. Trends Microbiol. 1997;5:31–37. doi: 10.1016/S0966-842X(97)81772-6. [DOI] [PubMed] [Google Scholar]
  57. Ludwig D. Qualitative behavior of stochastic epidemics. Math Biosci. 1975;23:47–73. doi: 10.1016/0025-5564(75)90120-0. [DOI] [Google Scholar]
  58. Massad E. Transmission rates and the evolution of pathogenicity. Evolution. 1987;41:1127–1130. doi: 10.2307/2409198. [DOI] [PubMed] [Google Scholar]
  59. Mathews JD, Chesson JM, McCaw JM, McVernon J. Understanding influenza transmission, immunity and pandemic threats. Influenza Other Respir Viruses. 2009;3(4):143–149. doi: 10.1111/j.1750-2659.2009.00089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Matthews P. Covering problems for Brownian motion on spheres. Ann Probab. 1988;18:189–199. doi: 10.1214/aop/1176991894. [DOI] [Google Scholar]
  61. McKendrick AG. Applications of mathematics to medical problems. Proc Edinb Math Soc. 1926;14:98–130. [Google Scholar]
  62. Meester R, de Koning J, de Jong MCC, Diekmann O. Modeling and real-time prediction of classical swine fever epidemics. Biometrics. 2002;58:178–184. doi: 10.1111/j.0006-341X.2002.00178.x. [DOI] [PubMed] [Google Scholar]
  63. Mode CT, Sleeman CK. Stochastic processes in epidemiology. Singapore: World Scientific; 2000. [Google Scholar]
  64. Pulkinnen K, Suomalainen L-R, Read AF, Ebert D, Rintamäki P, Valtonen ET. Intensive fish farming and the evolution of pathogen virulence: the case of coumnaris disease in Finland. Proc R Soc B. 2010;277:593–600. doi: 10.1098/rspb.2009.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Slingenbergh J, Glibert M (2010) Do old and new forms of poultry go together. In: FAO abstracts: poultry production in the 21st century. FAO, Rome, p 47
  66. Sniezko S. The effects of environmental stress on outbreaks of infectious diseases of fishes. J Fish Biol. 1974;6:197–208. doi: 10.1111/j.1095-8649.1974.tb04537.x. [DOI] [Google Scholar]
  67. Thieme HR. Mathematics in population biology. Princeton, NJ: Princeton University Press; 2003. [Google Scholar]
  68. van Baalen M. Contact networks and the evolution of virulence. In: Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K, editors. Adaptive dynamics of infectious diseases: in pursuit of virulence management. Cambridge: Cambridge University Press; 2002. pp. 85–103. [Google Scholar]
  69. Witter RL. Increased virulence of Marek’s disease virus field isolates. Avian Dis. 1997;41:149–163. doi: 10.2307/1592455. [DOI] [PubMed] [Google Scholar]
  70. Whittle P. The outcome of a stochastic epidemic—a note on Bailey’s paper. Biometrica. 1955;42:116–122. [Google Scholar]
  71. Yates A, Antia R, Regoes RR. How do pathogen evolution and host heterogeneity interact in disease emergence? Proc R Soc Lond B. 2006;273:3075–3083. doi: 10.1098/rspb.2006.3681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Yersin A. La peste bubonique á Hong Kong. Ann Inst Pasteur. 1894;8:662–667. [Google Scholar]

Articles from Journal of Mathematical Biology are provided here courtesy of Nature Publishing Group

RESOURCES