Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2007 Aug 1;56(3):293–310. doi: 10.1007/s00285-007-0116-4

SIR dynamics in random networks with heterogeneous connectivity

Erik Volz 1,
PMCID: PMC7080148  PMID: 17668212

Abstract

Random networks with specified degree distributions have been proposed as realistic models of population structure, yet the problem of dynamically modeling SIR-type epidemics in random networks remains complex. I resolve this dilemma by showing how the SIR dynamics can be modeled with a system of three nonlinear ODE’s. The method makes use of the probability generating function (PGF) formalism for representing the degree distribution of a random network and makes use of network-centric quantities such as the number of edges in a well-defined category rather than node-centric quantities such as the number of infecteds or susceptibles. The PGF provides a simple means of translating between network and node-centric variables and determining the epidemic incidence at any time. The theory also provides a simple means of tracking the evolution of the degree distribution among susceptibles or infecteds. The equations are used to demonstrate the dramatic effects that the degree distribution plays on the final size of an epidemic as well as the speed with which it spreads through the population. Power law degree distributions are observed to generate an almost immediate expansion phase yet have a smaller final size compared to homogeneous degree distributions such as the Poisson. The equations are compared to stochastic simulations, which show good agreement with the theory. Finally, the dynamic equations provide an alternative way of determining the epidemic threshold where large-scale epidemics are expected to occur, and below which epidemic behavior is limited to finite-sized outbreaks.

Keywords: Epidemic disease, SIR, Networks, Degree distribution

References

  • 1.Anderson R.M., May R.M. Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press; 1991. [Google Scholar]
  • 2.Andersson H. Epidemic models and social networks. Math. Sci. 1999;24:128–147. [Google Scholar]
  • 3.Andersson H., Britton T. Stochastic Epidemic Models and their Statistical Analysis. Heidelberg: Springer; 2000. [Google Scholar]
  • 4.Athreya K.B., Ney P. Branching Processes. New York: Springer; 1972. [Google Scholar]
  • 5.Barthelemy M., Barrat A., Pastor-Satorras R., Vespignani A. Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. J. Theor. Biol. 2005;235:275–288. doi: 10.1016/j.jtbi.2005.01.011. [DOI] [PubMed] [Google Scholar]
  • 6.Bauch C.T. A versatile ODE approximation to a network model for the spread of sexually transmitted diseases. J. Math. Biol. 2002;45(5):375–395. doi: 10.1007/s002850200153. [DOI] [PubMed] [Google Scholar]
  • 7.Boguna M., Pastor-Satorras R., Vespignani A., et al. Epidemic spreading in complex networks with degree correlations. In: Rubi J.M., et al., editors. Statistical Mechanics of Complex Networks, Berlin. Heidelberg: Springer; 2003. [Google Scholar]
  • 8.Dezso, Z., Barabasi, A.L.: Halting viruses in scale-free networks. Phys. Rev. E 65, 055103(R) (2002) [DOI] [PubMed]
  • 9.Diekmann O., Heesterbeek J.A.P. Mathematical epidemiology of infectious diseases. Model building, analysis and interpretation. Chichester: Wiley; 2000. [Google Scholar]
  • 10.Durrett R. Random Graph Dynamics. New York: Cambridge University Press; 2007. [Google Scholar]
  • 11.Eames T.D., Keeling M.J. Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. PNAS. 2002;99:13330–13335. doi: 10.1073/pnas.202244299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Eubank S., Guclu H., Anil-Kunar V.S., Marathe M.V., Srinivasan A., Toroczkai Z., Wang N. Modelling disease outbreaks in realistic social networks. Nature. 2005;429:180–184. doi: 10.1038/nature02541. [DOI] [PubMed] [Google Scholar]
  • 13.Gupta S., Anderson R.M., May R.M. Networks of sexual contacts: implications for the pattern of spread of hiv. AIDS. 1989;3:807–817. doi: 10.1097/00002030-198912000-00005. [DOI] [PubMed] [Google Scholar]
  • 14.Halloran M.E., Longini I., Nizam A., Yang Y. Containging bioterrorist smallpox. Science. 2005;298:1428. doi: 10.1126/science.1074674. [DOI] [PubMed] [Google Scholar]
  • 15.Harris T.E. The Theory of Branching Processes. Berlin: Springer; 1963. [Google Scholar]
  • 16.Kaplan E.H., Craft D.L., Wein L.M. Emergency response to a smallpox attach: the case for mass vaccination. PNAS USA. 2002;99:10935. doi: 10.1073/pnas.162282799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Keeling M.J. The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. B Biol. Sci. 1999;266(1421):859–859. doi: 10.1098/rspb.1999.0716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Liljeros F., Edling C.R., Amaral L.A.N., Stanley H.E., Aberg Y. The web of human sexual contacts. Nature. 2001;411:907–908. doi: 10.1038/35082140. [DOI] [PubMed] [Google Scholar]
  • 19.Meyers L.A., Pourbohloul B., Newman M.E.J., Skowronski D.M., Brun-ham R.C. Network theory and sars: predicting outbreak diversity. J. Theor. Biol. 2005;232:71–81. doi: 10.1016/j.jtbi.2004.07.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Meyers L.A., Pourbohloul B., Newman M.E.J., Skowronski D.M., Brunham R.C. Network theory and SARS: predicting outbreak diversity. J. Theor. Biol. 2005;232(1):71–81. doi: 10.1016/j.jtbi.2004.07.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E.J., Alon, U.: Uniform generation of random graphs with arbitrary degree sequences. Preprint cond-mat/0312028 (2003)
  • 22.Molloy M., Reed B. A critical point for random graphs with a given degree sequence. Random Struct. Algor. 1995;6:161. doi: 10.1002/rsa.3240060204. [DOI] [Google Scholar]
  • 23.Molloy M., Reed B. The size of the giant component of a random graph with a given degree sequence. Comb. Probab. Comput. 1998;7:295–305. doi: 10.1017/S0963548398003526. [DOI] [Google Scholar]
  • 24.Newman M.E.J. The spread of epidemic disease on networks. Phys. Rev. E. 2002;66:016128. doi: 10.1103/PhysRevE.66.016128. [DOI] [PubMed] [Google Scholar]
  • 25.Newman M.E.J., Barabási A.L., Watts D.J. (2006). The Structure and Dynamics of Networks. Princeton University Press,
  • 26.Newman M.E.J., Watts D.J., Strogatz S.H. Random graph models of social networks. PNAS USA. 2002;99:2566–2572. doi: 10.1073/pnas.012582999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Pastor-Satorras R., Vespignani A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 2001;86:3200–3203. doi: 10.1103/PhysRevLett.86.3200. [DOI] [PubMed] [Google Scholar]
  • 28.Pastor-Satorras R., Vespignani A. Epidemic dynamics and endemic states in complex networks. Phys. Rev. E. 2001;63:066117. doi: 10.1103/PhysRevE.63.066117. [DOI] [PubMed] [Google Scholar]
  • 29.Pastor-Satorras R., Vespignani A. Handbook of Graphs and Networks: From the Genome to the Internet. chapter Epidemics and immunization in scale-free networks. Berlin: Wiley-VCH; 2002. [Google Scholar]
  • 30.Saramki J., Kaski K. Modelling development of epidemics with dynamic small-world networks. J. Theor. Biol. 2005;234:413–421. doi: 10.1016/j.jtbi.2004.12.003. [DOI] [PubMed] [Google Scholar]
  • 31.Strogatz S.H. Exploring complex networks. Nature. 2001;410:268–276. doi: 10.1038/35065725. [DOI] [PubMed] [Google Scholar]
  • 32.Veliov V.M. On the effect of population heterogeneity on dynamics of epidemic diseases. J. Math. Biol. 2005;51:123–143. doi: 10.1007/s00285-004-0288-0. [DOI] [PubMed] [Google Scholar]
  • 33.Warren C.P., Sander L.M., Sokolov I., Simon C., Koopman J. Percolation on disordered networks as a model for epidemics. Math. Biosci. 2002;180:293–305. doi: 10.1016/S0025-5564(02)00117-7. [DOI] [PubMed] [Google Scholar]
  • 34.Wilf H.S. Generatingfunctionology. 2. Boston: Academic; 1994. [Google Scholar]

Articles from Journal of Mathematical Biology are provided here courtesy of Nature Publishing Group

RESOURCES