Abstract
Seasonality is a complex force in nature that affects multiple processes in wild animal populations. In particular, seasonal variations in demographic processes may considerably affect the persistence of a pathogen in these populations. Furthermore, it has been long observed in computer simulations that under seasonal perturbations, a host–pathogen system can exhibit complex dynamics, including the transition to chaos, as the magnitude of the seasonal perturbation increases. In this paper, we develop a seasonally perturbed Susceptible-Infected-Recovered model of avian influenza in a seabird colony. Numerical simulations of the model give rise to chaotic recurrent epidemics for parameters that reflect the ecology of avian influenza in a seabird population, thereby providing a case study for chaos in a host– pathogen system. We give a computer-assisted exposition of the existence of chaos in the model using methods that are based on the concept of topological hyperbolicity. Our approach elucidates the geometry of the chaos in the phase space of the model, thereby offering a mechanism for the persistence of the infection. Finally, the methods described in this paper may be immediately extended to other infections and hosts, including humans.
Keywords: Chaos, Epidemics, SIR model, Seabird colony, Seasonality, Avian influenza, H5N1 virus, Hyperbolicity
References
- Advanced Numerical Differential Equation Solving in Mathematica (2011) Wolfram Research. http://reference.wolfram.com/mathematica/tutorial/NDSolveOverview.html. Accessed 8 October 2011
- Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P. Seasonality and the dynamics of infectious diseases. Ecol Lett. 2006;9:467–484. doi: 10.1111/j.1461-0248.2005.00879.x. [DOI] [PubMed] [Google Scholar]
- Anderson RM, May RM, editors. Population biology of infectious diseases. Berlin: Springer; 1982. [Google Scholar]
- Anishchenko VS, Vadivasova TE, Strelkova GI, Kopeikin AS. Chaotic attractors of two-dimensional invertible maps. Discr Dyn Nat Soc. 1998;2:249–256. doi: 10.1155/S1026022698000223. [DOI] [Google Scholar]
- Aron JL, Schwartz IB. Seasonality and period-doubling bifurcations in an epidemic model. J Theor Biol. 1984;110:665–679. doi: 10.1016/S0022-5193(84)80150-2. [DOI] [PubMed] [Google Scholar]
- Barbosa A, Palacios MJ. Health of Antarctic birds: a review of their parasites, pathogens and diseases. Polar Biol. 2009;32:1095–1115. doi: 10.1007/s00300-009-0640-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Billings L, Schwartz IB. Exciting chaos with noise: unexpected dynamics in epidemic outbreaks. J Math Biol. 2002;44:31–48. doi: 10.1007/s002850100110. [DOI] [PubMed] [Google Scholar]
- Bogdanova MI, Daunt F, Newell M, Phillips RA, Harris MP, Wanless S. Seasonal interactions in the black-legged kittiwake, Rissa tridactyla: links between breeding performance and winter distribution. Proc R Soc B. 2011;278:2412–2418. doi: 10.1098/rspb.2010.2601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolker BM, Grenfell BT. Chaos and biological complexity in measles dynamics. Proc R Soc B. 1993;251:75–81. doi: 10.1098/rspb.1993.0011. [DOI] [PubMed] [Google Scholar]
- Brown CR, Brown MB. Coloniality in the Cliff Swallow—the effect of group size on social behaviour. Chicago: The University of Chicago Press; 1996. [Google Scholar]
- Chen H, Smith GJD, Zhang SY, Qin K, Wang J, Li KS, Webster RG, Peiris JSM, Guan Y. H5N1 virus outbreak in migratory waterfowl. Nature. 2005;436:191–192. doi: 10.1038/nature03974. [DOI] [PubMed] [Google Scholar]
- Clayton DH, Moore J, editors. Host–parasite evolution: general principles and avian models. Oxford: Oxford University Press; 1997. [Google Scholar]
- Cox EA, Mortell MP, Pokrovskii AV, Rasskazov O. On chaotic wave patterns in periodically forced steady state KdVB and extended KdVB equations. Proc R Soc A. 2005;461:2857–2885. doi: 10.1098/rspa.2005.1481. [DOI] [Google Scholar]
- Crespin L, Harris MP, Lebreton JD, Frederiksen M, Wanless S. Recruitment to a seabird population depends on environmental factors and on population size. J Anim Ecol. 2006;75:228–238. doi: 10.1111/j.1365-2656.2006.01035.x. [DOI] [PubMed] [Google Scholar]
- Croxall JP, editor. Seabirds: feeding ecology and role in marine ecosystems. Cambridge: Cambridge University Press; 1987. [Google Scholar]
- Dane DS, Miles JAR, Stoker MGP. A disease of Manx Shearwaters: further observations in the field. J Anim Ecol. 1953;22:123–133. doi: 10.2307/1694. [DOI] [Google Scholar]
- Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science. 2000;287:483–489. doi: 10.1126/science.287.5452.443. [DOI] [PubMed] [Google Scholar]
- Day S, Junge O, Mischaikow K. A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems. SIAM J Appl Dyn Syst. 2004;3:117–160. doi: 10.1137/030600210. [DOI] [Google Scholar]
- Deimling K. Nonlinear functional analysis. Berlin: Springer; 1985. [Google Scholar]
- Descamps S, Gilchrist HG, Bety J, Buttler IE, Forbes MR. Costs of reproduction in a long-lived bird: large clutch size is associated with low survival in the presence of a highly virulent disease. Biol Lett. 2009;5:278–281. doi: 10.1098/rsbl.2008.0704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diallo O, Koné Y. Melnikov analysis of chaos in a general epidemiological model. Nonlinear Anal Real World Appl. 2007;8:20–26. doi: 10.1016/j.nonrwa.2005.03.032. [DOI] [Google Scholar]
- Dobson A. Population dynamics of pathogens with multiple host species. Am Nat. 2004;164:S64–S78. doi: 10.1086/424681. [DOI] [PubMed] [Google Scholar]
- Dushoff J, Plotkin JB, Levin SA, Earn DJB. Dynamical resonance can account for seasonality of influenza epidemics. Proc Natl Acad Sci USA. 2004;101:16915–16916. doi: 10.1073/pnas.0407293101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Earn DJD, Rohani P, Grenfell BT. Persistence, chaos and synchrony in ecology and epidemiology. Proc R Soc B. 1998;265:7–10. doi: 10.1098/rspb.1998.0256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Earn DJD, Rohani P, Bolker BM, Grenfell BT. A simple model for complex dynamical transitions in epidemics. Science. 2000;287:667–670. doi: 10.1126/science.287.5453.667. [DOI] [PubMed] [Google Scholar]
- Galias Z, Zgliczynski P. Computer assisted proof of chaos in the Lorenz equations. Phys D. 1998;115:165–188. doi: 10.1016/S0167-2789(97)00233-9. [DOI] [Google Scholar]
- Gameiro M, Gedeon T, Kalies W, Kokubu H, Mischaikow K, Oka H. Topological horseshoes of travelling waves for a fast-slow predator-prey system. J Differ Dyn Equ. 2007;19:623–654. doi: 10.1007/s10884-006-9013-6. [DOI] [Google Scholar]
- Gani R, Hughes H, Fleming D, Griffin T, Medlock J, Leach S. Potential impact of antiviral drug use during influenza pandemic. Emerg Infect Dis. 2005;11:1355–1362. doi: 10.3201/eid1209.041344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glendinning P, Perry LP. Melnikov analysis of chaos in a simple epidemiological model. J Math Biol. 1997;35:359–373. doi: 10.1007/s002850050056. [DOI] [PubMed] [Google Scholar]
- Greenman J, Kamo M, Boots M. External forcing of ecological and epidemiological systems: a resonance approach. Phys D. 2004;190:136–151. doi: 10.1016/j.physd.2003.08.008. [DOI] [Google Scholar]
- Grenfell BT, Bolker BM, Kleczkowski A. Seasonality and extinction in chaotic metapopulations. Proc R Soc B. 1995;259:97–103. doi: 10.1098/rspb.1995.0015. [DOI] [Google Scholar]
- Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer; 1983. [Google Scholar]
- Hamer KC, Schreiber EA, Burger J. Breeding biology, life histories, and life history—environment interactions in seabirds. In: Schreiber EA, Burger J, editors. Biology of marine birds. Florida: CRC Press; 2001. pp. 217–263. [Google Scholar]
- Hénon M. A two-dimensional mapping with a strange attractor. Commun Math Phys. 1976;50:69–77. doi: 10.1007/BF01608556. [DOI] [Google Scholar]
- Hirsch MW, Smale S, Devaney RL. Differential equations, dynamical systems and an introduction to chaos. San Diego: Academic Press; 2004. [Google Scholar]
- Ireland JM, Norman RA, Greenman JV. The effect of seasonal host birth rates on population dynamics: the importance of resonance. J Theor Biol. 2004;231:229–238. doi: 10.1016/j.jtbi.2004.06.017. [DOI] [PubMed] [Google Scholar]
- Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P. Global trends in emerging infectious diseases. Nature. 2008;451:990–994. doi: 10.1038/nature06536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katok A, Hasselblatt B. Introduction to the modern theory of dynamical systems. New York: Cambridge University Press; 1995. [Google Scholar]
- Keeling MJ, Rohani P, Grenfell BT. Seasonally forced disease dynamics explored as switching between attractors. Phys D. 2001;148:317–335. doi: 10.1016/S0167-2789(00)00187-1. [DOI] [Google Scholar]
- Keesing F, Holt RD, Ostfeld RS. Effects of species diversity on disease risk. Ecol Lett. 2006;9:485–498. doi: 10.1111/j.1461-0248.2006.00885.x. [DOI] [PubMed] [Google Scholar]
- Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proc R Soc A. 1927;115:700–721. doi: 10.1098/rspa.1927.0118. [DOI] [Google Scholar]
- Kilpatrick AM, Chmura AA, Gibbons DW, Fleischer RC, Marra PP, Daszak P. Predicting the global spread of H5N1 avian influenza. Proc Natl Acad Sci USA. 2006;103:19368–19373. doi: 10.1073/pnas.0609227103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitchens BP. Symbolic dynamics: one-sided, two-sided and countable state Markov shifts. Berlin: Springer; 1998. [Google Scholar]
- Krasnosel’skii MA, Zabreiko PP. Geometrical methods of nonlinear analysis. Berlin: Springer; 1984. [Google Scholar]
- Krauss S, Stallknecht DE, Negovetich NJ, Niles LJ, Webby RJ, Webster RG. Coincident ruddy turnstone migration and horseshoe crab spawning creates an ecological ‘hotspot’ for influenza viruses. Proc R Soc B. 2010;277:3373–3379. doi: 10.1098/rspb.2010.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li TY, Yorke JA. Period three implies chaos. Am Math Mon. 1975;82:985–992. doi: 10.2307/2318254. [DOI] [Google Scholar]
- Liu WM, Hethcote HW, Levin SA. Dynamical behavior of epidemiological models with nonlinear incidence rates. J Math Biol. 1987;25:359–380. doi: 10.1007/BF00277162. [DOI] [PubMed] [Google Scholar]
- Mallory ML, Robinson SA, Hebert CE, Forbes MR. Seabirds as indicators of aquatic ecosystem conditions: a case for gathering multiple proxies of seabird health. Mar Pollut Bull. 2010;60:7–12. doi: 10.1016/j.marpolbul.2009.08.024. [DOI] [PubMed] [Google Scholar]
- McNamara HA, Pokrovskii AV. Hysteresis in the trade cycle. Phys B. 2006;372:202–206. doi: 10.1016/j.physb.2005.10.048. [DOI] [Google Scholar]
- Mischaikow K. Topological techniques for efficient rigorous computation in dynamics. Acta Numer. 2002;11:435–477. doi: 10.1017/S0962492902000065. [DOI] [Google Scholar]
- Mischaikow K, Mrozek M. Chaos in the Lorenz equations: a computer assisted proof. Part II: details. Math Comput. 1998;67:1023–1046. doi: 10.1090/S0025-5718-98-00945-4. [DOI] [Google Scholar]
- Muzaffar SB, Jones IL. Parasites and diseases of the auks (Alcidae) of the world and their ecology—a review. Mar Ornithol. 2004;32:121–146. [Google Scholar]
- Nelson JB (1978) The Sulidae: gannets and boobies. Aberdeen University, Study Series, vol 154, Oxford
- Nettleship DN, Birkhead TR, editors. The Atlantic Alcidae. The evolution, distribution and biology of the Auks inhabiting the Atlantic ocean and adjacent water areas. London: Academic Press; 1985. [Google Scholar]
- Nuttall PA. Tick-borne viruses in seabird colonies. Seabird. 1984;7:31–42. [Google Scholar]
- Nuttall PA, Harrap KA. Isolation of a Coronavirus during studies on Puffinosis, a disease of the Manx Shearwater (Puffinus puffinus) Arch Virol. 1982;73:1–13. doi: 10.1007/BF01341722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nuttall PA, Kelly TC, Carey D, Moss SR, Harrap KA. Mixed infections with tick-borne viruses in a seabird colony in Eire. Arch Virol. 1984;79:35–44. doi: 10.1007/BF01314301. [DOI] [PubMed] [Google Scholar]
- O’Brien VA, Moore AT, Young GR, Komar N, Reisen WK, Brown CR. An enzootic vector-borne virus is amplified at epizootic levels by an invasive avian host. Proc R Soc B. 2011;278:239–246. doi: 10.1098/rspb.2010.1098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olsen LF, Schaffer WM. Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics. Science. 1990;249:499–504. doi: 10.1126/science.2382131. [DOI] [PubMed] [Google Scholar]
- O’Regan SM, Kelly TC, Korobeinikov A, O’Callaghan MJA, Pokrovskii AV (2008) Qualitative and numerical investigations of the impact of a novel pathogen on a seabird colony. J Phys Conf Ser 138. doi:10.1088/1742-6596/138/1/012018
- O’Regan SM, Kelly TC, Korobeinikov A, O’Callaghan MJA, Pokrovskii AV. Lyapunov functions for SIR and SIRS epidemic models. Appl Math Lett. 2010;23:446–448. doi: 10.1016/j.aml.2009.11.014. [DOI] [Google Scholar]
- Österblom H, Van Der Jeugd HP, Olsson O. Adult survival and avian cholera in Common Guillemots Uria aalge in the Baltic Sea. Ibis. 2004;146:531–534. doi: 10.1111/j.1474-919X.2004.00266.x. [DOI] [Google Scholar]
- Pavlovsky EN. Natural nidality of transmissible diseases. Urbana: University of Illinois Press; 1966. [Google Scholar]
- Peterson AT, Benz BW, Papes M (2007) Highly pathogenic H5N1 avian influenza: entry pathways into North America via bird migration. PLoS ONE 2, e261. doi:10.1371/journal.pone.0000261 [DOI] [PMC free article] [PubMed]
- Pireddu M (2009) Fixed points and chaotic dynamics for expansive-contractive maps in Euclidean spaces, with some applications. PhD thesis, Università à di Udine, Italy, arXiv:0910.3832v1
- Pireddu M, Zanolin F. Chaotic dynamics in the Volterra predator–prey model via linked twist maps. Opusc Math. 2008;28:567–592. [Google Scholar]
- Pokrovskii A, Zhezherun A. Topological degree in analysis of chaotic behavior in singularly perturbed systems. Chaos. 2008;18:023130. doi: 10.1063/1.2939130. [DOI] [PubMed] [Google Scholar]
- Pokrovskii A, Rasskazov O, Studdert R. Split-hyperbolicity, hysteresis and Lang–Kobayashi equations. In: Mortell MP, O’Malley RE, Pokrovskii A, Sobolev V, editors. Singular perturbations and hysteresis. Philadelphia: Society for Industrial and Applied Mathematics; 2005. pp. 299–338. [Google Scholar]
- Pokrovskii A, Rasskazov O, Visetti D. Homoclinic trajectories and chaotic behaviour in a piecewise linear oscillator. Discr Cont Dyn B. 2007;8:943–970. doi: 10.3934/dcdsb.2007.8.943. [DOI] [Google Scholar]
- Pokrovskii AV. Topological shadowing and split-hyperbolicity. Funct Differ Equ. 1997;4:335–360. [Google Scholar]
- Pokrovskii AV, Rasskazov OA. On the use of the topological degree theory in broken orbits analysis. Proc Am Math Soc. 2004;132:567–577. doi: 10.1090/S0002-9939-03-07036-9. [DOI] [Google Scholar]
- Pokrovskii AV, Szybka SJ, McInerney JG. Topological degree in locating homoclinic structures for discrete dynamical systems. Proc Russ Acad Nat Sci Nonlinear Dyn Laser React Syst. 2001;5:152–183. [Google Scholar]
- Rand DA, Wilson HB. Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics. Proc R Soc B. 1991;246:179–184. doi: 10.1098/rspb.1991.0142. [DOI] [PubMed] [Google Scholar]
- Rasskazov O (2003) Methods of geometrical analysis of complicated dynamics, with applications to models of semi-conductor lasers. PhD thesis, University College Cork, Ireland
- Rohani P, Breban R, Stallknecht DE, Drake JM. Environmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion. Proc Natl Acad Sci USA. 2009;106:10365–10369. doi: 10.1073/pnas.0809026106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rolland V, Barbraud C, Weimerskirch H. Assessing the impact of fisheries, climate and disease on the dynamics of the Indian yellow-nosed albatross. Biol Conserv. 2009;142:1084–1095. doi: 10.1016/j.biocon.2008.12.030. [DOI] [Google Scholar]
- Ruelle D. Elements of differentiable dynamics and bifurcation theory. Boston: Academic Press; 1989. [Google Scholar]
- Schwartz IB, Shaw LB, Cummings DAT, Billings L, McCrary M, Burke DS. Chaotic desynchronization of multi-strain diseases. Phys Rev E. 2005;72:066201–066206. doi: 10.1103/PhysRevE.72.066201. [DOI] [PubMed] [Google Scholar]
- Shulgin B, Stone L, Agur Z. Pulse vaccination strategy in the SIR epidemic model. Bull Math Biol. 1998;60:1123–1148. doi: 10.1016/S0092-8240(98)90005-2. [DOI] [PubMed] [Google Scholar]
- Sovada MA, Pietz PJ, Converse KA, King DT, Hofmeister EK, Scherr P, Ip HS. Impact of West Nile virus and other mortality factors on American white pelicans at breeding colonies in the northern plains of North America. Biol Conserv. 2008;141:1021–1031. doi: 10.1016/j.biocon.2008.01.019. [DOI] [Google Scholar]
- Stone L, Olinky R, Huppert A. Seasonal dynamics of recurrent epidemics. Nature. 2007;446:533–536. doi: 10.1038/nature05638. [DOI] [PubMed] [Google Scholar]
- Strogatz SH. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Cambridge: Westview Press; 1994. [Google Scholar]
- Swinton J, Woolhouse MEJ, Begon ME, Dobson AP, Ferroglio E, Grenfell BT, Guberti V, Hails RS, Heesterbeek JAP, Lavazza A, Roberts MG, White PJ, Wilson K. Microparasite transmission and persistence. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP, editors. The ecology of wildlife diseases. Oxford: Oxford University Press; 2002. pp. 83–101. [Google Scholar]
- The Birds of the Western Palearctic Interactive Version 2 (2007) On DVD-ROM for Windows and Mac OSX. Accessed 8 October 2011
- Tel T, Lai YC, Gruiz M. Noise-induced chaos: a consequence of long deterministic transients. Int J Bifurcation Chaos. 2008;18:509–520. doi: 10.1142/S0218127408020422. [DOI] [Google Scholar]
- Tiensin T, Nielen M, Vernooij H, Songserm T, Kalpravidh W, Chotiprasatintara S, Chaisingh A, Wongkasemjit S, Chanachai K, Thanapongtham W, Srisuvan T, Stegeman A. Transmission of the highly pathogenic avian influenza virus H5N1 within flocks during the 2004 epidemic in Thailand. J Infect Dis. 2007;196:1679–1684. doi: 10.1086/522007. [DOI] [PubMed] [Google Scholar]
- Waller LJ, Underhill LG. Management of avian cholera Pasteurella multocida on Dyer Island, South Africa, 2002–2005. Afr J Mar Sci. 2007;29:105–111. doi: 10.2989/AJMS.2007.29.1.9.74. [DOI] [Google Scholar]
- Wiggins S. Introduction to applied nonlinear dynamical systems and chaos. New York: Springer; 2003. [Google Scholar]
- Wittenburger JF, Hunt GL., Jr . The adaptive significance of coloniality in birds. In: Farner DS, King JR, Parkes KC, editors. Avian biology, vol 8. New York: Academic Press; 1985. pp. 1–78. [Google Scholar]
- Young LC, VanderWerf EA. Prevalence of avian pox virus and effect on the fledging success of Laysan Albatross. J Field Ornithol. 2008;79:93–98. doi: 10.1111/j.1557-9263.2008.00149.x. [DOI] [Google Scholar]
- Zgliczynski P. Fixed point index for iterations of maps, topological horseshoe and chaos. Topol Methods Nonlinear Anal. 1996;8:169–177. [Google Scholar]
- Zgliczynski P. Computer assisted proof of chaos in the Rössler equations and the Hénon map. Nonlinearity. 1997;10:243–252. doi: 10.1088/0951-7715/10/1/016. [DOI] [Google Scholar]