Summary
A fixed-cell ELISA was developed using swine testicle (ST) cells infected with the virulent Miller strain of transmissible gastroenteritis virus (TGEV) and purified biotinylated monoclonal antibodies (b-MAbs). Five of the b-MAbs were specific for the peplomer (E2), five reacted to the nucleocapsid (N), and one reacted to the E1 protein of the Miller strain of TGEV. Protein A-Sepharose purification of MAbs yielded protein concentrations ranging from 0.40 to 3 mg per ml of ascites. Separate pools of N-MAbs and E2-MAbs, and the E1-MAb were used to monitor synthesis of TGE viral antigen in ST cells from 0 to 16 h post-infection at various multiplicities of infection (MOI). Epitopes of N proteins appeared sooner and at a lower MOI than those for the E1 and E2 proteins. The fixed-cell ELISA was also used to examine relative binding affinities of TGEV MAbs. Concentrations of b-MAbs producing a half-maximal signal ranged from 0.11 to 3.8 µg/ml for E2-MAbs, from 0.05 to 0.82 µg/ml for N-MAbs, and 6 µg/ml for the E1-MAb. The assay was used to determine the 50% neutralization concentrations for four neutralizing E2-MAbs (0.1 µg/ml to 6.9 µg/ml) and one E1-MAb (1.2 µg/ml). Competition assays between b-MAbs and unlabeled competitors indicated that at least two major antigenic sites exist on the E2-protein and 2 to 3 antigenic sites are present on the N-protein of Miller TGEV.
Keywords: Viral Antigen, Antigenic Site, Relative Binding, Competition Assay, Epitope Mapping
References
- 1.Callebaut P, Correa I, Pensaert M, Jimenez G, Enjuanes L. Antigenic differentiation between transmissible gastroenteritis virus from swine and a related porcine respiratory coronavirus. J Gen Virol. 1988;69:1725–1730. doi: 10.1099/0022-1317-69-7-1725. [DOI] [PubMed] [Google Scholar]
- 2.Correa I, Jimenez G, Sune C, Bullido MJ, Enjuanes L. Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Res. 1988;10:77–94. doi: 10.1016/0168-1702(88)90059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Delmas D, Gelfi J, Laude H. Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J Gen Virol. 1986;67:1405–1418. doi: 10.1099/0022-1317-67-7-1405. [DOI] [PubMed] [Google Scholar]
- 4.Ey PI, Prow SJ, Jenkin CR. Isolation of pure IgG1, IgG2a, and IgG2b immunoglobulins from mouse serum using Protein A-Sepharose. Biochemistry. 1978;15:429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
- 5.Garwes D, Lucas MH, Higgins DA, Pike BV, Cartwright SF. Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet Microbiol. 1978;3:179–190. [Google Scholar]
- 6.Garwes D, Stewart F, Elleman CJ. Identification of epitopes of immunological importance on the peplomer of porcine transmissible gastroenteritis virus. In: Lai MC, Stohlman SA, editors. Coronaviruses. New York: Plenum Press; 1988. pp. 509–515. [DOI] [PubMed] [Google Scholar]
- 7.Harlow E, Lane D. Antibodies: a laboratory manual. New York: Cold Spring Harbor Laboratory; 1988. p. 311. [Google Scholar]
- 8.Hodatsu T, Eiguchi Y, Tsuchimoto M, Ide S, Yamagishi H, Matumoto M. Antigenic variation of porcine transmissible gastroenteritis virus detected by monoclonal antibodies. Vet Microbiol. 1987;14:115–124. doi: 10.1016/0378-1135(87)90003-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Jimenez G, Correa I, Melgosa MP, Bullido MJ, Enjuanes L. Critical epitopes in transmissible gastroenteritis virus neutralization. J Virol. 1986;60:131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- 11.Laude H. Caracterisation antigenique au coronavirus respiratoire porcine a l'aide d'anticorps monoclonaux diriges contre le virus. J Rech Porcine. 1988;20:89–93. [Google Scholar]
- 12.Laude H, Chapsal JM, Gelfi J, Labiau S, Grosclaude J. Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. J Gen Virol. 1986;67:119–130. doi: 10.1099/0022-1317-67-1-119. [DOI] [PubMed] [Google Scholar]
- 13.McClurkin AW, Norman JO. Studies on transmissible gastroenteritis virus in swine. II. Selected characteristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis. Can J Comp Vet Sci. 1966;30:190–198. [PMC free article] [PubMed] [Google Scholar]
- 14.Saif LJ, Bohl EH, et al. Transmissible gastroenteritis. In: Lehman AD, et al., editors. Diseases of swine. 6th edn. Ames, IA: Iowa State University; 1986. pp. 255–274. [Google Scholar]
- 15.Sedmak JJ, Grosberg SE. A rapid, sensitive, and versatile assay for protein using coomassie brilliant blue G 250. Anal Biochem. 1977;79:544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
- 16.Seppala I, Sarvas H, Peterfy F, Makela O. The four subclasses of IgG can be isolated from mouse serum by using Protein A-Sepharose. Scand J Immunol. 1981;14:335–342. doi: 10.1111/j.1365-3083.1981.tb00573.x. [DOI] [PubMed] [Google Scholar]
- 17.Welch SKW, Saif LJ (1986) Production and characterization of monoclonal antibodies to transmissible gastroenteritis virus of pigs. (Abstract.) 67th Ann Meet Conf Res Workers in Animal Disease, 1986, Chicago, IL, p 9
- 18.Welch SKW, Saif LJ. Monoclonal antibodies to a virulent strain of transmissible gastroenteritis virus: comparison of reactivity against the attenuated and virulent virus strains. Arch Virol. 1988;102:221–236. doi: 10.1007/BF01311003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Woods RD, Wesley RD, Kapke PA. Neutralization of porcine transmissible gastroenteritis virus by complement-dependent monoclonal antibodies. Am J Vet Res. 1988;49:300–304. [PubMed] [Google Scholar]