Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1988;103(1):27–33. doi: 10.1007/BF01319806

Analysis of cell fusion induced by bovine coronavirus infection

H R Payne 1, J Storz 1
PMCID: PMC7086622  PMID: 3214271

Summary

Polykaryon formation in bovine fetal spleen (BFS) cells infected with bovine coronavirus L9 occurred only in media supplemented with trypsin. A single 1 to 2 h trypsin treatment 10 h and later after infection induced formation of polykaryons. Trypsin treatment at pH 7.5 and 8.0 induced polykaryons while treatments at lower or higher pH levels did not. Cell fusion activity was partially suppressed by the presence of antibody.

Keywords: Infectious Disease, Trypsin, Cell Fusion, Trypsin Treatment, Fusion Activity

References

  • 1.Choppin PW, Scheid A. The role of viral glycoproteins in adsorption, penetration, and pathogenicity of viruses. Rev Infect Dis. 1980;2:40–61. doi: 10.1093/clinids/2.1.40. [DOI] [PubMed] [Google Scholar]
  • 2.Dimmock NJ. Initial stages in infection with animal virus. J Gen Virol. 1982;59:1–22. doi: 10.1099/0022-1317-59-1-1. [DOI] [PubMed] [Google Scholar]
  • 3.Edwards J, Brown DT. Sindbis virus-mediated cell fusion from without is a two-step event. J Gen Virol. 1986;67:377–380. doi: 10.1099/0022-1317-67-2-377. [DOI] [PubMed] [Google Scholar]
  • 4.Gonzalez-Scarano F, Pobjecky N, Nathanson N. La Crosse bunyavirus can mediate pH-dependent fusion from without. Virology. 1984;132:222–225. doi: 10.1016/0042-6822(84)90107-7. [DOI] [PubMed] [Google Scholar]
  • 5.Hsu M-C, Scheid A, Choppin PW. Fusion of Sendai virus with liposomes: dependence on the viral fusion protein (F) and the lipid composition of liposomes. Virology. 1983;126:361–369. doi: 10.1016/0042-6822(83)90485-3. [DOI] [PubMed] [Google Scholar]
  • 6.Hsu M-C, Scheid A, Choppin PW. Enhancement of membrane fusion activity of Sendai virus by exposure of the virus to basic pH is correlated with a conformational change in the fusion protein. Proc Natl Acad Sci USA. 1982;79:5862–5866. doi: 10.1073/pnas.79.19.5862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Huang RTC, Rott R, Klenk H-D. Influenza viruses cause hemolysis and fusion of cells. Virology. 1981;110:243–247. doi: 10.1016/0042-6822(81)90030-1. [DOI] [PubMed] [Google Scholar]
  • 8.Kohn A. Membrane effects of cytopathogenic viruses. Prog Med Virol. 1985;31:109–167. [PubMed] [Google Scholar]
  • 9.Laporte J, L'Haridon R, Bobulesco P. In vitro culture of bovine enteritic coronavirus (BEC) INSERM Coll. 1979;90:99–102. [Google Scholar]
  • 10.Rott R. Molecular basis of infectivity and pathogenicity of myxoviruses. Arch Virol. 1979;59:285–298. doi: 10.1007/BF01317469. [DOI] [PubMed] [Google Scholar]
  • 11.Scheid A, Choppin PW. Identification of biological activities of paramyxovirus glycoproteins. Activations of cell fusion, hemolysis and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology. 1974;57:475–490. doi: 10.1016/0042-6822(74)90187-1. [DOI] [PubMed] [Google Scholar]
  • 12.Sharpee RL, Mebus CA, Bass EP. Characterization of a calf diarrheal coronavirus. Am J Vet Res. 1976;37:1031–1041. [PubMed] [Google Scholar]
  • 13.St. Cyr-Coats K. Bovine enteropathogenic coronavirus: the effect of the host cell and trypsin modification on the virus structure, cytopathic expression and infectivity. Baton Rouge, Louisiana, U.S.A.: Louisiana State University; 1987. [Google Scholar]
  • 14.Storz J, Rott R, Kaluza G. Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment. Infect Immun. 1981;31:1214–1222. doi: 10.1128/iai.31.3.1214-1222.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Sturman LS, Ricard CS, Holmes KV. Proteolytic cleavage of the E3 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90 K cleavage fragments. J Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Vaananen P, Kaariainen L. Fusion and hemolysis of erythrocytes caused by three togaviruses: Semliki, Sindbis, and Rubella. J Gen Virol. 1980;46:467–475. doi: 10.1099/0022-1317-46-2-467. [DOI] [PubMed] [Google Scholar]
  • 17.White J, Kartenbeck J, Helenius A. Fusion of Semliki Forest virus with the plasma membrane can be induced by low pH. J Cell Biol. 1980;87:264–272. doi: 10.1083/jcb.87.1.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.White J, Matlin K, Helenius A. Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J Cell Biol. 1981;89:674–679. doi: 10.1083/jcb.89.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.White J, Kielain M, Helenius A. Membrane fusion proteins of enveloped animal viruses. Rev Biophys. 1983;16:151–195. doi: 10.1017/s0033583500005072. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES