Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1984;80(1):23–31. doi: 10.1007/BF01315291

Detection of bovine coronavirus in feces by reversed passive hemagglutination

K Sato 1, Y Inaba 1, S Tokuhisa 1, Y Miura 1, N Kaneko 1, M Asagi 2, M Matumoto 3
PMCID: PMC7086679  PMID: 6367710

Summary

A reversed passive hemagglutination (RPHA) method was developed for the detection of bovine coronavirus in fecal specimens. Sheep erythrocytes fixed with glutaraldehyde, and then treated with tannic acid were coated with anti-bovine coronavirus rabbit antibodies purified by affinity chromatography using bovine coronavirus linked to Sepharose 4B. The RPHA test was carried out by a microtiter method. Erythrocytes coated with purified specific antibodies were agglutinated by bovine coronavirus, but not by bovine rotavirus or enterovirus. The reaction was inhibited by antiserum to bovine coronavirus, confirming the specificity of the reaction. The RPHA test detected bovine coronavirus in 13 of 22 fecal specimens (59 per cent), from natural cases of diarrhea, while the positive rates were only 14 per cent (3/22) and 22 per cent (5/22) for immunofluorescent staining of primary cultures of calf kidney cells infected with the specimens, and immune electron microscopy respectively. The advantages of the RPHA method are its simplicity, high sensitivity and rapidity.

Keywords: Diarrhea, Tannic Acid, Glutaraldehyde, Primary Culture, Specific Antibody

References

  • 1.Axén R., Forath J., Ernback S. Chemical Coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature. 1967;214:1302–1304. doi: 10.1038/2141302a0. [DOI] [PubMed] [Google Scholar]
  • 2.Bridger J. C., Woode G. N., Meyling A. Isolation of coronaviruses from neonatal calf diarrhea in Great Britain and Denmark. Vet. Microbiol. 1978;3:101–113. [Google Scholar]
  • 3.Cuatrecasas P., Wilchek M., Anfinsen C. B. Selective enzyme purification by affinity chromatography. Proc. Natl. Acad. Sci. U.S.A. 1968;61:636–643. doi: 10.1073/pnas.61.2.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Durham P. J. K., Stevenson B. J., Farquharson B. C. Rotavirus and coronavirus associated diarrhea in domestic animals. N. Z. Vet. J. 1979;27:30–32. doi: 10.1080/00480169.1979.34595. [DOI] [PubMed] [Google Scholar]
  • 5.Horner G. W., Hunter R., Kirkbride C. A. A coronavirus-like agent present in feces of cows with diarrhea. N. Z. Vet. J. 1976;23:98. doi: 10.1080/00480169.1975.34206. [DOI] [PubMed] [Google Scholar]
  • 6.Inaba Y., Omori T., Kono M., Ishii S., Matumoto M. BFl virus: a new cytopathogenic virus isolated from cattle. I. Isolation and properties. Jpn. J. Exp. Med. 1962;32:77–92. [Google Scholar]
  • 7.Inaba Y., Sato K., Kurogi H., Takahashi E., Ito Y., Omori T., Goto Y., Matumoto M. Replication of bovine coronavirus in cell line BEK-1 culture. Arch. Virol. 1976;50:339–342. doi: 10.1007/BF01317959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  • 9.Mebus C. A., White R. G., Stair E. L., Rhodes M. B., Twiehaus M. J. Neonatal calf diarrhea: results of a field trial using a reovirus-like virus vaccine. Vet. Med. Small Anim. Clin. 1972;67:173–178. [PubMed] [Google Scholar]
  • 10.Mebus C. A., Stair E. L., Rhodes M. B., Twiehaus M. J. Neonatal calf diarrhea: propagation, attenuation and characteristics of a coronavirus-like agent. Am. J. Vet. Res. 1973;34:145–150. [PubMed] [Google Scholar]
  • 11.Mebus C. A., Stair E. L., Twiehaus M. J. Pathology of neonatal calf diarrhea induced by a coronavirus-like agent. Vet. Pathol. 1973;10:45–64. doi: 10.1177/030098587301000105. [DOI] [PubMed] [Google Scholar]
  • 12.Sanekata T., Yoshida Y., Oda K. Detection of rotavirus from feces by reversed passive haemagglutination method. J. Clin. Pathol. 1979;32:963. doi: 10.1136/jcp.32.9.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Sanekata T., Yoshida Y., Saito Y., Takei T., Takahashi T. Detection of rotavirus from infantile gastroenteritis patient's stools by means of reversed passive haemagglutination. Igaku no Ayumi. 1979;109:319–321. [Google Scholar]
  • 14.Sato K., Inaba Y., Kurogi H., Takahashi E., Satoda K., Omori T., Matumoto M. Hemagglutination by calf diarrhea coronavirus. Vet. Microbiol. 1977;2:83–87. [Google Scholar]
  • 15.Sato K., Inaba Y., Takahashi E., Ito Y., Kurogi H., Akashi H., Satoda K., Omori T., Matumoto M. Isolation of a reovirus-like agent (rotavirus) from neonatal calf diarrhea in Japan. Microbiol. Immunol. 1978;22:499–503. doi: 10.1111/j.1348-0421.1978.tb00396.x. [DOI] [PubMed] [Google Scholar]
  • 16.Sharpee R. L., Mebus C. A., Bass E. P. Characterization of a calf diarrheal coronavirus. Am. J. Vet. Res. 1976;37:1031–1041. [PubMed] [Google Scholar]
  • 17.Stair E. L., Rhodes M. B., White R. G., Mebus C. A. Neonatal calf diarrhea: purification and electron microscopy of a coronavirus-like agent. Amer. J. Vet. Res. 1972;33:1147–1156. [PubMed] [Google Scholar]
  • 18.Takahashi E., Inaba Y., Sato K., Ito Y., Kurogi H., Akashi H., Satoda K., Omori T. Epizootic diarrhea of adult cattle associated with a coronavirus-like agent. Vet. Microbiol. 1980;5:151–154. [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES