Summary
An oligonucleotide containing multiple AP-1 binding sites was introduced into the regulatory sequence in the long terminal repeat (LTR) of feline immunodeficiency virus (FIV). Chloramphenicol acetyltransferase assay revealed that basal promoter activity of the mutated LTR was higher than that of the wild-type LTR in Crandell feline kidney (CRFK) cells. The mutated LTR was introduced into an infectious molecular clone of FIV and the clone was transfected into CRFK cells. The virus production of the mutant in the cells was as high as that of the wild-type when determined by the reverse transcriptase activity assay. The growth of the mutant virus obtained from the transfected CRFK cells was examined in feline T lymphoblastoid cell lines (MYA-1 and FeL-039 cells) and primary feline peripheral blood mononuclear cells (fPBMCs). The growth was delayed when compared with that of the wild-type virus in all the cells used. Upon examination by polymerase chain reaction, the length of the LTR of the mutant virus was shortened in both MYA-1 cells and fPBMCs. Sequence analysis revealed that the insertion was completely deleted 39 days after infection in the MYA-1 cells.
Keywords: Long Terminal Repeat, Terminal Repeat, Mutant Virus, Lymphoblastoid Cell Line, Feline Immunodeficiency Virus
References
- 1.Coffin JM. Retroviridae. In: Francki RIB, Fauquet CM, Knudson DL, Brown F, editors. Classification and Nomenclature of Viruses. Fifth Report of the International Committee on Taxonomy of Viruses. Wien New York: Springer; 1991. pp. 290–299. [Google Scholar]
- 2.Cullen BR, Green WC. Regulatory pathways governing HIV-1 replication. Cell. 1989;58:423–426. doi: 10.1016/0092-8674(89)90420-0. [DOI] [PubMed] [Google Scholar]
- 3.Crandell RA, Fabricant CG, Nelson-Rees WA. Development, characterization, and viral susceptibility of feline (Felis catus) renal cell line (CRFK) In Vitro. 1973;9:176–185. doi: 10.1007/BF02618435. [DOI] [PubMed] [Google Scholar]
- 4.Curran T, Franza BR., Jr Fos and Jun: the Ap-1 connection. Cell. 1988;55:395–397. doi: 10.1016/0092-8674(88)90024-4. [DOI] [PubMed] [Google Scholar]
- 5.Gorman CM, Moffat LF, Howard BH. Recombinant genomes which express chloramphenicol acetyltransferase in mamalian cells. Mol Cell Biol. 1982;2:1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Graham FL, van der Eb AJ. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973;52:456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
- 7.Hess JL, Pyper JM, Clements JE. Nucleotide sequence and transcriptional activity of the caprine arthritisencephalitis virus long terminal repeat. J Virol. 1986;60:385–393. doi: 10.1128/jvi.60.2.385-393.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Hess JL, Small JD, Clements JE. Sequences in the viana virus long terminal repeat that control transcriptional activity and respond to viraltrans-activation: involvement of AP-1 sites in basal activity and trans-activation. J Virol. 1989;63:3001–3015. doi: 10.1128/jvi.63.7.3001-3015.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Jacobse-Geels HEL, Horzinek MC. Expression of feline infectious peritonitis coronavirus antigens on the surface of feline macrophage-like cells. J Gen Virol. 1983;64:1859–1866. doi: 10.1099/0022-1317-64-9-1859. [DOI] [PubMed] [Google Scholar]
- 10.Kawaguchi Y, Miyazawa T, Horimoto T, Itagaki S, Fukasawa M, Takahashi E, Mikami T. Activation of feline immunodeficiency virus long terminal repeat by feline herpesvirus type 1. Virology. 1991;184:449–454. doi: 10.1016/0042-6822(91)90868-c. [DOI] [PubMed] [Google Scholar]
- 11.Kawaguchi Y, Norimine J, Miyazawa T, Kai C, Mikami T. Sequences within the feline immunodeficiency virus long terminal repeat that control transcriptional activity and respond to activation by feline herpesvirus type 1. Viology. 1992;190:465–468. doi: 10.1016/0042-6822(92)91235-m. [DOI] [PubMed] [Google Scholar]
- 12.Kiyomasu T, Miyazawa T, Furuya T, Shibata R, Sakai H, Sakuragi J, Fukasawa M, Maki N, Hasegawa A, Mikami T, Adachi A. Identification of the feline immunodeficiency virusrev gene activity. J Virol. 1991;65:4539–4542. doi: 10.1128/jvi.65.8.4539-4542.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Maki N, Miyazawa T, Fukasawa M, Hasegawa A, Hayami M, Miki K, Mikami T. Molecular characterization and heterogeneity of feline immunodeficiency virus isolates. Arch Virol. 1992;123:29–45. doi: 10.1007/BF01317136. [DOI] [PubMed] [Google Scholar]
- 14.Miyazawa T, Fukasawa M, Hasegawa A, Maki N, Ikuta K, Takahashi E, Hayami M, Mikami T. Molecular cloning of a novel isolate of feline immunodeficiency virus biologically and genetically different from the original U.S. isolate. J Virol. 1991;65:1572–1577. doi: 10.1128/jvi.65.3.1572-1577.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Miyazawa T, Furuya T, Itagaki S, Tohya Y, Nakano K, Takahashi E, Mikami T. Preliminary comparisons of the biological properties of two strains of feline immunodeficiency virus (FIV) isolated in Japan with FIV Petaluma strain isolated in the United States. Arch Virol. 1989;108:59–68. doi: 10.1007/BF01313743. [DOI] [PubMed] [Google Scholar]
- 16.Miyazawa T, Furuya T, Itagaki S, Tohya Y, Takahashi E, Mikami T. Establishment of a feline T-lymphoblastoid cell line highly sensitive for replication of feline immunodeficiency virus. Arch Virol. 1989;108:131–135. doi: 10.1007/BF01313750. [DOI] [PubMed] [Google Scholar]
- 17.Miyazawa T, Inoshima Y, Kohmoto M, Ikeda Y, Mikami T. Growth properties of a feline immunodeficiency virus mutant which lacks an AP-1 binding site in primary peripheral blood mononuclear cells. J Vet Med Sci. 1994;56:869–872. doi: 10.1292/jvms.56.869. [DOI] [PubMed] [Google Scholar]
- 18.Miyazawa T, Kawaguchi Y, Kohmoto M, Tomonaga K, Mikami T. Comparative functional analysis of the various lentivirus long terminal repeats in human colon carcinoma cell line (SW480 cells) and feline renal cell line (CRFK cells) J Vet Med Sci. 1994;56:895–899. doi: 10.1292/jvms.56.895. [DOI] [PubMed] [Google Scholar]
- 19.Miyazawa T, Kohmoto M, Kawaguchi Y, Tomonaga K, Toyosaki T, Ikuta K, Adachi A, Mikami T. The AP-1 binding site in the feline immunodeficiency virus long terminal repeat is not required for virus replication in feline T lymphocytes. J Gen Virol. 1993;74:1573–1580. doi: 10.1099/0022-1317-74-8-1573. [DOI] [PubMed] [Google Scholar]
- 20.Miyazawa T, Tomonaga K, Kawaguchi Y, Mikami T. The genome of feline immunodeficiency virus. Arch Virol. 1994;134:221–234. doi: 10.1007/BF01310563. [DOI] [PubMed] [Google Scholar]
- 21.Miyazawa T, Toyosaki T, Tomonaga K, Norimine J, Ohno K, Hasegawa A, Kai C, Mikami T. Further characterization of a feline T-lymphoblastoid cell line (MYA-1 cells) highly sensitive for feline immunodeficiency virus. J Vet Med Sci. 1992;54:173–175. doi: 10.1292/jvms.54.173. [DOI] [PubMed] [Google Scholar]
- 22.Neumann JR, Morency CA, Russain KO. A novel rapid assay for chloramphenicol acetyltransferase gene expression. Bio Techniques. 1987;5:444–447. [Google Scholar]
- 23.Ohta Y, Masuda T, Tsujimoto H, Ishikawa K, Kodama T, Morikawa S, Nakai M, Honjo S, Hayami M. Isolation of simian immunodeficiency virus from African green monkeys and seroepidemiologic survey of the virus in various non-human primates. Int J Cancer. 1988;42:115–122. doi: 10.1002/ijc.2910410121. [DOI] [PubMed] [Google Scholar]
- 24.Pedersen NC, Ho EW, Brown ML, Yamamoto J. Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science. 1987;235:790–793. doi: 10.1126/science.3643650. [DOI] [PubMed] [Google Scholar]
- 25.Phillips TR, Lamont C, Konings DAM, Shacklett BL, Hamson CA, Luciw PA, Elder JH. Identification of the Rev transactivation and Rev-responsive element of feline immunodeficiency virus. J Virol. 1192;66:5464–5471. doi: 10.1128/jvi.66.9.5464-5471.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Phillips TR, Talbott RT, Lamont C, Muir S, Lovelace K, Elder JH. Comparison of two host cell range variants of feline immunodeficiency virus. J Virol. 1990;64:4605–4613. doi: 10.1128/jvi.64.10.4605-4613.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239:487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- 28.Sparger EE, Shacklett BL, Renshaw-Gegg L, Barry PA, Pedersen NC, Elder JH, Luciw PA. Regulation of gene exepression directed by the long terminal repeat of the feline immunodeficiency virus. Virology. 1992;187:165–177. doi: 10.1016/0042-6822(92)90305-9. [DOI] [PubMed] [Google Scholar]
- 29.Thompson FJ, Elder J, Neil JC. Cis- and trans-regulation of feline immunodeficiency virus: identification of functional binding sites in the long terminal repeat. J Gen Virol. 1994;75:545–554. doi: 10.1099/0022-1317-75-3-545. [DOI] [PubMed] [Google Scholar]
- 30.Tokunaga K, Nishino Y, Oikawa H, Ishihara C, Mikami T, Ikuta K. Altered cell tropism and cytopathicity of feline immunodeficiency viruses in two different feline CD4-positive, CD8-negative cell lines. J Virol. 1992;66:3893–3898. doi: 10.1128/jvi.66.6.3893-3898.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Wigler M, Pellicer A, Silverstein S, Axel R, Urlaub G, Chasin L. DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells. Proc Natl Acad Sci USA. 1979;76:1373–1376. doi: 10.1073/pnas.76.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Yamamoto JK, Sparger E, Ho EW, Andersen PR, O'Connor TP, Mandell CP, Lowenstine L, Munn R, Pedersen NC. Pathogenesis of experimentally induced feline immunodeficiency virus infection in cats. Am J Vet Res. 1988;49:1246–1258. [PubMed] [Google Scholar]