Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1993;133(3):239–257. doi: 10.1007/BF01313766

Cell-to-cell movement of plant viruses

Insights from amino acid sequence comparisons of movement proteins and from analogies with cellular transport systems

A R Mushegian 1, E V Koonin 2
PMCID: PMC7086723  PMID: 8257287

Summary

Cell-to-cell movement is a crucial step in plant virus infection. In many viruses, the movement function is secured by specific virus-encoded proteins. Amino acid sequence comparisons of these proteins revealed a vast superfamily containing a conserved sequence motif that may comprise a hydrophobic interaction domain. This superfamily combines proteins of viruses belonging to all principal groups of positive-strand RNA viruses, as well as single-stranded DNA containing geminiviruses, double-stranded DNA-containing pararetroviruses (caulimoviruses and badnaviruses), and tospoviruses that have negative-strand RNA genomes with two ambisense segments. In several groups of positive-strand RNA viruses, the movement function is provided by the proteins encoded by the so-called triple gene block including two putative small membrane-associated proteins and a putative RNA helicase. A distinct type of movement proteins with very high content of proline is found in tymoviruses. It is concluded that classification of movement proteins based on comparison of their amino acid sequences does not correlate with the type of genome nucleic acid or with grouping of viruses based on phylogenetic analysis of replicative proteins or with the virus host range. Recombination between unrelated or distantly related viruses could have played a major role in the evolution of the movement function. Limited sequence similarities were observed between i) movement proteins of dianthoviruses and the MIP family of cellular integral membrane proteins, and ii) between movement proteins of bromoviruses and cucumoviruses and M1 protein of influenza viruses which is involved in nuclear export of viral ribonucleoproteins. It is hypothesized that all movement proteins of plant viruses may mediate hydrophobic interactions between viral and cellular macromolecules.

Keywords: Influenza, Plant Virus, Movement Protein, Movement Function, Conserve Sequence Motif

References

  • 1.Agutter PS, editor. Between nucleus and cytoplasm. New York: Chapman and Hall; 1991. [Google Scholar]
  • 2.Albrecht H, Geldreich A, Menissier de Murcia J, Kirchnerr D, Mesnard J-M, Lebeurier G. Cauliflower mosaic virus gene I product detected in cell wall-enriched fraction. Virology. 1988;163:503–508. doi: 10.1016/0042-6822(88)90291-7. [DOI] [PubMed] [Google Scholar]
  • 3.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  • 4.Atabekov JG, Taliansky ME. Expression of a plant virus-coded transport function by different viral genomes. Adv Virus Res. 1990;38:201–248. doi: 10.1016/s0065-3527(08)60863-5. [DOI] [PubMed] [Google Scholar]
  • 5.Baron-Epel O, Hernandez D, Jiang L-W, Meiners S, Schindler M. Dynamic continuity of cytoplasmic and membrane compartments between plant cells. J Cell Biol. 1988;106:715–721. doi: 10.1083/jcb.106.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5a.Beck DL, Guilford PJ, Voot DM, Andersen MT, Forster RL. Triple gene block proteins of white clover mosaic potexviurs are required for transport. Virology. 1991;183:695–702. doi: 10.1016/0042-6822(91)90998-q. [DOI] [PubMed] [Google Scholar]
  • 6.Berna A, Gafny R, Wolf S, Lucas WJ, Holt CA, Beachy RN. The TMV movement protein: role of the C-terminal 73 amino acids in subcellular localization and function. Virology. 1991;182:682–689. doi: 10.1016/0042-6822(91)90609-f. [DOI] [PubMed] [Google Scholar]
  • 7.Boccard F, Baulcombe D. Mutational analysis of cis-acting sequences and gene function in RNA 3 of cucumber mosaic virus. Virology. 1993;193:563–578. doi: 10.1006/viro.1993.1165. [DOI] [PubMed] [Google Scholar]
  • 8.Bouhida M, Lockhart BEL, Olszewski N. An analysis of the complete nucleotide sequence of a sugarcane bacilliform virus genome infectious to banana and rice. J Gen Virol. 1993;74:15–22. doi: 10.1099/0022-1317-74-1-15. [DOI] [PubMed] [Google Scholar]
  • 9.Boulton MI, Pallaghy CK, Chatani M, MacFarlane S, Davies JW. Replication of maize streak virus mutants in maize protoplasts: evidence for a movement protein. Virology. 1993;192:85–93. doi: 10.1006/viro.1993.1010. [DOI] [PubMed] [Google Scholar]
  • 10.Bozart CS, Weiland JJ, Dreher TW. Expression of ORF-69 of turnip yellow mosaic virus is necessary for virus spread in plants. Virology. 1992;187:124–130. doi: 10.1016/0042-6822(92)90301-5. [DOI] [PubMed] [Google Scholar]
  • 11.Calder VL, Palukaitis P. Nucleotide sequence analysis of the movement genes of resistance breaking strains of tomato mosaic virus. J Gen Virol. 1992;73:165–168. doi: 10.1099/0022-1317-73-1-165. [DOI] [PubMed] [Google Scholar]
  • 12.Carter KC, Bowman D, Carrington W, Fogarty K, McNeil JA, Fay FS, Lawrence JB. A three-dimensional view of precursor messenger RNA metabolism within the mammalian nucleus. Science. 1993;259:1330–1335. doi: 10.1126/science.8446902. [DOI] [PubMed] [Google Scholar]
  • 13.Chapman S, Kavanagh T, Baulcombe D. Potato virus X as a vector for gene expression in plants. Plant J. 1992;2:549–557. doi: 10.1046/j.1365-313x.1992.t01-24-00999.x. [DOI] [PubMed] [Google Scholar]
  • 14.Citovsky V, Knorr D, Schuster G, Zambryski P. The P 30 movement protein of tobacco mosaic virus is a single-stranded nucleic acid binding protein. Cell. 1990;60:637–647. doi: 10.1016/0092-8674(90)90667-4. [DOI] [PubMed] [Google Scholar]
  • 15.Citovsky V, Knorr D, Zambryski P. Gene I, a potential cell-to-cell movement locus of cauliflower mosaic virus, encodes an RNA-binding protein. Proc Natl Acad Sci USA. 1991;88:2476–2480. doi: 10.1073/pnas.88.6.2476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Citovsky V, Zambryski P. How do plant virus nucleic acids move through intercellular connections? BioEssays. 1991;13:373–379. doi: 10.1002/bies.950130802. [DOI] [PubMed] [Google Scholar]
  • 17.Citovsky V, Wong ML, Shaw AL, Venkataram Prasad BV, Zambryski P. Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell. 1992;4:397–411. doi: 10.1105/tpc.4.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Dawson WO. Relationship of tobacco mosaic virus gene expression to movement within plant. In: Pirone TP, Shaw JG, editors. Viral genes and plant pathogenesis. Wien New York: Springer; 1990. pp. 39–52. [Google Scholar]
  • 19.Deom CM, Lapidot M, Beachy RN. Plant virus movement proteins. Cell. 1992;69:221–224. doi: 10.1016/0092-8674(92)90403-y. [DOI] [PubMed] [Google Scholar]
  • 20.Derrick PM, Barker H, Oparka KJ. Increase in plasmodesmatal permeability during cell-to-cell spread of tobacco rattle virus from individually inoculated cells. Plant Cell. 1992;4:1405–1412. doi: 10.1105/tpc.4.11.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Doolittle RF (1986) Of URFs and ORFs. A primer on how to analyze derived amino acid sequences. University Science Books, Mill Valley
  • 22.Dorokhov Yul, Alexandrova NM, Miroshnichenko NA, Atabekov JG. The informosome-like virus-specific ribonucleoprotein (vRNP) may be involved in the transport of tobacco mosaic virus infection. Virology. 1984;137:127–134. doi: 10.1016/0042-6822(84)90015-1. [DOI] [PubMed] [Google Scholar]
  • 23.Enami K, Qiao Y, Fukuda R, Enami M. An influenza virus temperature-sensitive mutant defective in the nuclear-cytoplasmic transport of the negative-sense viral RNAs. Virology. 1993;194:822–827. doi: 10.1006/viro.1993.1324. [DOI] [PubMed] [Google Scholar]
  • 24.Erny C, Schoumacher F, Jung C, Gagey M-J, Godefroy-Colburn T, Stussi-Garaud C, Berna A. An N-proximal sequence of alfalfa mosaic virus movement protein is necessary for association with cell walls in transgenic plants. J Gen Virol. 1992;73:2115–2119. doi: 10.1099/0022-1317-73-8-2115. [DOI] [PubMed] [Google Scholar]
  • 25.Francki RIB, Fauquet CM, Knudson DL, Brown F, editors. Classification and nomenclature of viruses. Fifth Report of the International Committee on Taxonomy of Viruses. Wien New York: Springer; 1991. [Google Scholar]
  • 25a.Gilmer D, Bouzoubaa S, Guilley H, Richards K, Jonard G. Efficient cell-to-cell movement of beet necrotic yellow vein virus requires 3′ proximal genes located on RNA 2. Virology. 1992;189:40–47. doi: 10.1016/0042-6822(92)90679-j. [DOI] [PubMed] [Google Scholar]
  • 26.Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM. A novel superfamily of nucleoside triphosphate-binding motif-containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination. FEBS Lett. 1988;239:16–24. doi: 10.1016/0014-5793(88)81226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Gorbalenya AE, Blinov VM, Donchenko AP, Koonin EV. An ATP-binding motif is the most conserved sequence in a highly diverged group of proteins involved in positive strand RNA viral replication. J Mol Evol. 1989;28:256–268. doi: 10.1007/BF02102483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Hacker DL, Petty ITD, Wei N, Morris TJ. Turnip crinkle virus genes required for RNA replication and virus movement. Virology. 1992;186:1–8. doi: 10.1016/0042-6822(92)90055-t. [DOI] [PubMed] [Google Scholar]
  • 29.Hamilton WDO, Boccara M, Robinson DJ, Baulcombe DC. The complete nucleotide sequence of tobacco rattle virus RNA-1. J Gen Virol. 1987;70:963–968. doi: 10.1099/0022-1317-68-10-2563. [DOI] [PubMed] [Google Scholar]
  • 30.Hull R, Saedler J, Longstaff M. The sequence of carnation etched ring virus DNA: comparison with cauliflower mosaic virus and retroviruses. EMBO J. 1986;5:3083–3090. doi: 10.1002/j.1460-2075.1986.tb04614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Koonin EV. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol. 1991;72:2179–2207. doi: 10.1099/0022-1317-72-9-2197. [DOI] [PubMed] [Google Scholar]
  • 32.Koonin EV. Virus evolution: time for Sturm und Drang. Semin Virol. 1992;3:311–313. [Google Scholar]
  • 33.Koonin EV, Mushegian AR, Ryabov EV, Dolja VV. Diverse groups of plant DNA and RNA viruses share related movement proteins that may possess chaperone-like activity. J Gen Virol. 1991;72:2895–2903. doi: 10.1099/0022-1317-72-12-2895. [DOI] [PubMed] [Google Scholar]
  • 34.Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol (in press) [DOI] [PubMed]
  • 35.Lamb RA. Genes and proteins of the influenza viruses. In: King RM, editor. The influenza viruses. New York: Plenum Press; 1989. pp. 1–87. [Google Scholar]
  • 36.Linstead PJ, Hills GJ, Plaskitt KA, Wilson IG, Harker CL, Maule AJ. The subcellular localization of gene I product of cauliflower mosaic virus is consistent with a function associated with virus spread. J Gen Virol. 1988;69:1809–1818. [Google Scholar]
  • 37.MacKenzie DJ, Tremaine JH. Ultrastructural location of non-structural protein 3A of cucumber mosaic virus in infected tissue using monoclonal antibodies to a cloned chimeric fusion protein. J Gen Virol. 1988;60:2387–2394. [Google Scholar]
  • 38.Maquat LE. Nuclear mRNA export. Curr Opin Cell Biol. 1991;3:1004–1012. doi: 10.1016/0955-0674(91)90121-e. [DOI] [PubMed] [Google Scholar]
  • 39.Martin K, Helenius A. Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell. 1991;67:117–130. doi: 10.1016/0092-8674(91)90576-k. [DOI] [PubMed] [Google Scholar]
  • 40.Maule AJ. Virus movement in infected plants. Crit Rev Plant Sci. 1991;9:457–473. [Google Scholar]
  • 41.Mehlin H, Daneholt B, Skoglund U. Translocation of a specific premessenger ribonucleoprotein particle through the nuclear pore studied with electron microscope tomography. Cell. 1992;69:605–613. doi: 10.1016/0092-8674(92)90224-z. [DOI] [PubMed] [Google Scholar]
  • 42.Meiners S, Xu A, Schindler M. Gap junction protein homologue inArabidopsis thaliana: evidence for connexins in plants. Proc Natl Acad Sci USA. 1991;88:4119–4122. doi: 10.1073/pnas.88.10.4119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Melcher U. Similarities between putative transport proteins of plant viruses. J Gen Virol. 1990;71:1009–1018. doi: 10.1099/0022-1317-71-5-1009. [DOI] [PubMed] [Google Scholar]
  • 44.Morozov SYu, Dolja VV, Atabekov JG. Probable reassortment of genomic elements among elongated RNA-containing plant viruses. J Mol Evol. 1989;29:52–62. doi: 10.1007/BF02106181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Nigg EA, Bauerle PA, Luhrmann R. Nuclear import-export: in search of signals and mechanisms. Cell. 1991;66:15–22. doi: 10.1016/0092-8674(91)90135-l. [DOI] [PubMed] [Google Scholar]
  • 46.Osman TAM, Buck KW. Detection of the movement protein of red clover necrotic mosaic virus in a cell wall fraction from infectedNicotiana clevelandii plants. J Gen Virol. 1991;72:2853–2856. doi: 10.1099/0022-1317-72-11-2853. [DOI] [PubMed] [Google Scholar]
  • 47.Osman TAM, Hayes RJ, Buck KW. Cooperative binding of the red clover necrotic mosaic movement protein to single stranded nucleic acids. J Gen Virol. 1992;73:223–227. doi: 10.1099/0022-1317-73-2-223. [DOI] [PubMed] [Google Scholar]
  • 48.Pao GM, Wu L-F, Johnson KD, Hofte H, Chrispeels MJ, Sweet G, Sandal NN, Saler MH., Jr Evolution of the MIP family of integral membrane transport proteins. Mol Microbiol. 1991;5:33–37. doi: 10.1111/j.1365-2958.1991.tb01823.x. [DOI] [PubMed] [Google Scholar]
  • 49.Perbal MC, Thomas CL, Maule AJ. Cauliflower mosaic virus gene I product (P 1) forms tubular structures which extend from the surface of infected protoplasts. Virology. 1993;195:281–285. doi: 10.1006/viro.1993.1375. [DOI] [PubMed] [Google Scholar]
  • 49a.Petty ITD, French R, Jones RW, Jackson AO. Identification of barley stripe mosaic virus genes involved in viral RNA replication and systemic spread. EMBO J. 1990;9:3452–3457. doi: 10.1002/j.1460-2075.1990.tb07553.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Rao MJK, Argos P. A conformation preference parameter to predict helices in integral membrane proteins. Biochim Biophys Acta. 1985;869:197–214. doi: 10.1016/0167-4838(86)90295-5. [DOI] [PubMed] [Google Scholar]
  • 51.Robards AW, Lucas WJ, Pitts JD, Jongsma JD, Spray DC, editors. Parallels in cell-to-cell junctions in plants and animals. Berlin Heidelberg New York Tokyo: Springer; 1990. [Google Scholar]
  • 52.Sacher R, Ahlquist P. Effects of deletions in the N-terminal basic arm of brome mosaic virus coat protein on RNA packaging and systemic infection. J Virol. 1989;63:4545–4552. doi: 10.1128/jvi.63.11.4545-4552.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Schroder HC, Ugarkovic D, Langen P, Bachmann M, Dorn A, Kuchino Y, Muller WEG. Evidence for involvement of a nuclear envelope-associated RNA helicase activity in nucleocytoplasmic RNA transport. J Cell Physiol. 1990;145:136–146. doi: 10.1002/jcp.1041450119. [DOI] [PubMed] [Google Scholar]
  • 53a.Schuler GD, Altschul SF, Lipman DJ. A workbench for multiple alignments construction and analysis. Proteins Struct Funct Genet. 1991;9:180–190. doi: 10.1002/prot.340090304. [DOI] [PubMed] [Google Scholar]
  • 54.Thomas GL, Perbal C, Maule AJ. A mutation in cauliflower mosaic virus gene I interferes with virus movement but not virus replication. Virology. 1993;192:415–421. doi: 10.1006/viro.1993.1056. [DOI] [PubMed] [Google Scholar]
  • 55.Traynor P, Young BM, Ahlquist P. Deletion analysis of brome mosaic virus 2 a protein: effects on RNA replication and virus spread. J Virol. 1991;65:2807–2815. doi: 10.1128/jvi.65.6.2807-2815.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.van Lent J, Storms M, van der Meer F, Wellink J, Goldbach R. Tubular structures involved in movement of cowpea mosaic virus are also formed in infected cowpea protoplasts. J Gen Virol. 1991;72:2615–2623. doi: 10.1099/0022-1317-72-11-2615. [DOI] [PubMed] [Google Scholar]
  • 57.Wolf S, Deom CM, Beachy RN, Lucas WJ. Plasmodesmatal function is probed using transgenic tobacco plants that express a virus movement protein. Plant Cell. 1991;3:593–604. doi: 10.1105/tpc.3.6.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Wellink J, van Kammen A. Cell-to-cell transport of cowpea mosaic virus requires both the 58/48 K proteins and the capsid proteins. J Gen Virol. 1989;51:317–325. [Google Scholar]
  • 59.Xiong Z, Kim KH, Giesman-Cookmeyer D, Lommel S. The roles of the red clover necrotic mosaic virus capsid and cell-to-cell movement proteins in systemic infection. Virology. 1993;192:27–32. doi: 10.1006/viro.1993.1004. [DOI] [PubMed] [Google Scholar]
  • 60.Ziegler-Graff V, Guilford PJ, Baulcombe DC. Tobacco rattle virus RNA-1 29 K gene product potentiates viral movement and also affects symptom production in tobacco. Virology. 1991;182:144–155. doi: 10.1016/0042-6822(91)90658-x. [DOI] [PubMed] [Google Scholar]
  • 61.Zimmern D. Evolution of RNA viruses. In: Holland JJ, Domingo E, Ahlquist P, editors. RNA genetics. Boca Raton: CRC Press; 1988. [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES