Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2005 Nov 21;151(3):449–464. doi: 10.1007/s00705-005-0663-1

Sequence motifs and prokaryotic expression of the reptilian paramyxovirus fusion protein

J Franke 1, W N Batts 1, W Ahne 1, G Kurath 1, J R Winton 1
PMCID: PMC7086783  PMID: 16328138

Summary.

Fourteen reptilian paramyxovirus isolates were chosen to represent the known extent of genetic diversity among this novel group of viruses. Selected regions of the fusion (F) gene were sequenced, analyzed and compared. The F gene of all isolates contained conserved motifs homologous to those described for other members of the family Paramyxoviridae including: signal peptide, transmembrane domain, furin cleavage site, fusion peptide, N-linked glycosylation sites, and two heptad repeats, the second of which (HRB-LZ) had the characteristics of a leucine zipper. Selected regions of the fusion gene of isolate Gono-GER85 were inserted into a prokaryotic expression system to generate three recombinant protein fragments of various sizes. The longest recombinant protein was cleaved by furin into two fragments of predicted length. Western blot analysis with virus-neutralizing rabbit-antiserum against this isolate demonstrated that only the longest construct reacted with the antiserum. This construct was unique in containing 30 additional C-terminal amino acids that included most of the HRB-LZ. These results indicate that the F genes of reptilian paramyxoviruses contain highly conserved motifs typical of other members of the family and suggest that the HRB-LZ domain of the reptilian paramyxovirus F protein contains a linear antigenic epitope.

Keywords: Recombinant Protein, Leucine, Fusion Gene, Glycosylation Site, Leucine Zipper

References

  1. Ahne W, Adrian J, Mayr A. Replication of reptilian paramyxovirus in avian host systems. J Vet Med. 1999;46:57–62. doi: 10.1046/j.1439-0450.1999.00260.x. [DOI] [PubMed] [Google Scholar]
  2. Ahne W, Batts WN, Kurath G, Winton JR. Comparative sequence analyses of sixteen reptilian paramyxoviruses. Virus Res. 1999;63:65–74. doi: 10.1016/S0168-1702(99)00059-3. [DOI] [PubMed] [Google Scholar]
  3. Ahne W, Mayr A. Reptilian paramyxoviruses induce cytokine production in human leukocytes. Comp Immun Microbiol Infect Dis. 2000;23:9–13. doi: 10.1016/S0147-9571(99)00018-1. [DOI] [PubMed] [Google Scholar]
  4. Ahne W, Neubert WJ, Thomsen I. Reptilian viruses: isolation of myxovirus – like particles from the snake Elaphe oxycephala. J Vet Med B. 1987;34:607–612. doi: 10.1111/j.1439-0450.1987.tb00441.x. [DOI] [PubMed] [Google Scholar]
  5. Baker KA, Dutch RE, Lamb RA, Jardetzky TS. Structural basis for paramyxovirus-mediated membrane fusion. Mol Cell. 1999;3:309–319. doi: 10.1016/S1097-2765(00)80458-X. [DOI] [PubMed] [Google Scholar]
  6. Buckland R, Malvoisin E, Beauverger P, Wild F. A leucine zipper structure present in the measles virus fusion protein is not required for its tetramerization but is essential for fusion. J Gen Virol. 1992;73:1703–1707. doi: 10.1099/0022-1317-73-7-1703. [DOI] [PubMed] [Google Scholar]
  7. Buckland R, Wild F. Leucine zipper motif extends. Nature. 1989;338:547. doi: 10.1038/338547a0. [DOI] [PubMed] [Google Scholar]
  8. Chambers P, Pringle CR, Easton AJ. Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. J Gen Virol. 1990;71:3075–3080. doi: 10.1099/0022-1317-71-12-3075. [DOI] [PubMed] [Google Scholar]
  9. Chen L, Gorman JJ, McKimm-Breschkin J, Lawrence LJ, Tulloch PA, Smith BJ, Colman PM, Lawrence MC. The structure of the fusion glycoprotein of Newcastle disease virus suggests a novel paradigm for the molecular mechanism of membrane fusion. Structure (Camb) 2001;9:255–266. doi: 10.1016/s0969-2126(01)00581-0. [DOI] [PubMed] [Google Scholar]
  10. Clark HF, Lief FS, Lunger PD, Waters D, Leloup P, Foelsch DW, Wyler RW. Fer de Lance virus (FDLV): a probable paramyxovirus isolated from a reptile. J Gen Virol. 1979;44:405–418. doi: 10.1099/0022-1317-44-2-405. [DOI] [PubMed] [Google Scholar]
  11. Cohen C, Parry DA. Alpha-helical coiled coils: more facts and better predictions. Science. 1994;263:488–489. doi: 10.1126/science.8290957. [DOI] [PubMed] [Google Scholar]
  12. De Leeuw OS, Hartog L, Koch G, Peeters BPH. Effect of fusion cleavage site mutations on virulence of Newcastle disease virus: non-virulent cleavage site mutants revert to virulence after one passage in chicken brain. J Gen Virol. 2003;84:475–484. doi: 10.1099/vir.0.18714-0. [DOI] [PubMed] [Google Scholar]
  13. Dutch RE, Leser GP, Lamb RA. Paramyxovirus fusion protein: characterization of the core trimer, a rod-shaped complex with helices in anti-parallel orientation. Virology. 1999;254:147–159. doi: 10.1006/viro.1998.9532. [DOI] [PubMed] [Google Scholar]
  14. Essbauer S, Ahne W. Viruses of lower vertebrates. J Vet Med B. 2001;48:403–475. doi: 10.1046/j.1439-0450.2001.00473.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Foelsch DW, Leloup P. Fatale endemische Infektion in einem Serpentarium. Tierärztl Praxis. 1976;4:572–536. [PubMed] [Google Scholar]
  16. Franke J, Essbauer S, Ahne W, Blahak S. Identification and molecular characterization of 18 paramyxoviruses isolated from snakes. Virus Res. 2001;80:67–74. doi: 10.1016/S0168-1702(01)00353-7. [DOI] [PubMed] [Google Scholar]
  17. Homer BL, Sundberg JP, Gaskin JM, Schumacher J, Jacobson ER. Immuno- peroxidase detection of ophidian paramyxovirus in snake lung using a polyclonal anti- body. J Vet Diagn Invest. 1995;7:72–77. doi: 10.1177/104063879500700111. [DOI] [PubMed] [Google Scholar]
  18. Horvath CM, Lamb RA. Studies on the fusion peptide of a paramyxovirus fusion glycoprotein: roles of conserved residues in cell fusion. J Virol. 1992;66:2443–2455. doi: 10.1128/jvi.66.4.2443-2455.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jacobson ER, Adams HP, Geisbert TW, Tucker SJ, Hall BJ, Homer BL. Pulmonary lesions in experimental ophidian paramyxovirus pneumonia of Aruba Island rattlesnakes, Crotalus unicolor. Vet Pathol. 1997;34:450–459. doi: 10.1177/030098589703400509. [DOI] [PubMed] [Google Scholar]
  20. Jacobson ER, Gaskin JM, Wells S, Bowler K, Schumacher J. Epizootic of ophidian paramyxovirus in a zoological collection: pathological, microbiological and serological findings. J Zoo Wildl Med. 1992;23:318–327. [Google Scholar]
  21. Jacobson ER, Origgi F, Pessier AP, Lamirande EW, Walker I, Whitaker B, Stalis IH, Nordhausen R, Owens JW, Nichols DK, Heard D, Homer B. Paramyxovirus infection in caiman lizards (Draecena guianensis). J Vet Diagn Invest. 2001;13:143–151. doi: 10.1177/104063870101300208. [DOI] [PubMed] [Google Scholar]
  22. Joshi SB, Dutch RE, Lamb RA. A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV-1gp41. Virology. 1998;248:20–24. doi: 10.1006/viro.1998.9242. [DOI] [PubMed] [Google Scholar]
  23. Junquiera de Azevedo IL, Prieto de Silva AR, Carmona E, Ho PL. Characterization of a paramyxovirus from a Fer de Lance viper (Bothrops jararaca): partial nucleotide sequence of the putative fusion protein. Arch Virol. 2001;146:51–57. doi: 10.1007/s007050170190. [DOI] [PubMed] [Google Scholar]
  24. Kindermann J, Kubber-Heiss A, Kerschbaumer P, Nowotny N. Phylogenetic analysis of the L and HN gene of ophidian paramyxoviruses. Arch Virol. 2001;146:1021–1035. doi: 10.1007/s007050170133. [DOI] [PubMed] [Google Scholar]
  25. Klenk H-D, Garten W. Host cell proteases controlling virus pathogenicity. Trends Microbiol. 1994;2:39–42. doi: 10.1016/0966-842X(94)90123-6. [DOI] [PubMed] [Google Scholar]
  26. Kurath G, Batts WN, Ahne W, Winton JR. Complete genome sequence of Fer-de-Lance virus reveals a novel gene in reptilian paramyxoviruses. J Virol. 2004;78:2045–2056. doi: 10.1128/JVI.78.4.2045-2056.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lamb RA. Paramyxovirus fusion: A hypothesis for changes. Virology. 1993;197:1–11. doi: 10.1006/viro.1993.1561. [DOI] [PubMed] [Google Scholar]
  28. Lamb RA, Kolakofsky D (2001) Paramyxoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM, Chanock RM, Melnick JL, Monath TP, Roizman B, Straus SE (eds) Fields Virology, 4th edn. Lippincott Williams & Wilkins, Philadelphia. pp 577–604
  29. Langedijk JPM, Meloen RH, Van Oirschot JT. Identification of a conserved neutralization site in the first heptad repeat of the fusion protein of respiratory syncytial virus. Arch Virol. 1998;143:313–320. doi: 10.1007/s007050050288. [DOI] [PubMed] [Google Scholar]
  30. Martin-Gallardo A, Fien KA, Hu BT, Farley JF, Seid R, Collins PL, Hildreth SW, Paradiso PR. Expression of the F glycoprotein gene from human respiratory syncytial virus in Escherichia coli: Mapping of a fusion inhibiting epitope. Virology. 1991;184:428–432. doi: 10.1016/0042-6822(91)90863-7. [DOI] [PubMed] [Google Scholar]
  31. Mayr A, Franke J, Ahne W. Adaptation of reptilian paramyxovirus to mammalian cells (Vero cells). J Vet Med B. 2000;47:95–98. doi: 10.1046/j.1439-0450.2000.00374.x. [DOI] [PubMed] [Google Scholar]
  32. Nyet C, Geliebter J, Saloui M, Morales D, Meulemans G, Burny A. Mutations located on both F1 and F2 subunits of the Newcastle disease virus fusion protein confer resistance to neutralization with monoclonal antibodies. J Virol. 1989;63:952–954. doi: 10.1128/jvi.63.2.952-954.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Peeters BPH, de Leeuw OS, Koch G, Gielkens ALJ. Rescue of Newcastle disease virus from cloned cDNA: Evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol. 1999;73:5001–5009. doi: 10.1128/jvi.73.6.5001-5009.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Peisajovich SG, Shai Y. New insights into the mechanism of virus-induced membrane fusion. Trends Biochem Sci. 2002;27:183–190. doi: 10.1016/S0968-0004(01)02050-3. [DOI] [PubMed] [Google Scholar]
  35. Portner A, Scroggs RA, Naeve CW. The fusion glycoproteins of Sendai virus: sequence analysis of an epitope involved in fusion and virus neutralization. Virology. 1987;157:556–559. doi: 10.1016/0042-6822(87)90301-1. [DOI] [PubMed] [Google Scholar]
  36. Reitter JN, Sergel T, Morrison TG. Mutational analysis of the leucine zipper motif in the Newcastle disease virus fusion protein. J Virol. 1995;69:5995–6004. doi: 10.1128/jvi.69.10.5995-6004.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Richter GA, Homer BL, Moyer SA, Williams DS, Scherba G, Tucker SJ, Hall BJ, Pedersen JC, Jacobson ER. Characterization of paramyxoviruses isolated from three snakes. Virus Res. 1996;43:77–83. doi: 10.1016/0168-1702(96)01319-6. [DOI] [PubMed] [Google Scholar]
  38. Samson AC, Willcocks MM, Routledge EG, Morgan LA, Toms GL. A neutralizing monoclonal antibody to respiratory syncytial virus which binds to both F1 and F2 components of the fusion protein. J Gen Virol. 1986;67:1479–1483. doi: 10.1099/0022-1317-67-7-1479. [DOI] [PubMed] [Google Scholar]
  39. Scheid A, Choppin PW. Identification of biological activities of paramyxovirus glycoproteins: Activation of cell fusion, hemolysis, and infectivity of proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology. 1974;57:475–490. doi: 10.1016/0042-6822(74)90187-1. [DOI] [PubMed] [Google Scholar]
  40. Sergel-Germano T, McQuain C, Morrison T. Mutations in the fusion peptide and heptad repeat region of the Newcastle disease virus fusion protein block fusion. J Virol. 1994;68:7654–7658. doi: 10.1128/jvi.68.11.7654-7658.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shengqing Y, Kishida N, Ito H, Kida H, Otsuki K, Kawaoka Y, Ito T. Generation of velogenic Newcastle disease viruses from a nonpathogenic waterfowl isolate by passaging in chickens. Virology. 2002;301:206–211. doi: 10.1006/viro.2002.1539. [DOI] [PubMed] [Google Scholar]
  42. Steiner DF. The proprotein convertases. Curr Opin Chem Biol. 1998;2:31–39. doi: 10.1016/S1367-5931(98)80033-1. [DOI] [PubMed] [Google Scholar]
  43. Tashiro M, Yokogoshi Y, Tobita K, Seto JT, Rott R, Kido H. Tryptase Clara, an activating protease for Sendai virus in rat lungs, is involved in pneumopathogenicity. J Virol. 1992;66:7211–7216. doi: 10.1128/jvi.66.12.7211-7216.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Toyoda T, Gotoh B, Sakaguchi T, Kida H, Nagai Y. Identification of amino acids relevant to three antigenic determinants of the fusion protein of Newcastle disease virus that are involved in fusion inhibition and neutralization. J Virol. 1988;62:4427–4430. doi: 10.1128/jvi.62.11.4427-4430.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Trudel M, Nadon F, Seguin C, Dionne G, Lacroix M. Identification of a synthetic peptide as part of a major neutralization epitope of respiratory syncytial virus. J Gen Virol. 1987;68:2273–2280. doi: 10.1099/0022-1317-68-9-2273. [DOI] [PubMed] [Google Scholar]
  46. Trudel M, Nadon F, Seguin C, Payment P, Talbot PJ. Respiratory syncytial virus fusion glycoprotein: further characterization of a major epitope involved in virus neutralization. Can J Microbiol. 1987;33:933–938. doi: 10.1139/m87-164. [DOI] [PubMed] [Google Scholar]
  47. Van den Ouweland AMW, Van Duijnhoven HLP, Keizer GD, Dorssers CJ, Van de Ven WJM. Structural homology between the human fur gene product and the subtilisin-like protease encoded by yeast KEX2. Nucleic Acids Res. 1990;18:664. doi: 10.1093/nar/18.5.1332-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Van Wyke Coelingh K, Tierney EL. Identification of amino acids recognized by syncytium-inhibiting and neutralizing monoclonal antibodies to the human parainfluenza type 3 virus fusion protein. J Virol. 1989;63:3755–3760. doi: 10.1128/jvi.63.9.3755-3760.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Walsh EE, Cote PJ, Fernie BF, Schlesinger JJ, Brandriss MW. Analysis of the respiratory syncytial virus fusion protein using monoclonal and polyclonal antibodies. J Gen Virol. 1986;67:505–513. doi: 10.1099/0022-1317-67-3-505. [DOI] [PubMed] [Google Scholar]
  50. Young JK, Hicks RP, Wright GE, Morrison TG. The role of leucine residues in the structure and function of a leucine zipper peptide inhibitor of paramyxovirus (NDV) fusion. Virology. 1998;243:21–31. doi: 10.1006/viro.1998.9044. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES