Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1983;76(1):25–38. doi: 10.1007/BF01315701

Populations of herpes simplex virus glycoprotein gC with and without affinity for the N-acetyl-galactosamine specific lectin ofHelix pomatia

S Olofsson 1, Bodil Norrild 2, Åse B Andersen 2, Leonore Pereira 3, S Jeansson 1, E Lycke 1
PMCID: PMC7086787  PMID: 6305311

Summary

Two fractions of herpes simplex virus glycoprotein gC were isolated and characterized by means of immunosorbent-purification with monoclonal antibodies against gC and Helix pomatia lectin (HPA) affinity chromatography. About 25 per cent of the glycoprotein gC population demonstrated affinity for the lectin, compatible with presence of N-acetylgalactosamine as terminal sugar of the oligosaccharide. The HPA-binding populations of gC appeared as two electrophoretic bands with lower molecular weights than the non-binding gC.

The gC subfraction without affinity for the HPA was subjected to treatments aiming to desialylize the carbohydrate moiety. Only 5 per cent of the initially non-reactive fraction of gC became reactive to HPA after the treatments, suggesting that masking of penultimate N-acetylgalactosamine by sialic acid was not a main reason for lack of HPA affinity. Results of treatment with alkaline Na BH4 demonstrated presence of oligosaccharide-peptide linkages sensitive to β-elimination suggesting O-glycosidic type of linkage.

The subfraction of gC demonstrating affinity for HPA as well as gC devoid of HPA binding capacity both revealed affinity for Con A. Therefore N-glycosidically as well as O-glycosidically linked oligosaccharides seemed to be present on the one and same glycoprotein.

On the basis of the results presented we assume that the glycosylation of HSV glycoprotein gC may lead to, at least, two populations of the glycoprotein gC, one with terminal N-acetylgalactosamine residues of oligosaccharides 0-glycosidically linked to the polypeptide and the other without affinity for HPA. However, both populations of gC contain similar proportions of oligosaccharides of the high mannose or complex types with N-glycosidic carbohydrate-peptide linkages as indicated by their affinity for Con A.

Keywords: Oligosaccharide, Herpes Simplex, Mannose, Sialic Acid, Affinity Chromatography

Footnotes

With 8 Figures

References

  • 1.Axelsson B., Kimura A., Hammarström S., Wigzell H., Nilsson K., Mellstedt H. Helix pomatia agglutinin: selectivity of binding to lymphocyte surface glycoproteins on T cells and certain B cells. Eur. J. Immunol. 1978;8:757–764. doi: 10.1002/eji.1830081102. [DOI] [PubMed] [Google Scholar]
  • 2.Baucke R. B., Spear P. G. Membrane proteins specified by herpes simplex viruses. V. Identification of an Fc-binding glycoprotein. J. Virol. 1979;32:779–789. doi: 10.1128/jvi.32.3.779-789.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Cohen G. H., Long D., Eisenberg R. J. Synthesis and processing of glycoproteins gD and gC or herpes simplex virus type 1. J. Virol. 1980;36:429–439. doi: 10.1128/jvi.36.2.429-439.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Gibson R., Kornfeld S., Schlesinger S. A role of oligosaccharides in glycoprotein biosynthesis. Trends biochem. Sci. 1980;5:290–293. [Google Scholar]
  • 5.Gooi H. C., Feizi T., Kapadia A., Knowles B. B., Solter D., Evans M. J. Stage-specific embryonic antigen involves α (1 → 3) fucosylated type 2 blood group chains. Nature. 1981;292:156–158. doi: 10.1038/292156a0. [DOI] [PubMed] [Google Scholar]
  • 6.Gosh H. P. Synthesis and maturation of glycoproteins of enveloped animal viruses. Rev. Inf. Dis. 1980;2:26–39. doi: 10.1093/clinids/2.1.26. [DOI] [PubMed] [Google Scholar]
  • 7.Holmes K. V., Doller E. W., Sturman L. S. Tunicamycin resistent glycosylation of a Coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Hammarström S., Hellström U., Perlmann P., Dillner M.-L. A new surface marker on T lymphocytes of human peripheral blood. J. exp. Med. 1973;138:1270–1275. doi: 10.1084/jem.138.5.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Katz E., Margalith E., Dukson D. Antiviral activity of tunicamycin on herpes simplex virus. Antimicrob. Agents Chemother. 1980;17:1014–1022. doi: 10.1128/aac.17.6.1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Leavitt R., Schlesinger S., Kornfeld S. Tunicamycin inhibits glycosylation and multiplication of Sindbis and vesicular stomatitis virus. J. Virol. 1977;21:375–385. doi: 10.1128/jvi.21.1.375-385.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Lis H., Sharon N. Lectins. Their chemistry and application to immunology. In: Sela M., editor. The antigens, Vol. 4. New York: Academic Press; 1977. pp. 429–529. [Google Scholar]
  • 12.Manservigi R., Spear P. G., Buchan A. Cell fusion induced by herpes simplex virus is promoted and suppressed by different viral glycoproteins. Proc. Natl. Acad. Sci. U.S.A. 1977;74:3913–3917. doi: 10.1073/pnas.74.9.3913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Mattila K. Separation of the intergral membrane glycoproteins E 1 and E 2 of Semliki forest virus by affinity chromatography on concanavalin A-sepharose. Biochem. Biophys. Acta. 1979;579:62–72. doi: 10.1016/0005-2795(79)90087-4. [DOI] [PubMed] [Google Scholar]
  • 14.Morse L. S., Pereira L., Roizman B., Schaffer P. A. Anatomy of herpes simplex virus (HSV) DNA. X. Mapping of viral genes by analysis of polypeptides and functions specified by HSV 1 × HSV 2 recombinants. J. Virol. 1978;26:389–410. doi: 10.1128/jvi.26.2.389-410.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Niemann H., Klenk H.-D. Coronavirus glycoprotein E 1, a new type of viral glycoprotein. J. Mol. Biol. 1981;153:993–1010. doi: 10.1016/0022-2836(81)90463-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Norrild B., Pedersen B. The effect of tunicamycin on the synthesis of Herpes simplex virus type 1 glycoproteins and their expression of the cell surface. J. Virol. 1982;43:395–402. doi: 10.1128/jvi.43.2.395-402.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Nakamura K., Compans R. W. Effects of glucosamine 2-deoxyglucose and tunicamycin on glycosylation, sulfation and assembly of influenza viral proteins. Virology. 1978;84:303–319. doi: 10.1016/0042-6822(78)90250-7. [DOI] [PubMed] [Google Scholar]
  • 18.Ogura H., Schmidt M. F. G., Schwartz R. T. Effect of tunicamycin on the morphogenesis of Semliki-Forest virus and Rous Sarcoma virus. Arch. Virol. 1977;55:155–159. doi: 10.1007/BF01314489. [DOI] [PubMed] [Google Scholar]
  • 19.Olofsson S., Blomberg J., Lycke E. O-glycosidic carbohydrate-peptide linkages of herpes simplex virus glycoproteins. Arch. Virol. 1981;70:321–329. doi: 10.1007/BF01320247. [DOI] [PubMed] [Google Scholar]
  • 20.Olofsson S., Jeansson S., Lycke E. Unusual lectin binding properties of a herpes simplex virus type 1-specific glycoprotein. J. Virol. 1981;38:564–570. doi: 10.1128/jvi.38.2.564-570.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Olofsson S., Khanna B., Lycke E. Altered kinetic properties of sialyl and galactosyl transferases associated with herpes simplex virus infection of GMK and BHK cells. J. gen. Virol. 1980;47:1–9. doi: 10.1099/0022-1317-47-1-1. [DOI] [PubMed] [Google Scholar]
  • 22.Pereira L., Dondero D. V., Gallo D., Devlin V., Woddie J. D. Serological analysis of herpes simplex virus types 1 and 2 with monoclonal antibodies. Inf. Immun. 1982;35:363–367. doi: 10.1128/iai.35.1.363-367.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Pereira L., Dondero D., Norrild B., Roizman B. Differential immunological reactivity and processing of glycoproteins. Proc. Natl. Acad. Sci. U.S.A. 1981;78:5202–5206. doi: 10.1073/pnas.78.8.5202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Roseman S. Carbohydrates and intracellular. In: Lee E. Y. C., Smith E. E., editors. Biology and Chemistry of eucaryotic cell surfaces. New York: Academic Press; 1979. pp. 317–354. [Google Scholar]
  • 25.Schwartz R. T., Rohrschneider J. M., Schmidt M. F. G. Suppression of glycoprotein formation of Semliki Forest, influenza, and Avian Sarcoma virus by tunicamycin. J. Virol. 1976;19:782–791. doi: 10.1128/jvi.19.3.782-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Shida M., Dales S. Biogenesis of vaccinia: carbohydrate of the hemagglutinin molecule. Virology. 1981;111:56–72. doi: 10.1016/0042-6822(81)90653-x. [DOI] [PubMed] [Google Scholar]
  • 27.Spear P. G. Membrane proteins specified by herpes simplex virus. I. Identification of four glycoprotein precursors and their products in type 1-infected cells. J. Virol. 1976;17:991–1008. doi: 10.1128/jvi.17.3.991-1008.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES