Summary
Thirteen monoclonal antibodies (MAbs) to the glycoprotein (G) of vesicular stomatitis virus (VSV) serotype Indiana were prepared and examined for their effects on various biological activities of VSV, including in vitro infection, hemagglutination, adsorption to cells, and mediation of cell fusion. Competitive binding assays with these MAbs revealed the presence of at least seven distinct antigenic determinants (epitopes) on the G protein. In some cases, overlappings among epitopes to various degrees were observed as partial inhibition or binding enhancement. The MAbs to all the epitopes but one (epitopes 1–6) reacted with the denatured G protein in a Western immunoblot analysis. Four of the epitopes (epitopes 2, 4, 5, and 7) were involved in neutralization and two (epitopes 1 and 2) in hemagglutination inhibition. None of the MAbs inhibited the adsorption of radiolabeled VSV to BHK-21 cells; the MAbs to epitope 2 slightly enhanced the virus adsorption. All neutralization epitopes except epitope 2 (epitopes 4, 5, and 7) were associated with inhibition of VSV-mediated cell fusion. These results show a direct spatial relationship between the epitopes recognized by the MAbs and functional sites on G protein and further insights into the structure and function of G protein.
Keywords: Monoclonal Antibody, Binding Assay, Immunoblot Analysis, Spatial Relationship, Stomatitis
References
- 1.Bailey CA, Miller DK, Lenard J. Effects of DEAE-dextran on infection and hemolysis by VSV. Evidence that nonspecific electrostatic interactions mediate effective binding of VSV to cells. Virology. 1984;133:111–118. doi: 10.1016/0042-6822(84)90429-x. [DOI] [PubMed] [Google Scholar]
- 2.Bailey MJ, Mcleod DA, Kang C, Bishop DHL. Glycosylation is not required for the fusion activity of the G protein of vesicular stomatitis virus in insect cells. Virology. 1989;169:323–331. doi: 10.1016/0042-6822(89)90157-8. [DOI] [PubMed] [Google Scholar]
- 3.Bishop DHL, Repik P, Obijeski JF, Moore NF, Wagner RR. Restitution of infectivity to spikeless vesicular stomatitis virus by solubilized viral components. J Virol. 1975;16:75–84. doi: 10.1128/jvi.16.1.75-84.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Boere WAM, Harmsen T, Vinjé J, Benaissa-Trouw BJ, Kraaijeveld CA, Snippe H. Identification of distinct antigenic determinants on Semliki Forest virus by using monoclonal antibodies with different antiviral activities. J Virol. 1984;52:575–582. doi: 10.1128/jvi.52.2.575-582.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Bricker BJ, Snyder RM, Fox JW, Volk WA, Wagner RR. Monoclonal antibodies to the glycoprotein of vesicular stomatitis virus (New Jersey serotype): a method for preliminary mapping of epitopes. Virology. 1987;161:533–540. doi: 10.1016/0042-6822(87)90148-6. [DOI] [PubMed] [Google Scholar]
- 6.Cartwright B, Smale CJ, Brown F. Surface structure of vesicular stomatitis virus. J Gen Virol. 1969;5:1–10. doi: 10.1099/0022-1317-5-1-1. [DOI] [PubMed] [Google Scholar]
- 7.Florkiewicz RZ, Rose JK. A cell line expressing vesicular stomatitis virus glycoprotein fuses at low pH. Science. 1984;225:721–723. doi: 10.1126/science.6087454. [DOI] [PubMed] [Google Scholar]
- 8.Grigera PR, Mathieu ME, Wagner RR. Effect of glycosylation on the conformational epitopes on the glycoprotein of vesicular stomatitis virus (New Jersey serotype) Virology. 1991;180:1–9. doi: 10.1016/0042-6822(91)90002-s. [DOI] [PubMed] [Google Scholar]
- 9.Halonen PE, Murphy FA, Fields BN, Reese DR. Hemagglutinin of rabies and some other bullet-shaped viruses. Proc Soc Exp Biol Med. 1968;127:1037–1042. doi: 10.3181/00379727-127-32864. [DOI] [PubMed] [Google Scholar]
- 10.Hoekstra D. Membrane fusion of envelope viruses: especially a matter of proteins. J Bioenerg Biomembr. 1990;22:121–155. doi: 10.1007/BF00762943. [DOI] [PubMed] [Google Scholar]
- 11.Keil W, Wagner RR. Epitope mapping by deletion mutants and chimeras of two vesicular stomatitis virus glycoprotein genes expressed by a vaccinia virus vector. Virology. 1989;170:392–407. doi: 10.1016/0042-6822(89)90430-3. [DOI] [PubMed] [Google Scholar]
- 12.Kelley JM, Emerson SU, Wagner RR. The glycoprotein of vesicular stomatitis virus is the antigen that gives rise to and reacts with neutralizing antibody. J Virol. 1972;10:1231–1235. doi: 10.1128/jvi.10.6.1231-1235.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Kingsford L, Ishizaka LD, Hill DW. Biological activities of monoclonal antibodies reactive with antigenic sites mapped on the G1 glycoprotein of La Crosse virus. Virology. 1983;129:443–445. doi: 10.1016/0042-6822(83)90182-4. [DOI] [PubMed] [Google Scholar]
- 14.LeFrancois L, Lyles DS. The interaction of antibody with the major surface glycoprotein of vesicular stomatitis virus I. Analysis of neutralizing epitopes with monoclonal antibodies. Virology. 1982;121:157–167. [PubMed] [Google Scholar]
- 15.LeFrancois L, Lyles DS. The interaction of antibody with the major surface glycoprotein of vesicular stomatitis virus II. Monoclonal antibodies to nonneutralizing and cross-reactive epitope of Indiana and New Jersey serotypes. Virology. 1982;121:168–174. doi: 10.1016/0042-6822(82)90126-x. [DOI] [PubMed] [Google Scholar]
- 16.LeFrancois L, Lyles DS. Antigenic determinants of vesicular stomatitis virus: analysis with antigenic variants. J Immunol. 1983;130:394–398. [PubMed] [Google Scholar]
- 17.Luo L, Li Y, Snyder RM, Wagner RR. Point mutations in glycoprotein gene of vesicular stomatitis virus (New Jersey serotype) selected by resistance to neutralization by epitope-specific monoclonal antibodies. Virology. 1988;163:341–348. doi: 10.1016/0042-6822(88)90274-7. [DOI] [PubMed] [Google Scholar]
- 18.Luo L, Li Y, Snyder RM, Wagner RR. Spontaneous mutations leading to antigenic variations in the glycoproteins of vesicular stomatitis virus field isolates. Virology. 1990;174:70–78. doi: 10.1016/0042-6822(90)90055-v. [DOI] [PubMed] [Google Scholar]
- 19.Mannen K, Ohuchi M, Mifune K. pH-dependent hemolysis and cell fusion of rhabdoviruses. Microbiol Immunol. 1982;26:1035–1043. doi: 10.1111/j.1348-0421.1982.tb00252.x. [DOI] [PubMed] [Google Scholar]
- 20.Marsh M, Helenius A. Virus entry into animal cells. Adv Virus Res. 1989;36:107–151. doi: 10.1016/S0065-3527(08)60583-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Matlin KS, Reggio H, Helenius A, Simons K. Pathway of vesicular stomatitis virus entry leading to infection. J Mol Biol. 1982;156:609–631. doi: 10.1016/0022-2836(82)90269-8. [DOI] [PubMed] [Google Scholar]
- 22.Matlin K, Bainton DF, Pesonen M, Louvard D, Genty N, Simons K. Trans-epithelial transport of a viral membrane glycoprotein implanted into the apical plasma membrane of Madin-Darby canine kidney cells. I. Morphological evidence. J Cell Biol. 1983;97:627–637. doi: 10.1083/jcb.97.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.McSharry JJ, Ledda CA, Freiman HJ, Choppin PW. Biological properties of VSV glycoprotein. II. Effects of the host cell and of the glycoprotein carbohydrate composition on hemagglutination. Virology. 1978;84:183–188. doi: 10.1016/0042-6822(78)90230-1. [DOI] [PubMed] [Google Scholar]
- 24.Nagata S, Kurata T, Ueno Y, Chiba J. Vesicular stomatitis virus-mediated cell fusion subsequent to virus adsorption at different pH values. Jpn J Med Sci Biol. 1991;44:171–180. doi: 10.7883/yoken1952.44.171. [DOI] [PubMed] [Google Scholar]
- 25.Nagata S, Yamamoto K, Ueno Y, Kurata T, Chiba J. Production of monoclonal antibodies by the use of pH-dependent vesicular stomatitis virus-mediated cell fusion. Hybridoma. 1991;10:317–322. doi: 10.1089/hyb.1991.10.317. [DOI] [PubMed] [Google Scholar]
- 26.Nagata S, Yamamoto K, Ueno Y, Kurata T, Chiba J. Preferential generation of monoclonal IgG-producing hybridomas by use of vesicular stomatitis virus-mediated cell fusion. Hybridoma. 1991;10:369–378. doi: 10.1089/hyb.1991.10.369. [DOI] [PubMed] [Google Scholar]
- 27.Ohnishi S. Fusion of viral envelopes with cellular membrane. In: Bronner F, Düzgünes N, editors. Membrane fusion in fertilization, cellular transport, and viral infection. London: Academic Press; 1988. pp. 257–296. [Google Scholar]
- 28.Oi VT, Herzenberg LA. Immunoglobulin-producing hybrid cell lines. In: Mishell BB, Shiigi SM, editors. Selected methods in cellular immunology. San Francisco: Freeman; 1980. pp. 351–372. [Google Scholar]
- 29.Pal R, Barenholz Y, Wagner RR. Vesicular stomatitis virus membrane proteins and their interactions with lipid bilayers. Biochim Biophys Acta. 1987;906:175–193. doi: 10.1016/0304-4157(87)90011-6. [DOI] [PubMed] [Google Scholar]
- 30.Petri WA, Wagner RR. Reconstitution into liposomes of the glycoprotein of vesicular stomatitis virus by detergent dialysis. J Biol Chem. 1979;254:4313–4316. [PubMed] [Google Scholar]
- 31.Routledge E, Stauber R, Pfleiderer M, Siddell SG. Analysis of murine coronavirus surface glycoprotein functions by using monoclonal antibodies. J Virol. 1991;65:254–262. doi: 10.1128/jvi.65.1.254-262.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Schlegel R, Wade M. Neutralized vesicular stomatitis virus binds to host cells by a different “receptor”. Biochem Biophys Res Commun. 1983;114:774–778. doi: 10.1016/0006-291x(83)90848-3. [DOI] [PubMed] [Google Scholar]
- 33.Talbot PJ, Salmi AA, Knobler RL, Buchmeier MJ. Topographical mapping of epitopes on the glycoproteins of murine hepatitis virus-4 (strain JHM): correlation with biological activities. Virology. 1984;132:250–260. doi: 10.1016/0042-6822(84)90032-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Vandepol SB, LeFrancois L, Holland JJ. Sequences of the major antibody binding epitopes of the Indiana serotype of vesicular stomatitis virus. Virology. 1986;148:312–325. doi: 10.1016/0042-6822(86)90328-4. [DOI] [PubMed] [Google Scholar]
- 36.Volk WA, Snyder RM, Benjamin DC, Wagner RR. Monoclonal antibodies to the glycoprotein of vesicular stomatitis virus: comparative neutralizing activity. J Virol. 1982;42:220–227. doi: 10.1128/jvi.42.1.220-227.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Wagner RR. Rhabdovirus biology and infection: an overview. In: Wagner RR, editor. The rhabdovirus. New York: Plenum; 1987. pp. 9–74. [Google Scholar]
- 38.White J, Matlin K, Helenius A. Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J Cell Biol. 1981;89:674–679. doi: 10.1083/jcb.89.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Whitt MA, Zagouras P, Crise B, Rose JK. A fusion-defective mutant of the vesicular stomatitis virus glycoprotein. J Virol. 1990;64:4907–4913. doi: 10.1128/jvi.64.10.4907-4913.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Whitt MA, Rose JK. Fatty acid acylation is not required for membrane fusion activity or glycoprotein assembly into VSV virions. Virology. 1991;185:875–878. doi: 10.1016/0042-6822(91)90563-q. [DOI] [PubMed] [Google Scholar]
- 41.Wunner WH. Growth, purification and titration of rhabdoviruses. In: Mahy BWJ, editor. Virology: a practical approach. Oxford: IRL Press; 1985. pp. 79–93. [Google Scholar]
- 42.Yamakawa Y, Chiba J. High performance liquid chromatography of mouse monoclonal antibodies on spherical hydroxyapatite beads. J Liquid Chromatogr. 1988;11:665–681. [PubMed] [Google Scholar]
