Summary.
Bovine coronavirus (BCoV) causes enteric and respiratory dis- orders in calves and dysentery in cows. In this study, 51 stool samples of calves from 10 Brazilian dairy farms were analysed by an RT-PCR that amplifies a 488-bp fragment of the hypervariable region of the spike glycoprotein gene. Maximum parsimony genealogy with a heuristic algorithm using sequences from 15 field strains studied here and 10 sequences from GenBank and bredavirus as an outgroup virus showed the existence of two major clusters (1 and 2) in this viral species, the Brazilian strains segregating in both of them. The mean nucleotide identity between the 15 Brazilian strains was 98.34%, with a mean amino acid similarity of 98%. Strains from cluster 2 showed a deletion of 6 amino acids inside domain II of the spike protein that was also found in human coronavirus strain OC43, supporting the recent proposal of a zoonotic spill- over of BCoV. These results contribute to the molecular characterization of BCoV, to the prediction of the efficiency of immunogens, and to the definition of molecular markers useful for epidemiologic surveys on coronavirus-caused diseases.
Keywords: Hypervariable Region, Spike Protein, Brazilian Strain, Spike Glycoprotein, Feline Infectious Peritonitis Virus
References
- Abraham S, Kienzle TE, Lapps W, Brian DA. Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virology. 1990;176:296–301. doi: 10.1016/0042-6822(90)90257-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akashi H, Inaba Y, Miura Y, Tokuhisha S, Sato K, Satoda K. Properties of a coronavirus isolated from a cow with epizootic diarrhea. Vet Microbiol. 1980;5:265–276. doi: 10.1016/0378-1135(80)90025-5. [DOI] [Google Scholar]
- Baric RS, Yount B, Hensley L, Peel SA, Chen W. Episodic evolution mediates interspecies transfer of a murine coronavirus. J Virol. 1997;71:1946–1955. doi: 10.1128/jvi.71.3.1946-1955.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benfield DA, Saif LJ. Cell culture propagation of a bovine coronavirus isolated from cows with winter dysentery. J Clin Microbiol. 1990;28:1454–1457. doi: 10.1128/jcm.28.6.1454-1457.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergmann CC, Yao Q, Lin M, Stohlman SA. The JHM strain of mouse hepatitis virus induces a spike protein-specific Db-restricted cytotoxic T cell response. J Gen Virol. 1996;77:315–325. doi: 10.1099/0022-1317-77-2-315. [DOI] [PubMed] [Google Scholar]
- Boireau P, Cruciere C, Laporte J. Nucleotide sequence of the glycoprotein S gene of bovine enteric coronavirus and comparison with the S proteins of two mouse hepatitis virus strains. J Gen Virol. 1990;71:487–492. doi: 10.1099/0022-1317-71-2-487. [DOI] [PubMed] [Google Scholar]
- Bonavia A, Zelus BD, Wentworth DE, Talbot PJ, Holmes KV. Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E. J Virol. 2003;77:2530–2538. doi: 10.1128/JVI.77.4.2530-2538.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandão PE, Birgel EH, Jr, Gregori F, Rosales CAR, Ruiz VLA, Jerez JA. Bovine coronavirus detection in adult cows in Brazil. Arq Inst Biol (São Paulo) 2002;6:103–104. [Google Scholar]
- Calcagnotto D. Taxas de evolução e o relógio molecular. In: Matioli SR, editor. Biologia molecular e evolução. São Paulo: Holos; 2001. pp. 51–63. [Google Scholar]
- Castro RF, Perlman S. CD8+ T cells epitopes within the surface glycoprotein of a neurotropic coronavirus and correlation with pathogenicity. J Virol. 1995;69:8127–8131. doi: 10.1128/jvi.69.12.8127-8131.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavanagh D. The coronavirus surface glycoprotein. In: Siddell SG, editor. The Coronaviridae. New York: Plenum Press; 1995. pp. 73–113. [Google Scholar]
- Chouljenko VN, Lin XQ, Storz J, Kousoulas KG, Gorbalenya AE. Comparison of genomic and predicted amino acid sequences of respiratory and enteric bovine coronaviruses isolated from the same animal with fatal shipping pneumonia. J Gen Virol. 2001;82:2927–2933. doi: 10.1099/0022-1317-82-12-2927. [DOI] [PubMed] [Google Scholar]
- Collins AR, Knobler RL, Powell H, Buchmeier MJ. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for cell attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Compton SR, Vivas-Gonzalez BE, Macy JD. Reverse transcriptase polymerase chain reaction-based diagnosis and molecular characterization of a new rat coronavirus strain. Lab Anim Sci. 1999;49:506–513. [PubMed] [Google Scholar]
- Crucière C, Laporte J. Sequence and analysis of bovine enteric coronavirus (F15) genome I. Sequence of the gene coding for the nucleocapsid protein; analysis of the predicted protein. Ann Inst Pasteur (Paris) 1988;139:123–138. doi: 10.1016/S0769-2617(88)80012-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cyr-Coats KS, Storz J. Bovine coronavirus-induced cytophatic expression and plaque formation: host cell and virus strain determine trypsin dependence. J Vet Med B. 1988;35:48–56. doi: 10.1111/j.1439-0450.1988.tb00465.x. [DOI] [PubMed] [Google Scholar]
- Dea S, Michaud L, Milane G. Comparison of bovine coronavirus isolates associated with neonatal calf diarrhea and winter dysentery in adult dairy cattle in Québec. J Gen Virol. 1995;76:1263–1270. doi: 10.1099/0022-1317-76-5-1263. [DOI] [PubMed] [Google Scholar]
- González JM, Gomez-Puertas P, Cavanagh D, Gorbalenya AE, Enjuanes L. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol. 2003;148:2207–2235. doi: 10.1007/s00705-003-0162-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–98. [Google Scholar]
- Hasoksuz M, Sreevatsan S, Cho KO, Hoet AE, Saif LJ. Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates. Virus Res. 2002;84:101–109. doi: 10.1016/S0168-1702(02)00004-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hays JP, Myint SH. PCR sequencing of the spike genes of geographically and chronologically distinct human coronaviruses 229E. J Virol Methods. 1998;75:179–193. doi: 10.1016/S0166-0934(98)00116-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heckert RA, Saif LJ, Hoblet KH, Agnes AG. A longitudinal study of bovine coronavirus enteric and respiratory infections in dairy calves in two herds in Ohio. Vet Microbiol. 1990;22:187–201. doi: 10.1016/0378-1135(90)90106-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heckert RA, Saif LJ, Myers GW, Agnes AG. Epidemiologic factors and isotype-specific antibody responses in serum and mucosal secretions of dairy calves with bovine coronavirus respiratory tract and enteric tract infections. Am J Vet Res. 1991;52:845–851. [PubMed] [Google Scholar]
- Holmes KV, Lai MMC. Coronaviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM, editors. Virology. Philadelphia: Lippincott-Raven Publishers; 1996. pp. 1075–1093. [Google Scholar]
- Honda E, Takahashi H, Okazaki K, Minetoma T, Kumagai T. The multiplication of transmissible gastroenteritis viruses in several cell lines originated from porcine kidney and effects of trypsin on the growth of the viruses. Jap J Vet Sci. 1990;52:217–224. doi: 10.1292/jvms1939.52.217. [DOI] [PubMed] [Google Scholar]
- Jeong JH, Kim GY, Yoon SS, Park SJ, Kim YJ, Sung CM, Shin SS, Lee BJ, Kang MI, Park NY, Koh HB, Cho KO. Molecular analysis of S gene of spike glycoprotein of winter dysentery bovine coronavirus circulated in Korea during 2002–2003. Virus Res. 2005;108:207–212. doi: 10.1016/j.virusres.2004.07.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kourtesis AB, Gelinas AM, Dea S. Genomic and antigenic variations of the HE glycoprotein of bovine coronaviruses associated with neonatal calf diarrhea and winter dysentery. Arch Virol. 2001;146:1219–1230. doi: 10.1007/s007050170117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krueger DK, Kelly SM, Lewicki DN, Ruffolo R, Gallagher TM. Variations in disparate regions of the murine coronavirus spike protein impact the initiation of membrane fusion. J Virol. 2001;75:2792–2802. doi: 10.1128/JVI.75.6.2792-2802.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunita S, Zhang L, Homberger FR. Molecular characterization of the S proteins of two enterotropic murine coronavirus strains. Virus Res. 1995;35:277–289. doi: 10.1016/0168-1702(94)00089-U. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai MCM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1–100. doi: 10.1016/S0168-1702(96)01421-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leparc-Goffart I, Hingley ST, Chua MM, Jiang X, Lavi E, Weiss SR. Altered pathogenesis of a mutant of the murine coronavirus MHV-A59 is associated with a Q159L amino acid substitution in the spike protein. Virology. 1997;239:1–10. doi: 10.1006/viro.1997.8877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mcnulty MS, Bryson DG, Alan GM, Logan EF. Coronavirus infection of the bovine respiratory tract. Vet Microbiol. 1984;9:425–434. doi: 10.1016/0378-1135(84)90063-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mebus CA, White RG, Stair EL, Rhodes MB, Twiehaus MJ. Neonatal calf diarrhea: results of a field trial using a reo-like virus vaccine. Vet Med Small Anim Clin. 1972;67:173–178. [PubMed] [Google Scholar]
- Michaud L, Dea S. Characterization of monoclonal antibodies to bovine enteric coronavirus and antigenic variability among Quebec isolates. Arch Virol. 1993;13:455–465. doi: 10.1007/BF01378646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyaki CY, Russo CAM, Pereira SL. Reconstrução filogenética. Introdução e o método de máxima parcimônia. In: Matioli SR, editor. Biologia molecular e evolução. São Paulo: Holos; 2001. pp. 97–107. [Google Scholar]
- Mounir S, Labonte P, Talbot PJ. Characterization of the nonstructural and spike proteins of the human respiratory coronavirus OC43: comparison with bovine enteric coronavirus. Adv Exp Med Biol. 1993;342:61–67. doi: 10.1007/978-1-4615-2996-5_10. [DOI] [PubMed] [Google Scholar]
- Moya A, Elena SF, Bracho A, Miralles R, Barrio E. The evolution of RNA viruses: a population genetics view. Proc Natl Acad Sci USA. 2000;97:6967–6973. doi: 10.1073/pnas.97.13.6967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naylor MJ, Harrison GA, Monckton RP, Mcorist S, Lehrbach PR, Deane EM. Identification of canine coronavirus strains from feces by S gene nested PCR and molecular characterization of a new Australian isolate. J Clin Microbiol. 2001;39:1036–1041. doi: 10.1128/JCM.39.3.1036-1041.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page RDM, Holmes EC. Molecular evolution: a phylogenetic approach. Oxford: Blackwell Science; 1998. [Google Scholar]
- Pewe L, Wu GF, Barnett EM, Castro RF, Perlman S. Cytotoxic T cell-resistant variants are selected in a virus-induced demyelinating disease. Immunity. 1996;5:253–262. doi: 10.1016/S1074-7613(00)80320-9. [DOI] [PubMed] [Google Scholar]
- Rekik MR, Dea S. Comparative sequence analysis of a polymorphic region of the spike glycoprotein S1 subunit of enteric bovine coronavirus isolates. Arch Virol. 1994;135:319–331. doi: 10.1007/BF01310017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rottier PJM. The molecular dynamics of feline coronaviruses. Vet Microbiol. 1999;69:117–125. doi: 10.1016/S0378-1135(99)00099-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowe CL, Fleming JO, Nathan MJ, Sgro JY, Palmenberg AC, Baker SC. Generation of coronavirus spike deletion variants by high-frequency recombination at regions of predicted RNA secondary structure. J Virol. 1997;71:6183–6190. doi: 10.1128/jvi.71.8.6183-6190.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snodgrass DR, Terzolo HR, Sherwood D, Campbell I, Menzies JD, Synge BA. Etiology of diarrhea in young calves. Vet Rec. 1986;119:31–34. doi: 10.1136/vr.119.2.31. [DOI] [PubMed] [Google Scholar]
- St-Jean JR, Jacomy H, Desforges M, Vabret A, Freymuth F, Talbot PJ. Human respiratory coronavirus OC43: genetic stability and neuroinvasion. J Virol. 2004;78:8824–8834. doi: 10.1128/JVI.78.16.8824-8834.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Storz J, Stine L, Liem A, Anderson GA. Coronavirus isolation from nasal swap samples in cattle with signs of respiratory tract disease after shipping. J Am Vet Med Assoc. 1996;208:1452–1455. [PubMed] [Google Scholar]
- Sungwhan A, Maeda A, Makino S. Coronavirus transcription early in infection. J Virol. 1998;72:8517–8524. doi: 10.1128/jvi.72.11.8517-8524.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki H, Taguchi F. Analysis of the receptor-binding site of murine coronavirus spike protein. J Virol. 1996;70:2632–2636. doi: 10.1128/jvi.70.4.2632-2636.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swofford DL, Olsen GJ, Waddell PJ, Hillis DM. Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK, editors. Molecular systematics. Sunderland: Sinauer Associates; 1996. pp. 407–514. [Google Scholar]
- Taguchi F. The S2 subunit of the murine coronavirus spike protein is not involved in receptor binding. J Virol. 1995;69:7260–7263. doi: 10.1128/jvi.69.11.7260-7263.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tegtmeier C, Uttenthall A, Friis NS, Jensen NE, Jensen HE. Pathological and microbiological studies on pneumonic lungs from Danish calves. J Vet Med B. 1999;46:693–700. doi: 10.1046/j.1439-0450.1999.00301.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toth TE. Trypsin-enhanced replication of neonatal calf diarrhea coronavirus in bovine embryonic lung cells. Am J Vet Res. 1982;43:967–972. [PubMed] [Google Scholar]
- Tsunemitsu H, Yonemichi H, Hirai T, Kudo T, Onoe S, Mori K, Shimizu M. Isolation of bovine coronavirus from feces and nasal swabs of calves with diarrhea. J Vet Med Sci. 1991;53:433–437. doi: 10.1292/jvms.53.433. [DOI] [PubMed] [Google Scholar]
- Van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, Mcgeoch DJ, Pringle CR, Wickner RB. Virus taxonomy: the classification and nomenclature of viruses. San Diego: Academic Press; 2000. [Google Scholar]
- Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, Vandamme A, Van Ranst M. Complete genome sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol. 2005;79:1595–1604. doi: 10.1128/JVI.79.3.1595-1604.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wesley RD. The S gene of canine coronavirus strain UCD-1 is more closely related to the S gene of transmissible gastroenteritis virus than to that of feline infectious peritonitis virus. Virus Res. 1999;61:145–152. doi: 10.1016/S0168-1702(99)00032-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu G, Yan S. Reasoning of spike glycoproteins being more vulnerable to mutations among 158 coronavirus proteins from different species. J Mol Model (Online) 2005;11:8–16. doi: 10.1007/s00894-004-0210-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xuming Z, Kousoulas KG, Storz J. Comparison of nucleotide and deduced amino acids sequences of the S genes specified by virulent and avirulent strains of bovine coronaviruses. Virology. 1991;183:397–404. doi: 10.1016/0042-6822(91)90154-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada YK, Takimoto K, Yabe M, Taguchi F. Acquired fusion activity of a murine coronavirus MHV-2 variant with mutations in the proteolytic cleavage site and the signal sequence of the S protein. Virology. 1997;227:215–219. doi: 10.1006/viro.1996.8313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoo D, Pei Y, Christie N, Cooper M. Primary structure of the sialodacryoadenitis virus genome: sequence of the structural-protein region and its application for differential diagnosis. Clin Diagn Lab Immunol. 2000;7:568–573. doi: 10.1128/CDLI.7.4.568-573.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoo D, Deregt D. A single amino acid change within antigenic domain II of the spike protein of bovine coronavirus confers resistance to virus neutralization. Clin Diagn Lab Immunol. 2001;8:297–302. doi: 10.1128/CDLI.8.2.297-302.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zelus BD, Schickli JH, Blau DM, Weiss SR, Holmes KV. Conformational changes in the spike glycoprotein of murine coronavirus are induced at 37 °C either by soluble murine CECAM1 receptors or by pH 8. J Virol. 2003;77:830–840. doi: 10.1128/JVI.77.2.830-840.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang XM, Kousoulas KG, Storz J. The hemagglutinin/esterase glycoprotein of bovine coronaviruses: sequence and functional comparisons between virulent and avirulent strains. Virology. 1991;185:847–852. doi: 10.1016/0042-6822(91)90557-R. [DOI] [PMC free article] [PubMed] [Google Scholar]