Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1988;100(3):147–160. doi: 10.1007/BF01487679

Temperature-sensitive mutants of mouse hepatitis virus type 3 (MHV-3): isolation, biochemical and genetic characterization

J -P Martin 1, Françoise Koehren 1, J -J Rannou 1, A Kirn 1
PMCID: PMC7086851  PMID: 2840870

Summary

Mouse hepatitis virus 3 (MHV-3) is highly hepatotropic in sensitive mice. Temperature-sensitive mutants (ts mutants) induced by N-methyl-N′-nitrosoguanidine and 5-fluorouracil were isolated. Twelve mutants which were able to induce the formation of syncytia at 33°C but not at the restrictive temperature (39.5°C) were selected for detailed study. No viral RNA synthesis was detected after infection at the restrictive temperature with six of the mutants (RNA) whereas six others were RNA+, although they displayed RNA synthesis which was generally reduced. No differences have been detected in the size of the genome or the viral-intracellular RNA species found in wild type virus or ts mutant infected cells at permissive temperature. The pattern of virus-induced proteins analyzed after immunoprecipitation by SDS-PAGE was similar in wild type virus and RNA+ mutant infected cells at 39.5°C. Complementation experiments between ts mutants enabled us to distinguish five groups. Three of the groups contained RNA mutants and two of them RNA+. Plaques made by mutants in one group displayed characteristic features that distinguished them from the wild type.

Keywords: Genetic Characterization, Wild Type Virus, Complementation Experiment, Restrictive Temperature, Permissive Temperature

References

  • 1.Baric RS, Stohlman SA, Razavi MK, Lai MMC. Characterization of leader-related small RNAs in coronavirus-infected cells: further evidence for leader-primed mechanism of transcription. Virus Res. 1985;3:19–23. doi: 10.1016/0168-1702(85)90038-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Bond CW, Leibowitz JL, Robb JA. Pathogenic murine coronaviruses. II Characterization of virus-specific proteins of murine coronaviruses. JHMV and A 59 V. Virology. 1979;94:371–384. doi: 10.1016/0042-6822(79)90468-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Bonner WM, Laskey RA. A film detection method for tritiumlabelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974;46:83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  • 4.Brayton PR, Lai MMC, Patton CD, Stohlman SA. Characterization of to RNA polymerase activities induced by mouse hepatitis virus. J Virol. 1982;42:847–853. doi: 10.1128/jvi.42.3.847-853.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Chelay S, Anderson R, Cupples MJ, Lee Chan ECM, Morris VL. Intracellular murine hepatitis virus-specific RNAs contain common sequences. Virology. 1981;112:596–604. doi: 10.1016/0042-6822(81)90305-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Fields BN, Joklik WK. Isolation and preliminary genetic and biochemical characterization of temperature-sensitive mutants of reovirus. Virology. 1969;37:335–342. doi: 10.1016/0042-6822(69)90217-7. [DOI] [PubMed] [Google Scholar]
  • 7.Haspel MV, Lambert PW, Oldstone MBA. Temperature-sensitive mutants of mouse hepatitis virus produce a high incidence of demyelination. Proc Natl Acad Sci USA. 1978;75:4033–4036. doi: 10.1073/pnas.75.8.4033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Hirano N, Murakami T, Taguchi F, Fujiwara K, Matumoto Comparison of mouse hepatitis strains for pathogenicity in weaning mice infected by various routes. Arch Virol. 1981;70:69–73. doi: 10.1007/BF01320795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Koolen MJ, Osterhaus AD, Van Steenis G, Horzinek MC, van der Zeijst BAM. Temperature-sensitive mutants of mouse hepatitis virus strain A 59: isolation, characterization and neuropathogenic properties. Virology. 1983;125:393–402. doi: 10.1016/0042-6822(83)90211-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  • 11.Lai MMC, Stohlman SA. The RNA of mouse hepatitis virus. J Virol. 1978;26:236–242. doi: 10.1128/jvi.26.2.236-242.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Lai MMC, Brayton PR, Armen RC, Pugh C, Stohlman SA. Mouse hepatitis virus A 59: mRNA structure and genetic localization of the sequence divergence from hepatotropic strain MHV-3. J Virol. 1981;39:823–834. doi: 10.1128/jvi.39.3.823-834.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Lai MMC, Stohlman SA. Genome structure of mouse hepatitis virus. Comparative analysis by oligonucleotide mapping. Adv Exp Med Biol. 1981;142:69–82. doi: 10.1007/978-1-4757-0456-3_5. [DOI] [PubMed] [Google Scholar]
  • 14.Lai MMC, Patton CD, Stohlman SA. Replication of mouse hepatitis virus: negative-stranded RNA and replicative from RNA are of genome length. J Virol. 1982;44:487–492. doi: 10.1128/jvi.44.2.487-492.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Lamontagne LM, Dupuy JM. Natural resistance of mice to mouse hepatitis virus type 3 infection is expressed in embryonic fibroblast cells. J Gen Virol. 1984;65:1165–1171. doi: 10.1099/0022-1317-65-7-1165. [DOI] [PubMed] [Google Scholar]
  • 16.Leibowitz JL, Wilhemsen KC, Bond CW. The virus-specific intracellular RNA species of two murine coronaviruses: MHV A 59 and MHV JHM. Virology. 1981;114:39–51. doi: 10.1016/0042-6822(81)90250-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Leibowitz JL, de Vries JR, Haspel MV. Genetic analysis of murine hepatitis virus strain JHM. J Virol. 1982;42:1080–1087. doi: 10.1128/jvi.42.3.1080-1087.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Makino S, Taguchi F, Hirano N, Fujiwara K. Analysis of genomic and intracellular viral RNAs of small plaque mutants of mouse hepatitis virus, JHM strain. Virology. 1984;139:138–151. doi: 10.1016/0042-6822(84)90335-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Pereira CA, Steffan AM, Kirn A. Kupffer and endothelial liver cell damage renders A/J mice susceptible to mouse hepatitis virus type 3. Virus Res. 1984;1:557–563. doi: 10.1016/0168-1702(84)90013-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Robb JA, Bond CW, Leibowitz JL. Pathogenic murine coronaviruses. III Biological and biochemical characterization of temperature-sensitive mutants of JHMV. Virology. 1979;94:385–399. doi: 10.1016/0042-6822(79)90469-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Rottier PJ, Horzinek MC, van der Zeijst BAM. Viral protein synthesis in mouse hepatitis virus strain A 59-infected cells. Effect of tunicamycin. J Virol. 1981;40:350–357. doi: 10.1128/jvi.40.2.350-357.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Siddell S, Wege H, ter Meulen V. The structure and replication of coronaviruses. Curr Top Microbiol Immunol. 1982;99:131–157. doi: 10.1007/978-3-642-68528-6_4. [DOI] [PubMed] [Google Scholar]
  • 23.Spann WJM, Rottier PJM, Horzinek MC, van der Zeijst BAM. Isolation and identification of virus-specific mRNAs in cells infected with mouse hepatitis virus (MHV-A 59) Virology. 1981;108:424–434. doi: 10.1016/0042-6822(81)90449-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Steffan AM, Pereira CA, Kirn A. Role of sinusoidal cells in the course of the hepatitis induced by mouse hepatitis virus type 3 (MHV 3) in mice. In: Kirn A, Knook DL, Wisse E, editors. Cells of hepatic sinusoid, vol 1. Rijswijk: The Kupffer Cell Foundation; 1986. pp. 377–378. [Google Scholar]
  • 25.Stern DF, Kennedy SIT. Coronavirus multiplication strategy. II Mapping the avian infectious bronchitis virus intracellular RNA species to the genome. J Virol. 1980;36:440–449. doi: 10.1128/jvi.36.2.440-449.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Stohlman SA, Fleming JO, Patton CD, Lai MMC. Synthesis and subcellular localization of the murine coronavirus nucleocapsid protein. Virology. 1983;130:527–532. doi: 10.1016/0042-6822(83)90106-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Thomas P. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA. 1980;77:5201–5203. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Van der Zeijst BAM, Koolen MJ, Noten JF, Jansen EJ, Horzinek MC (1985) At least six gene products of murine coronavirus MHV-A 59 are required to make functional mRNAs. In: Koolen MJ: Murine coronavirus and demyelination. Thesis, University of Utrecht
  • 29.Wege H, Müller A, ter Meulen V. Genomic RNA of the murine coronavirus JHM. J Gen Virol. 1978;41:217–227. doi: 10.1099/0022-1317-41-2-217. [DOI] [PubMed] [Google Scholar]
  • 30.Wege H, Siddell S, ter Meulen V. The biology and pathogenesis of coronavirus. Curr Top Microbiol Immunol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]
  • 31.Wege H, Koga M, Watanabe R, Nagashima K, ter Meulen V. Neurovirulence of murine coronavirus JHM temperature-sensitive mutants in rats. Infect Immun. 1983;39:1316–1324. doi: 10.1128/iai.39.3.1316-1324.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Wege H, Dörries R, Wege H. Hybridoma antibodies to the murine coronavirus JHM: Characterization of epitopes on the peplomer protein (E2) J Gen Virol. 1984;65:1931–1942. doi: 10.1099/0022-1317-65-11-1931. [DOI] [PubMed] [Google Scholar]
  • 33.Weiss SR, Leibowitz JL. Comparison of the RNAs of murine and human coronavirus. In: ter Meulen V, Siddell S, Wege H, editors. Biochemistry and biology and coronaviruses. New York: Plenum; 1981. pp. 245–259. [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES