Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1989;107(1):55–63. doi: 10.1007/BF01313878

Rhinovirus detection using probes from the 5′ and 3′ end of the genome

M Forsyth 1, W Al-Nakib 1,2, P Chadwick 1, G Stanway 3, P J Hughes 3, G Leckie 4, J W Almond 4, D A J Tyrrell 1
PMCID: PMC7086855  PMID: 2552961

Summary

This study investigated the abilities of cDNA probes from the 5′ and 3′ ends of the genome of human rhinoviruses (HRV-) 14, 9, and 1B to detect RNA from 59 rhinovirus serotypes. The results show that probes from the 5′ end of the genomes of HRV-14, 9, and 1B detected a large number of serotypes but the detection rate was variable and depended on the degree of homology with the particular probe. In contrast, all the 3′ end probes were specific for the homologous virus. However, along HRV-9 probe detected a large number of serotypes.

It was concluded that such cDNA probes would not detect all serotypes with equal efficiency. Synthetic oligonucleotides corresponding to short but highly conserved regions in the 5′ non coding region may overcome this problem.

Keywords: Infectious Disease, Detection Rate, Code Region, cDNA Probe, Synthetic Oligonucleotide

References

  • 1.Abraham G, Colonno RJ. Many rhinovirus serotypes share the same cellular receptor. J Virol. 1984;51:340–345. doi: 10.1128/jvi.51.2.340-345.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Al-Nakib W, Stanway G, Forsyth M, Hughes PJ, Almond JW, Tyrrell DAJ. Detection of human rhinoviruses and their molecular relationship using cDNA probes. J Med Virol. 1986;20:289–296. doi: 10.1002/jmv.1890200311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Al-Nakib W, Stanway G, Forsyth M, Hughes PJ, Almond JW, Tyrrell DAJ. Rhinovirus detection by cDNA: RNA hybridization. In: Brinton MA, Rueckert RR, editors. Positive strand RNA viruses. UCLA Symposia on molecular and cellular biology. New York: Alan R Liss; 1987. pp. 487–495. [Google Scholar]
  • 4.Al-Nakib W, Tyrrell DAJ. Common cold viruses—rhinoviruses. In: Ballows A, Hausler WJ, Lennette EH, editors. Laboratory diagnosis of infectious disease. Principles and practices. Berlin Heidelberg New York Tokyo: Springer; 1988. pp. 723–742. [Google Scholar]
  • 5.Al-Nakib W, Higgins PG, Barrow GI, Tyrrell DAJ, Andries K, Vanden Bussche G, Taylor N, Janssen PAJ. Suppression of colds in human volunteers challenged with rhinoviruses by a new synthetic drug (R61837) Antimicrob Agents Chemother. 1989;33:552–525. doi: 10.1128/aac.33.4.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Bruce CB, Al-Nakib W, Tyrrell DAJ, Almond JW. Synthetic oligonucleotides as diagnostic probes for rhinoviruses. Lancet. 1988;ii:53. doi: 10.1016/s0140-6736(88)92989-3. [DOI] [PubMed] [Google Scholar]
  • 7.Colonno RJ, Callahan PL, Long WS. Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses. J Virol. 1986;57:7–12. doi: 10.1128/jvi.57.1.7-12.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Cooney MK, Fox JP, Kenny GE. Antigenic grouping of 90 rhinovirus serotypes. Infect Immun. 1982;37:642–647. doi: 10.1128/iai.37.2.642-647.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Couch RB. The common cold: control? J Infect Dis. 1984;150:167–173. doi: 10.1093/infdis/150.2.167. [DOI] [PubMed] [Google Scholar]
  • 10.Dearden CJ, Al-Nakib W. Direct detection of rhinoviruses by an enzyme-linked immunosorbent assay. J Med Virol. 1987;23:179–189. doi: 10.1002/jmv.1890230211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Gregg I. Provocation of airflow limitation by viral infection: implication for treatment. Eur J Respir Dis. 1983;64(Suppl 128):369–379. [PubMed] [Google Scholar]
  • 12.Hamparian VV, Colonno RJ, Cooey MK, Dick EC, Gwaltney JM, Jr, Hughes JH, Jordan WS, Kapikian AZ, Mogabgab WJ, Monto A, Phillips CA, Rueckert RR, Schieble JH, Stott EJ, Tyrrell DAJ. A collaborative report: rhinovirus—extension of the numbering system from 89 to 100. Virology. 1987;59:191–192. doi: 10.1016/0042-6822(87)90367-9. [DOI] [PubMed] [Google Scholar]
  • 13.Hughes PJ, North C, Jellis CH, Minor PD, Stanway G. The nucleotide sequence of human rhinovirus 1B: molecular relationships within the rhinovirus genus. J Gen Virol. 1988;69:49–58. doi: 10.1099/0022-1317-69-1-49. [DOI] [PubMed] [Google Scholar]
  • 14.Krilov L, Pierik L, Keller E, Mahan K, Watson D, Hirsch M, Hamparian V, McIntosh K. The association of rhinoviruses with lower respiratory tract disease in hospitalized patients. J Med Virol. 1986;19:345–352. doi: 10.1002/jmv.1890190407. [DOI] [PubMed] [Google Scholar]
  • 15.Monto AS, Bryan ER, Ohmit S. Rhinovirus infections in Tecumseh, Michigan: frequency of illness and number of serotypes. J Infect Dis. 1987;156:43–49. doi: 10.1093/infdis/156.1.43. [DOI] [PubMed] [Google Scholar]
  • 16.Rotbart HA, Levin MJ, Villarreal LP. Use of subgenomic poliovirus DNA hybridization probes to detect the major subgroups of enteroviruses. J Clin Microbiol. 1984;20:1105–1108. doi: 10.1128/jcm.20.6.1105-1108.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Rotbart HA, Levin MJ, Villarreal LP, Tracy SM, Semler BL, Wimmer E. Factors affecting the detection of enteroviruses in cerebrospinal fluid with coxsackievirus B3 and poliovirus I cDNA probes. J Clin Microbiol. 1985;22:220–224. doi: 10.1128/jcm.22.2.220-224.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Stanway G, Hughes PJ, Mountford RC, Minor PD, Almond JW. The complete nucleotide sequence of common cold virus: human rhinovirus 14. Nucleic Acid Res. 1984;12:7859–7877. doi: 10.1093/nar/12.20.7859. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES