Summary
The sequence of the gene encoding the membrane protein of human coronavirus 229 E (HCV 229 E) has been determined. The primary translation product, deduced from the DNA sequence, is a polypeptide of 225 amino acids with a predicted molecular weight of 26,000. The polypeptide has 3 potential N-glycosylation sites. Many structural similarities with the membrane proteins of other coronaviruses can be recognized.
Keywords: Molecular Weight, Nucleotide, Infectious Disease, Nucleotide Sequence, Polypeptide
References
- 1.Boursnell MEG, Brown TDK, Binns MM. Sequence of the membrane protein gene from avian coronavirus IBV. Virus Res. 1984;1:303–313. doi: 10.1016/0168-1702(84)90019-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984;12:387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Gubler U, Hoffman BJ. A simple and very efficient method for generating cDNA libraries. Gene. 1983;25:263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
- 4.Hierholzer JC, Tannock GA. Coronaviridae: the coronaviruses. In: Lenette EH, Halonen P, Murphy FA, editors. Viral, rickettsial, and chlamydial diseases. Berlin Heidelberg New York Tokyo: Springer; 1988. pp. 451–483. [Google Scholar]
- 5.Isaacs D, Flowers D, Clarke JR, Valman B, Macnaughton MR. Epidemiology of coronavirus respiratory infections. Arch Dis Child. 1983;38:500–503. doi: 10.1136/adc.58.7.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Kapke PA, Tung FYT, Hogue BG, Brian DA, Woods RG, Wesley R. The aminoterminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation. Virology. 1988;165:367–376. doi: 10.1016/0042-6822(88)90581-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Kemp MC, Hierholzer JC, Harrison A, Burks JS. Characterization of viral proteins synthesized in 229 E infected cells and effect(s) of inhibition of glycosylation and glycoprotein transport. In: Rottier PJM, van der Zeijst BAM, Spaan WJM, Horzinek MC, editors. Molecular biology and pathogenesis of coronavirus. New York: Plenum Press; 1984. pp. 65–79. [DOI] [PubMed] [Google Scholar]
- 8.Lapps W, Hogue BG, Brian D. Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology. 1987;157:47–57. doi: 10.1016/0042-6822(87)90312-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Messing J, Vierira J. A new pair of M 13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982;19:269–276. doi: 10.1016/0378-1119(82)90016-6. [DOI] [PubMed] [Google Scholar]
- 10.Pfleiderer M, Skinner MA, Siddell SG. Coronavirus MHV-JHM: Nucleotide sequence of the mRNA that encodes the membrane protein. Nucleic Acids Res. 1986;14:6338. doi: 10.1093/nar/14.15.6338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Phillpots JR. Clones of MRC-C cells may be superior to the parent line for the culture of 229 E-like strains of human respiratory coronaviruses. J Virol Methods. 1983;6:267–269. doi: 10.1016/0166-0934(83)90041-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Rottier P, Armstrong J, Meyer DI. Signal recognition particle-dependent insertion of coronavirus E 1, an intracellular membrane glycoprotein. J Biol Chem. 1985;260:4648–4652. doi: 10.1016/S0021-9258(18)89119-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Rottier PJM, Rose JK. Coronavirus E 1 glycoprotein expressed from cloned cDNA localizes in the Golgi region. J Virol. 1987;61:2042–2045. doi: 10.1128/jvi.61.6.2042-2045.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Rottier PJM, Welling GW, Welling-Wester S, Niesters HGM, Lenstra JA, van der Zeijst BAM. Predicted membrane topology of the coronavirus protein E 1. Biochemistry. 1986;25:1335–1339. doi: 10.1021/bi00354a022. [DOI] [PubMed] [Google Scholar]
- 15.Sanger F, Nicklin S, Coulson AR. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Schmidt OW, Kenny GE. Polypeptides and functions of antigens from human coronaviruses 229 E and OC 43. Infect Immun. 1982;35:515–522. doi: 10.1128/iai.35.2.515-522.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Schreiber SS, Kamahora T, Lai MMC. Sequence analysis of the nucleocapsid protein gene of human coronavirus 229 E. Virology. 1989;169:142–151. doi: 10.1016/0042-6822(89)90050-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Siddell S. Coronavirus JHM: coding assignments of subgenomic mRNAs. J Gen Virol. 1983;64:113–125. doi: 10.1099/0022-1317-64-1-113. [DOI] [PubMed] [Google Scholar]
- 19.Spaan W, Cavanagh D, Horzinek MC. Coronaviruses: structure and genome expression. J Gen Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
- 20.Staden R. Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Res. 1982;10:4731–4751. doi: 10.1093/nar/10.15.4731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Wege H, Siddell S, ter Meulen V. The biology and pathogenesis of coronaviruses. Curr Top Microbiol Immunol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]
- 22.Weiss SR, Leibowitz JL. Comparison of the RNAs of murine and human coronaviruses. In: ter Meulen V, Siddell S, Wege H, editors. Biochemistry and biology of coronaviruses. New York: Plenum Press; 1981. pp. 43–69. [Google Scholar]