Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1993;131(3):455–465. doi: 10.1007/BF01378646

Characterization of monoclonal antibodies to bovine enteric coronavirus and antigenic variability among Quebec isolates

L Michaud 1, S Dea 1
PMCID: PMC7086900  PMID: 8347084

Summary

Twenty monoclonal antibodies (MAbs) were prepared against the Mebus strain of bovine enteric coronavirus, 14 of them reacting with the peplomeric S (gp 100) glycoprotein. Competition binding assays allowed the definition of at least 4 distinct antigenic domains for the S glycoprotein, designated as A, B, C, and D; epitopes associated to neutralizing activity being located in sites A, B, and C. One MAb directed to the hemagglutinin HE (gp 140/gp 65) glycoprotein inhibited the hemagglutinating activity of the virus, but had no neutralizing activity. Comparison of Quebec enteropathogenic BCV isolates using polyclonal antiserum and MAbs directed to the S glycoprotein confirmed their close antigenic relationship, but also revealed the occurrence of at least three distinct antigenic subgroups. Antigenic domain D was highly conserved among BCV isolates, as well as non-neutralizing epitopes assigned to antigenic domains A and C. The Minnesota strain of turkey enteric coronavirus could be distinguished from BCV isolates by MAbs directed to epitopes of antigenic domain C, whereas human coronavirus HCV-OC 43 could be distinguished by MAbs directed to epitopes of antigenic domain A. The porcine hemagglutinating encephalomyelitis virus could be distinguished from the other hemagglutinating coronaviruses by neutralizing epitopes located on antigenic domains A, B, and C.

Keywords: Monoclonal Antibody, Infectious Disease, Binding Assay, Encephalomyelitis, Polyclonal Antiserum

References

  • 1.Abraham S, Kienzle TE, Lapps W, Brian DA. Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virology. 1991;176:296–301. doi: 10.1016/0042-6822(90)90257-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Belanger F, Alain R, Payment P, Lecomte J, Trudel M. Rapid titration of bovine, caprine and human RS virus by a micro-immunoperoxidase assay using a monoclonal antibody and a permissive porcine kidney cell line. J Virol Methods. 1988;20:101–107. doi: 10.1016/0166-0934(88)90143-7. [DOI] [PubMed] [Google Scholar]
  • 3.Boireau P, Cruciere C, Laporte J. Nucleotide sequence of the glycoprotein S gene of bovine enteric coronavirus and comparison with the S proteins of two mouse hepatitis virus strains. J Gen Virol. 1990;71:487–492. doi: 10.1099/0022-1317-71-2-487. [DOI] [PubMed] [Google Scholar]
  • 4.Crouch CF, Bielefeldt-Ohmann H, Watts TC, Babiuk LA. Chronic shedding of bovine enteric coronavirus antigen antibody complexes by clinically normal cows. J Gen Virol. 1985;66:1489–1500. doi: 10.1099/0022-1317-66-7-1489. [DOI] [PubMed] [Google Scholar]
  • 5.Dea S, Roy RS, Elazhary MASY. Antigenic variations among calf diarrhoea coronaviruses by immunodiffusion and counterimmuno-electrophoresis. Ann Rech Vet. 1982;13:351–356. [PubMed] [Google Scholar]
  • 6.Dea S, Garzon S, Tijssen P. Isolation and trypsin-enhanced propagation of turkey enteric (bluecomb) coronaviruses in a continuous human rectal adenocarcinoma cell line. Am J Vet Rec. 1989;50:1310–1318. [PubMed] [Google Scholar]
  • 7.Dea S, Tijssen P. Antigenic and polypeptide structure of turkey enteric coronaviruses as defined by monoclonal antibodies. J Gen Virol. 1989;70:1725–1741. doi: 10.1099/0022-1317-70-7-1725. [DOI] [PubMed] [Google Scholar]
  • 8.Dea S, Verbeek AJ, Tijssen P. Antigenic and genomic relationships among turkey and bovine enteric coronaviruses. J Virol. 1990;64:3112–3118. doi: 10.1128/jvi.64.6.3112-3118.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Dea S, Garzon S. Identification of coronaviruses by the use of indirect protein A-gold immunoelectron microscopy. J Vet Diagn Invest. 1991;3:297–305. doi: 10.1177/104063879100300405. [DOI] [PubMed] [Google Scholar]
  • 10.Deregt D, Sabara M, Babiuk LA. Structural proteins of bovine coronavirus and their intracellular processing. J Gen Virol. 1988;68:2863–2877. doi: 10.1099/0022-1317-68-11-2863. [DOI] [PubMed] [Google Scholar]
  • 11.Deregt D, Babiuk LA. Monoclonal antibodies to bovine coronavirus: characteristics and topographical mapping of neutralizing epitopes on the E 2 and E 3 glycoproteins. Virology. 1987;161:410–420. doi: 10.1016/0042-6822(87)90134-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.El-Ghorr AA, Snodgrass DR, Scott FMM, Campbell I. A serological comparison of bovine coronavirus strains. Arch Virol. 1989;104:241–248. doi: 10.1007/BF01315546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Frankel ME, Gerhard W. The rapid determination of binding constants for antiviral antibodies by a radio-immunoassay. An analysis of the interaction between hybridoma proteins and influenza virus. Mol Immunol. 1979;16:101–106. doi: 10.1016/0161-5890(79)90051-8. [DOI] [PubMed] [Google Scholar]
  • 14.Hogue BG, King B, Brian DA. Antigenic relationships among proteins of bovine coronavirus, human respiratory coronavirus OC 43, and mouse hepatitis coronavirus A 59. J Virol. 1984;51:384–388. doi: 10.1128/jvi.51.2.384-388.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Hussain KA, Storz J, Kousoulas KG. Comparison of bovine coronavirus (BCV) antigens: monoclonal antibodies to the spike protein distinguish between vaccine and wild-type strains. Virology. 1991;183:442–445. doi: 10.1016/0042-6822(91)90163-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kendall C, Ionescu-Matiu I, Dreesman GR. Utilization of the biotine/avidin system to amplify the sensitivity of the enzyme-linked immunosorbent assay (ELISA) J Immunol Methods. 1983;56:329–339. doi: 10.1016/s0022-1759(83)80022-2. [DOI] [PubMed] [Google Scholar]
  • 17.King B, Potts BJ, Brian DA. Bovine coronavirus hemagglutinin protein. Virus Res. 1985;2:53–59. doi: 10.1016/0168-1702(85)90059-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Mebus CA, Stair EL, Rhodes MB, Twiehaus MJ. Neonatal calf diarrhoea: propagation, attenuation, and characteristics of a coronavirus-like agent. Am J Vet Res. 1973;34:145–150. [PubMed] [Google Scholar]
  • 19.Niesters HGM, Bleumink-Pluym NMC, Osterhaus ADME, Horzinek MC, Van Der Zeijst BAM. Epitopes on the peplomer protein of infectious bronchitis virus strain M 41 as defined by monoclonal antibodies. Virology. 1987;161:511–519. doi: 10.1016/0042-6822(87)90145-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Reynolds DJ, Debney TG, Hall GA, Thomas LH, Parsons KR. Studies on the relationship between coronaviruses from the intestinal and respiratory tracts of calves. Arch Virol. 1985;85:71–83. doi: 10.1007/BF01317007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Saif LJ, Brock KV, Redman DR, Kohler EM. Winter dysentery in dairy herds: electron microscopic and serological evidence for an association with coronavirus infection. Vet Rec. 1991;128:447–449. doi: 10.1136/vr.128.19.447. [DOI] [PubMed] [Google Scholar]
  • 22.Shockley LJ, Kapke PA, Lapps W, Brian DA, Potgiever LNW, Woods Rh. Diagnosis of porcine and bovine enteric coronavirus infections using cloned cDNA probes. J Clin Microbiol. 1987;25:1591–1596. doi: 10.1128/jcm.25.9.1591-1596.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Schultze B, Wahn K, Klenk HD, Herrler G. Isolated HE protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology. 1991;180:221–228. doi: 10.1016/0042-6822(91)90026-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Schultze B, Gross HJ, Brossmer R, Herrler G. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J Virol. 1991;65:6232–6237. doi: 10.1128/jvi.65.11.6232-6237.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Siddell S, Wege H, Ter Meulen V. The biology of coronaviruses. J Gen Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
  • 26.Vautherot JF, Laporte J, Madelaine MF, Bobulesco P, Roseto A. Antigenic and polypeptide structure of bovine enteric coronavirus as defined by monoclonal antibodies. Adv Exp Med Biol. 1984;173:117–132. doi: 10.1007/978-1-4615-9373-7_11. [DOI] [PubMed] [Google Scholar]
  • 27.Vautherot JF, Madelaine MF, Boireau P, Laporte J. Bovine coronavirus peplomer glycoproteins: detailed antigenic analysis of S 1, S 2, and HE. J Gen Virol. 1992;73:1725–1737. doi: 10.1099/0022-1317-73-7-1725. [DOI] [PubMed] [Google Scholar]
  • 28.Verbeek A, Tijssen P. Sequence analysis of the turkey enteric coronavirus nucleocapsid and membrane protein genes: a close genomic relationship with bovine coronavirus. J Gen Virol. 1991;72:1659–1666. doi: 10.1099/0022-1317-72-7-1659. [DOI] [PubMed] [Google Scholar]
  • 29.Yoo D, Parker MD, Song J, Cox GJ, Deregt D, Babiuk LA. Structural analysis of the conformational domains involved in neutralization of bovine coronavirus using deletion mutants of the spike glycoprotein S 1 subunit expressed by recombinant baculoviruses. Virology. 1991;183:91–98. doi: 10.1016/0042-6822(91)90121-Q. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Zhang X, Kousoulas KG, Storz J. The hemagglutinin/esterase gene of human coronavirus strain OC 43: phylogenetic relationships to bovine and murine coronaviruses and influenza C virus. Virology. 1992;186:318–323. doi: 10.1016/0042-6822(92)90089-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Zhang X, Kousoulas KG, Storz J. Comparison of the nucleotide and deduced amino acid sequences of the S genes specified by virulent and avirulent strains of bovine coronaviruses. Virology. 1991;183:397–404. doi: 10.1016/0042-6822(91)90154-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES