Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1988;99(3):163–172. doi: 10.1007/BF01311067

Physicochemical properties of transmissible gastroenteritis virus hemagglutinin

M Noda 1, F Koide 2, M Asagi 3, Y Inaba 4
PMCID: PMC7086946  PMID: 2835945

Summary

Transmissible gastroenteritis virus was readily adsorbed onto chicken erythrocytes at 4°C. The hemagglutinin thus adsorbed could be eluted from the erythrocytes by incubating in phosphate buffered saline at 37°C. The on chicken erythrocytes for the hemagglutinin was inactivated by neuraminidase and potassium periodate, but not by trypsin, 2-mercaptoethanol and formalin. The hemagglutinin was inactivated by trypsin, papain, pepsin, α-amylase, phospholipase C, neuraminidase, formalin, 2-mercaptoethanol, potassium periodate, ethylether, chloroform, Tween-80 and β-propiolactone, but not by sodium deoxycholate and trichlorotrifluoroethane, suggesting that the active component of the hemagglutinin involved glycoproteins. The hemagglutinin was stable at 37°C or lower temperatures but not at 60°C or higher temperatures. The hemagglutinin activity was resistant to ultraviolet irradiation, while the infectivity was very susceptible. The hemagglutinin and the infectivity were readily sedimented by ultracentrifugation at 45,000 × g for 60 minutes. In rate zonal centrifugation of the hemagglutinin preparation on a sucrose density gradient, the hemagglutinin activity showed a sharp peak at 1.19 g/ml coinciding with the peak of infectivity. The activity in the peak fraction seemed to be structually associated with virus particles.

Keywords: Trypsin, Virus Particle, Gastroenteritis, Periodate, Deoxycholate

References

  • 1.Alexander DJ, Chettle NJ. Procedures for the haemagglutination and the haemagglutination inhibition tests for avian infectious bronchitis virus. Avian Pathol. 1977;6:9–17. doi: 10.1080/03079457708418208. [DOI] [PubMed] [Google Scholar]
  • 2.Berry DM, Cruickshank JG, Chu HP, Wells RJH. The structure of infectious bronchitis virus. Virology. 1964;23:403–407. doi: 10.1016/0042-6822(64)90263-6. [DOI] [PubMed] [Google Scholar]
  • 3.Bingham RW, Madge MH, Tyrrell DAJ. Haemagglutination by avian infectious bronchitis virus—a coronavirus. J Gen Virol. 1975;28:381–390. doi: 10.1099/0022-1317-28-3-381. [DOI] [PubMed] [Google Scholar]
  • 4.Furuuchi S, Shimizu Y, Kumagai T. Comparison of properties between virulent and attenuated strains of transmissible gastroenteritis virus. Natl Inst Anim Health Q. 1975;15:159–164. [PubMed] [Google Scholar]
  • 5.Garwes DJ, Pocock DH, Pike BV. Isolation of subviral components from transmissible gastroenteritis virus. J Gen Virol. 1976;32:283–294. doi: 10.1099/0022-1317-32-2-283. [DOI] [PubMed] [Google Scholar]
  • 6.Gottschalk A. The significance of neuraminic acid, serine and threonine for a glycoprotein inhibiting influenza virus haemagglutination. Aust J Exp Biol Med Sci. 1965;43:391–393. doi: 10.1038/icb.1965.72. [DOI] [PubMed] [Google Scholar]
  • 7.Greig AS, Bouillant AMP. Studies on the hemagglutination phenomenon of hemagglutinating encephalomyelitis virus (HEV) of pigs. Can J Comp Med. 1972;36:366–370. [PMC free article] [PubMed] [Google Scholar]
  • 8.Hierholzer JC, Palmer EL, Whitfield SG, Kaye HS, Dowdle WR. Protein composition of coronavirus OC43. Virology. 1972;48:516–527. doi: 10.1016/0042-6822(72)90062-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.John TJ, Fulginiti VA. Parainfluenza 2 virus: increase in hemagglutinin titer on treatment with Tween-80 and ether. Proc Soc Exp Biol Med. 1966;121:109–111. doi: 10.3181/00379727-121-30711. [DOI] [PubMed] [Google Scholar]
  • 10.Kathan RH, Winzler RJ. Structure studies on the myxovirus hemagglutination inhibitor of human erythrocytes. J Biol Chem. 1963;238:21–25. [PubMed] [Google Scholar]
  • 11.Kaye HS, Dowdle WR. Some characteristics of hemagglutination of certain strains of “IBV-like” virus. J Infect Dis. 1969;120:576–581. doi: 10.1093/infdis/120.5.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Kaye HS, Hierholzer JC, Dowdle WR. Purification and further characterization of an “IBV-lik” virus (Coronavirus) Proc Soc Exp Biol Med. 1970;135:457–463. doi: 10.3181/00379727-135-35074. [DOI] [PubMed] [Google Scholar]
  • 13.Komaniwa H, Fukusho A, Shimizu Y. Micro method for performing titration and neutralization test of hog cholera virus using established porcine cell strain. Natl Inst Anim Health Q. 1981;21:153–158. [PubMed] [Google Scholar]
  • 14.McClurkin AW, Norman JO. Studies on transmissible gastroenteritis of swine I. The isolation and identification of a cytopathogenic virus of transmissible gastroenteritis in primary swine kidney cell cultures. Can J Comp Med Vet Sci. 1965;29:46–53. [PMC free article] [PubMed] [Google Scholar]
  • 15.McIntosh K. Coronaviruses: a comparative review. Curr Top Microbiol Immunol. 1974;63:85–129. [Google Scholar]
  • 16.Mengeling WL, Boothe AD, Ritchie AE. Characteristics of a coronavirus (strain 67 N) of pigs. Am J Vet Res. 1972;33:297–307. [PubMed] [Google Scholar]
  • 17.Noda M, Yamashita H, Koide F, Kadoi K, Omori T, Asagi M, Inaba Y. Hemagglutination with transmissible gastroenteritis virus. Arch Virol. 1987;96:109–115. doi: 10.1007/BF01310994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Pensaert MB, Callebaut PE. Characteristics of a coronavirus causing vomition and wasting in pigs. Arch Ges Virusforsch. 1974;44:35–50. doi: 10.1007/BF01242179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Pensaert M, Callebaut PE. The coronaviruses: clinical and structural aspects with some practical implications. Ann Méd Vét. 1978;122:301–322. [Google Scholar]
  • 20.Pocock DH, Garwes DJ. The polypeptides of haemagglutinating encephalomyelitis virus and isolated subviral particles. J Gen Virol. 1977;37:487–499. [Google Scholar]
  • 21.Sato K, Inaba Y, Kurogi H, Takahashi E, Ito Y, Goto Y, Omori T, Matumoto M. Hemagglutination by calf diarrheal coronavirus. Vet Microbiol. 1977;2:83–87. [Google Scholar]
  • 22.Sentsui H, Kono K. Hemagglutination by several strains of equine infectious anemia virus. Arch Virol. 1981;67:75–85. doi: 10.1007/BF01314604. [DOI] [PubMed] [Google Scholar]
  • 23.Sentsui H, Thorn RM, Kono Y, Ferrer FJ. Haemagglutination by bovine leukaemia virus. J Gen Virol. 1982;59:83–89. doi: 10.1099/0022-1317-59-1-83. [DOI] [PubMed] [Google Scholar]
  • 24.Sharpee RL, Mebus CA, Bass EP. Characterization of a calf diarrheal coronavirus. Am J Vet Res. 1976;37:1031–1034. [PubMed] [Google Scholar]
  • 25.Sokol F, Blaskovic D, Rosenberg M. Subunits of myxoviruses. I. Treatment of Newcastle disease, parainfluenza 1, and mumps viruses by ether. Acta Virol. 1961;5:64–77. [Google Scholar]
  • 26.Stone SS, Kemeny LJ, Jensen MT. Partial characterization of the principal soluble antigens associated with the coronavirus of transmissible gastroenteritis by complement fixation and immunodiffusion. Infect Immun. 1976;13:521–526. doi: 10.1128/iai.13.2.521-526.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Sugiyama K, Amano Y. Hemagglutination and structural polypeptides of a new coronavirus associated with diarrhea in infant mice. Arch Virol. 1980;66:95–105. doi: 10.1007/BF01314978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES