Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1989;106(3):239–259. doi: 10.1007/BF01313956

Intracellular synthesis and processing of the structural glycoproteins of turkey enteric coronavirus

S Dea 1, S Garzon 2, P Tijssen 1
PMCID: PMC7086967  PMID: 2774975

Summary

Pulse labeling of cells with [35S]methionine or [3H]glucosamine at different times after infection, followed by SDS-PAGE and Western immunoblotting analysis using rabbit anti-TCV hyperimmune serum, was used to resolve and identify TCV-induced intracellular proteins. The viral structural proteins (gp200, gp140/gp66, gp100/gp120, p52, and gp24/p20) were detected in radiolabeled cell extracts by 9 to 12 hours post-infection, as well as two possible non-structural proteins with apparent mol.wts. of 36,000 and 32,000. The predominant 52,000 nucleocapsid protein could be detected in cell lysates as soon as 6 to 8 hours after infection; it was initially resolved as a complex of 3 closely migrating species with mol.wts. ranging from 46,000 to 52,000. Pulse-chase and immunoprecipitation experiments indicated that gp200 arose from a putative precursor with mol.wt. of 150,000 to 170,000, that underwent glycosylation. Proteolytic cleavage of gp200, in turn, probably yielded the gp100 and gp120 species. The unique TCV hemagglutinin protein originated from a primary precursor with mol.wt. of 60,000, which underwent rapid dimerization by disulfide bond formation and glycosylation to yield gp140. The peplomeric and matrix proteins were both shown to be N-glycosylated, as indicated by their sensitivity to tunicamycin (TM) and their resistance to sodium monensin (SM). In the presence of TM, proteins with mol.wts. of 90,000, 120–130,000, and 150,000 accumulated in TCV-infected cells rather than peplomeric glycoproteins, and the matrix protein E1 was only detected in its unglycosylated form. The addition of TM to the culture medium interfered with the maturation of progeny viral particles, as suggested by the absence of peplomers at the surface of the intravacuolar and extracellular virions, and the accumulation of amorphous material not found in the absence of the glycosylation inhibitor. High yields of virus replication were obtained, in the presence of SM, even at concentrations which greatly affected the cellular functions.

Keywords: Glucosamine, Monensin, Tunicamycin, Nucleocapsid Protein, Disulfide Bond Formation

References

  • 1.Binns MM, Boursnell MEG, Cavanagh D, Pappin DJC, Brown TDK. Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. J Gen Virol. 1985;66:719–726. doi: 10.1099/0022-1317-66-4-719. [DOI] [PubMed] [Google Scholar]
  • 2.Boursnell MEG, Brown TDK, Binns MM. Sequence of the membrane protein gene from avian coronavirus IBV. Virus Res. 1984;1:303–313. doi: 10.1016/0168-1702(84)90019-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Cavanagh D. Coronavirus IBV glycopolypeptides: size of their polypeptide moieties and nature of their oligosaccharides. J Gen Virol. 1983;64:1187–1191. doi: 10.1099/0022-1317-64-5-1187. [DOI] [PubMed] [Google Scholar]
  • 4.Dea S, Marsolais G, Beaubien J, Ruppanner R. Coronavirus associated with outbreaks of transmissible enteritis (Bluecomb) of turkeys in Quebec; hemagglutination properties and cell cultivation. Avian Dis. 1986;30:319–326. [PubMed] [Google Scholar]
  • 5.Dea S, Tijssen P. Viral agents associated with outbreaks of diarrhea in turkey flocks in Quebec. Can J Vet Res. 1988;52:53–57. [PMC free article] [PubMed] [Google Scholar]
  • 6.Dea S, Tijssen P. Identification of the structural proteins of turkey enteric coronavirus. Arch Virol. 1988;99:173–186. doi: 10.1007/BF01311068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Dea S, Garzon S, Tijssen P (1988) Isolation and trypsin-enhanced propagation of turkey enteric (Bluecomb) coronaviruses in a continuous human rectal tumor (HRT-18) cell line. Am J Vet Res (in press) [PubMed]
  • 8.Denison M, Perlman S. Identification of putative gene products in cells infected with murine coronavirus A59. Virology. 1987;157:565–568. doi: 10.1016/0042-6822(87)90303-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Deregt D, Sabara M, Babiuk LA. Structural proteins of bovine coronavirus and their intracellular processing. J Gen Virol. 1987;68:2863–2877. doi: 10.1099/0022-1317-68-11-2863. [DOI] [PubMed] [Google Scholar]
  • 10.Deregt D, Babiuk LA. Monoclonal antibodies to bovine coronavirus: characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology. 1987;161:410–420. doi: 10.1016/0042-6822(87)90134-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Fracca JM, Parks VR. A routine technique for double-staining ultra-thin sections using uranyl and lead salts. J Cell Biol. 1965;25:151–161. doi: 10.1083/jcb.25.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Frana MF, Behnke JN, Sturman LS, Holmes K. Proteolytic cleavage of E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion. J Virol. 1985;56:912–920. doi: 10.1128/jvi.56.3.912-920.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Gebbart AM, Ruddon RW. What regulates secretion of non-stored proteins by eukaryotic cells? Bioessays. 1986;4:213–218. doi: 10.1002/bies.950040507. [DOI] [PubMed] [Google Scholar]
  • 14.Gething MJ, McCammon K, Sambrook J. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell. 1986;46:939–950. doi: 10.1016/0092-8674(86)90076-0. [DOI] [PubMed] [Google Scholar]
  • 15.Hogue BG, Brian DA. Structural proteins of human respiratory coronavirus OC43. Virus Res. 1986;5:131–144. doi: 10.1016/0168-1702(86)90013-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Holmes KV, Doller EW, Sturman LS. Tunicamycin resistant glycosylation of a coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.King B, Potts BJ, Brian DA. Bovine coronavirus hemagglutinin protein. Virus Res. 1985;2:53–59. doi: 10.1016/0168-1702(85)90059-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Lapps W, Hogue BG, Brian DA. Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology. 1987;157:47–57. doi: 10.1016/0042-6822(87)90312-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Laude H, Rasschaert D, Huet JC. Sequence and N-terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus. J Gen Virol. 1987;68:1687–1693. doi: 10.1099/0022-1317-68-6-1687. [DOI] [PubMed] [Google Scholar]
  • 20.Luytjes W, Sturman LS, Bredenbeek PJ, Charite J, Van der Zeijst BAM, Horzinek MC, Spaan WJM. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology. 1987;161:479–487. doi: 10.1016/0042-6822(87)90142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Naqi SA, Panigrahy B, Hall CF. Purification and concentration of viruses associated with transmissible (coronaviral) enteritis of turkeys (Bluecomb) Am J Vet Res. 1975;36:548–552. [PubMed] [Google Scholar]
  • 22.Nieman H, Klenk HD. Coronavirus glycoprotein E1, a new type of viral glycoprotein. J Mol Biol. 1981;153:993–1010. doi: 10.1016/0022-2836(81)90463-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Nieman H, Boscheck B, Evans D, Rosing M, Tamura T, Klenk HD. Post-translational glycosylation of coronavirus glycoprotein E1: inhibition by monensin. EMBO J. 1982;1:1499–1504. doi: 10.1002/j.1460-2075.1982.tb01346.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Pelham HRB. Speculations on the functions of the major heat-shock and glucose-regulated proteins. Cell. 1986;46:959–961. doi: 10.1016/0092-8674(86)90693-8. [DOI] [PubMed] [Google Scholar]
  • 25.Pomeroy BS. Coronaviral enteritis of turkeys. In: Hostad MS, Barnes HJ, Calnek BW, Reid WM, Yoder HW, editors. Disease of poultry. 8th edn. Ames: Iowa State University Press; 1984. pp. 553–559. [Google Scholar]
  • 26.Robbins SG, Frana MF, McGowan JJ, Boyle JF, Holmes KV. RNA-binding proteins of coronavirus MHV: detection of monomeric and multimeric N protein with an RNA overlay-protein blot assay. Virology. 1986;150:402–410. doi: 10.1016/0042-6822(86)90305-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Rottier PJM, Horzinek MC, Van der Zeijst BAM. Viral protein synthesis in mouse hepatitis virus strain A 59-infected cells: effect of tunicamycin. J Virol. 1981;40:350–357. doi: 10.1128/jvi.40.2.350-357.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Rottier PJM, Spaan WJM, Horzinek MC, Van der Zeijst BAM. Translation of three mouse hepatitis virus strain A59 subgenomic RNAs inXenopus laevis oocytes. J Virol. 1981;38:20–26. doi: 10.1128/jvi.38.1.20-26.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Rottier PJM, Welling GW, Welling-Wester S, Niesters HGM, Lenstra JA, Van der Zeijst BAM. Predicted membrane topology of the coronavirus protein E1. Biochemistry. 1986;25:1335–1339. doi: 10.1021/bi00354a022. [DOI] [PubMed] [Google Scholar]
  • 30.Sato TA, Kohama T, Sugiura A. Intracellular processing of measles virus fusion protein. Arch Virol. 1988;98:39–50. doi: 10.1007/BF01321004. [DOI] [PubMed] [Google Scholar]
  • 31.Schmidt I, Skinner M, Siddell S. Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. J Gen Virol. 1987;68:47–56. doi: 10.1099/0022-1317-68-1-47. [DOI] [PubMed] [Google Scholar]
  • 32.Siddell S, Wege H, Barthel A, Ter Meulen V. Coronavirus JHM intracellular protein synthesis. J Gen Virol. 1981;53:145–155. doi: 10.1099/0022-1317-53-1-145. [DOI] [PubMed] [Google Scholar]
  • 33.Siddell SG. Coronavirus JHM: coding assignments of subgenomic mRNAs. J Gen Virol. 1983;64:113–125. doi: 10.1099/0022-1317-64-1-113. [DOI] [PubMed] [Google Scholar]
  • 34.Spaan WJM, Rottier PJM, Horzinek MC, Van der Zeijst BAM. Isolation and identification of virus-specific mRNAs in cells infected with mouse hepatitis virus (MHV-A59) Virology. 1981;108:424–434. doi: 10.1016/0042-6822(81)90449-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Stern DF, Kennedy SIT. Coronavirus multiplication strategy. I. Identification and characterization of virus-specific RNA. J Virol. 1980;34:665–674. doi: 10.1128/jvi.34.3.665-674.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Stern DF, Sefton BM. Coronavirus proteins: biogenesis of avian infectious bronchitis virus virion proteins. J Virol. 1982;44:794–803. doi: 10.1128/jvi.44.3.794-803.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Stern DF, Sefton BM. Coronavirus proteins: structure and function of the oligosaccharides of the avian bronchitis virus glycoproteins. J Virol. 1982;44:804–812. doi: 10.1128/jvi.44.3.804-812.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Sturman LS, Holmes KV. Characterization of a coronavirus. II. Glycoproteins of the viral envelope: tryptic peptide analysis. Virology. 1977;77:650–660. doi: 10.1016/0042-6822(77)90489-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Sturman LS, Holmes KV, Benke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J Virol. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Sturman LS, Holmes KV. The molecular biology of coronaviruses. Adv Virus Res. 1983;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Sturman LS, Ricard CS, Holmes KV. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Tooze J, Tooze SA. Infection of AtT20 murine pituitary tumour cells by mouse hepatitis virus strain A59: virus budding is restricted to the Golgi region. Eur J Cell Biol. 1985;37:203–212. [PubMed] [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES