Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1989;105(3):165–178. doi: 10.1007/BF01311354

Sequence of the coding regions from the 3.0 kb and 3.9 kb mRNA

Subgenomic species from a virulent isolate of transmissible gastroenteritis virus

P Britton 1, C Lopez Otin 2, J M Martin Alonso 2, F Parra 2
PMCID: PMC7086989  PMID: 2546515

Summary

Subgenomic mRNA from a virulent isolate of porcine transmissible gastroenteritis virus (TGEV) was used to produce cDNA clones covering the genome region from the 3′ end of the pelomer gene to the start of the integral membrane protein gene. The nucleotide sequence of this area was determined using clone pTG11 and a previously reported cDNA clone pTG22. Three open reading frames (ORFs) were identified encoding putative polypeptides of relative molecular masses (Mr) 6,600, 27,600, and 9,200. The sequence encoding the Mr 9,200 polypeptide was found to be present on the “unique” 5′ region of the 3.0 kb mRNA species whereas the other two ORFs mapped on the 3.9 kb mRNA species. Differences between the ORFs from this strain of TGEV and those from a previously reported avirulent strain of TGEV were compared.

Keywords: Nucleotide, Molecular Mass, Polypeptide, Membrane Protein, Genome Region

References

  • 1.Bilofsky HS, Burks C, Fickett JW, Goad WB, Lewitter FI, Rindone WP, Swindell CD, Tung C-S. The Genbank genetic sequence database. Nucleic Acids Res. 1986;13:1–4. doi: 10.1093/nar/14.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Bohl EH, Gupta RKP, Olquin MV, Saif LJ. Antibody responses in serum, clostrum, and milk of swine after infection or vaccination with transmissible gastroenteritis virus. Infect Immun. 1972;6:289–301. doi: 10.1128/iai.6.3.289-301.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Boursnell MEG, Brown TDK. Sequencing of coronavirus IBV genomic RNA: a 195-base open reading frame encoded by mRNA B. Gene. 1984;29:87–92. doi: 10.1016/0378-1119(84)90169-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Boursnell MEG, Binns MM, Brown TDK. Sequencing of coronavirus IBV genomic RNA: Three open reading frames in the 5′ ‘unique’ region of mRNA D. J Gen Virol. 1985;66:2253–2258. doi: 10.1099/0022-1317-66-10-2253. [DOI] [PubMed] [Google Scholar]
  • 5.Boursnell MEG, Brown TDK, Foulds IJ, Green PF, Tomley FM, Binns MM. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol. 1987;68:57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
  • 6.Britton P, Lee LG, Murfitt D, Boronat A, Jones-Mortimer MC, Kornberg HL. Location and direction of transcription of theptsH andptsI genes on theEscherichia coli K 12 genome. J Gen Microbiol. 1984;130:861–868. doi: 10.1099/00221287-130-4-861. [DOI] [PubMed] [Google Scholar]
  • 7.Britton P, Garwes DJ, Millson GC, Page K, Bountiff L, Stewart F, Walmsley J. Towards a genetically-engineered vaccine against porcine transmissible gastroenteritis virus. In: Magnien E, editor. Biomolecular engineering in the European Community. Dordrecht: Martinus Nijhoff; 1986. pp. 301–313. [Google Scholar]
  • 8.Britton P, Garwes DJ, Page K, Walmsley . Expression of porcine transmissible gastroenteritis virus genes inE. coli as β-galactosidase chimaeric proteins. In: Lai MMC, Stohlman SA, editors. Coronaviruses. New York London: Plenum Press; 1987. pp. 55–64. [DOI] [PubMed] [Google Scholar]
  • 9.Britton P, Carmenes RS, Page KW, Garwes DJ, Parra F. Sequence of the nucleoprotein from a virulent British field isolate of transmissible gastroenteritis virus and its expression inSaccharomyces cerevisiae. Mol Microbiol. 1988;2:89–99. [PubMed] [Google Scholar]
  • 10.Britton P, Carmenes RS, Page KW, Garwes DJ. The integral membrane protein from a virulent isolate of transmissible gastroenteritis virus: molecular characterization, sequence and expression inEscherichia coli. Mol Microbiol. 1988;2:497–505. doi: 10.1111/j.1365-2958.1988.tb00056.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Brown TDK, Boursnell MEG, Binns MM. A leader sequence is present on mRNA A of avian infectious bronchitis virus. J Gen Virol. 1984;65:1437–1442. doi: 10.1099/0022-1317-65-8-1437. [DOI] [PubMed] [Google Scholar]
  • 12.Budzilowicz CJ, Wilczynski SP, Weiss SR. Three intergenic regions of coronavirus mouse hepatitis virus strain A 59 genome RNA contain a common nucleotide sequence that is homologous to the 3′ end of the viral mRNA leader sequence. J Virol. 1985;53:834–840. doi: 10.1128/jvi.53.3.834-840.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Budzilowicz CJ, Weiss SR. In vitro synthesis of two polypeptides from a nonstructural gene of coronavirus mouse hepatitis virus strain A 59. Virology. 1987;157:509–515. doi: 10.1016/0042-6822(87)90293-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Ebner D, Siddell S. Identification of the coronavirus MHV-JHM mRNA 4 gene product using fusion protein antisera. In: Lai MMC, Stohlman SA, editors. Coronaviruses. New York London: Plenum Press; 1987. pp. 39–45. [DOI] [PubMed] [Google Scholar]
  • 15.Ebner D, Raabe T, Siddell SG. Identification of the coronavirus MHV-JHM mRNA 4 product. J Gen Virol. 1988;69:1041–1050. doi: 10.1099/0022-1317-69-5-1041. [DOI] [PubMed] [Google Scholar]
  • 16.Garwes DJ, Pocock DH. The polypeptide structure of transmissible gastroenteritis virus. J Gen Virol. 1975;29:25–34. doi: 10.1099/0022-1317-29-1-25. [DOI] [PubMed] [Google Scholar]
  • 17.Hamm GH, Cameron GN. The EMBL data library. Nucleic Acids Res. 1986;14:5–10. doi: 10.1093/nar/14.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Jacobs L, van der Zeijst BAM, Horzinek MC. Characterization and translation of transmissible gastroenteritis virus mRNAs. J Virol. 1986;57:1010–1015. doi: 10.1128/jvi.57.3.1010-1015.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Kanehisa MI. Los Alamos sequence analysis package for nucleic acids and proteins. Nucleic Acids Res. 1982;10:183–196. doi: 10.1093/nar/10.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Kapke PA, Brian DA. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology. 1986;151:41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kapke PA, Tung FYC, Brian DA, Woods RD, Wesley R. Nucleotide sequence of the porcine transmissible gastroenteritis coronavirus matrix protein. In: Lai MMC, Stohlman SA, editors. Coronaviruses. New York London: Plenum Press; 1987. pp. 117–122. [DOI] [PubMed] [Google Scholar]
  • 22.Klenk HD, Rott R. Cotranslational and posttranslational processing of viral glycoproteins. Curr Top Microbiol Immunol. 1980;90:19–48. doi: 10.1007/978-3-642-67717-5_2. [DOI] [PubMed] [Google Scholar]
  • 23.Kozak M. Comparison of initiation of protein synthesis in prokaryotes, eukaryotes and organelles. Microbiol Rev. 1983;47:1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986;44:283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  • 25.Lai MMC, Baric RS, Brayton PR, Stohlman SA. Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. Proc Natl Acad Sci USA. 1984;81:3626–3630. doi: 10.1073/pnas.81.12.3626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Laude H, Rasschaert D, Huet JC. Sequence and N-terminal processing of the transmembrane protein E 1 of the coronavirus transmissible gastroenteritis virus. J Gen Virol. 1987;68:1687–1693. doi: 10.1099/0022-1317-68-6-1687. [DOI] [PubMed] [Google Scholar]
  • 27.Leibowitz JL, Perlman S, Weinstock G, DeVries JR, Budzilowicz C, Weissmann JM, Weiss SR. Detection of a murine coronavirus nonstructural protein encoded in a down stream open reading frame. Virology. 1988;164:156–164. doi: 10.1016/0042-6822(88)90631-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science. 1985;227:1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
  • 29.Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory; 1982. [Google Scholar]
  • 30.Murphy G, Kavanagh T. Speeding-up the sequencing of double-stranded DNA. Nucleic Acids Res. 1988;16:5198. doi: 10.1093/nar/16.11.5198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci USA. 1988;85:2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Rasschaert D, Laude H. The predicted structure of the peplomer protein E 2 of the porcine coronavirus transmissible gastroenteritis gastroenteritis virus. J Gen Virol. 1987;68:1883–1890. doi: 10.1099/0022-1317-68-7-1883. [DOI] [PubMed] [Google Scholar]
  • 33.Rasschaert D, Delmas B, Charley B, Grossclaude J, Gelfi J, Laude H. Surface glycoproteins of transmissible gastroenteritis virus: functions and gene sequence. In: Lai MMC, Stohlman SA, editors. Coronaviruses. New York London: Plenum Press; 1987. pp. 109–116. [DOI] [PubMed] [Google Scholar]
  • 34.Rasschaert D, Gelfi J, Laude H. Enteric coronavirus TGEV: partial sequence of the genomic RNA, its organisation and expression. Biochemie. 1987;69:591–600. doi: 10.1016/0300-9084(87)90178-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Shieh C-K, Soe LH, Makino S, Chang M-F, Stohlman SA, Lai MMC. The 5′-end sequence of the murine coronavirus genome: implications for multiple fusion sites in leader-primed transcription. Virology. 1987;156:321–330. doi: 10.1016/0042-6822(87)90412-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Skinner MA, Siddell SG. Coding sequence of coronavirus MHV-JHM mRNA. J Gen Virol. 1985;66:593–596. doi: 10.1099/0022-1317-66-3-593. [DOI] [PubMed] [Google Scholar]
  • 38.Skinner MA, Ebner D, Siddell SG. Coronavirus MHV-JHM mRNA 5 has a sequence arrangement which potentially allows translation of a second down stream open reading frame. J Gen Virol. 1985;66:581–592. doi: 10.1099/0022-1317-66-3-581. [DOI] [PubMed] [Google Scholar]
  • 39.Smith AR, Boursnell MEG, Binns MM, Brown TDK, Inglis SC. Identification of a new gene product encoded by mRNA D of infectious bronchitis virus. In: Lai MMC, Stohlman SA, editors. Coronaviruses. New York London: Plenum Press; 1987. pp. 47–54. [DOI] [PubMed] [Google Scholar]
  • 40.Spaan WJM, Delius H, Skinner M, Armstrong J, Rottier P, Smeekens S, van der Zeijst BAM, Siddell SG. Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO J. 1983;2:1839–1844. doi: 10.1002/j.1460-2075.1983.tb01667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986;14:4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES