Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1994;136(3):363–374. doi: 10.1007/BF01321064

The entry of Junin virus into Vero cells

V Castilla 1, S E Mersich 1, N A Candurra 1, E B Damonte 1
PMCID: PMC7087180  PMID: 8031239

Summary

The entry mechanism of Junin virus (JV) into Vero cells was studied analyzing the effect of lysosomotropic compounds and acid pH on JV infection. Ammonium chloride, amantadine, chlorpheniramine and procaine inhibited JV production. The action of ammonium chloride was exerted at early times of infection. Virus internalization was inhibited and viral protein expression was not detected. When the extracellular medium was buffered at low pH, the ammonium chloride induced block on JV infection was overcome. Furthermore, JV was able to induce fusion of infected cells at pH 5.5 leading to polykaryoctye formation. Taken together, these results demonstrate that JV entry occurs through an endocytic mechanism requiring a low pH dependent membrane fusion.

Keywords: Infected Cell, Viral Protein, Ammonium Chloride, Vero Cell, Amantadine

References

  • 1.Alcamí A, Carrascosa AL, Viñuela E. The entry of African swine fever virus into Vero cells. Virology. 1989;171:68–75. doi: 10.1016/0042-6822(89)90511-4. [DOI] [PubMed] [Google Scholar]
  • 2.Bishop DHL, Auperin DD. Arenavirus gene structure and organization. Curr Top Microbiol Immunol. 1987;133:5–17. doi: 10.1007/978-3-642-71683-6_2. [DOI] [PubMed] [Google Scholar]
  • 3.Buchmeier MJ, Parekh BS. Protein structure and expression among arenaviruses. Curr Top Microbiol Immunol. 1987;133:41–57. doi: 10.1007/978-3-642-71683-6_4. [DOI] [PubMed] [Google Scholar]
  • 4.Candurra NA, Damonte EB, Coto CE. Antigenic relationships among attenuated and pathogenic strains of Junin Virus. J Med Virol. 1989;27:145–150. doi: 10.1002/jmv.1890270215. [DOI] [PubMed] [Google Scholar]
  • 5.Candurra NA, Scolaro LA, Mersich SE, Damonte EB, Coto CE. A comparison of Junin virus strains growth characteristics, cytopathogenicity and viral polypeptides. Res Virol. 1990;141:505–515. doi: 10.1016/0923-2516(90)90083-u. [DOI] [PubMed] [Google Scholar]
  • 6.De Mitri MI, Martinez Segovia ZM. Polypeptide synthesis in Junin virus infected BHK-21 cells. Acta Virol. 1985;29:97–103. [PubMed] [Google Scholar]
  • 7.Doms RW, Helenius A, White J. Membrane fusion activity of the Influenza virus hemagglutinin. J Biol Chem. 1985;260:2973–2981. [PubMed] [Google Scholar]
  • 8.Glushakova SE, Lukashevich IS. Early events in arenavirus replication are sensitive to lysosomotropic compounds. Arch Virol. 1989;104:157–161. doi: 10.1007/BF01313817. [DOI] [PubMed] [Google Scholar]
  • 9.Gollins SW, Porterfield JS. The uncoating and infection of the Flavivirus West Nile on interaction with cells: effects of pH and ammonium chloride. J Gen Virol. 1986;67:1941–1950. doi: 10.1099/0022-1317-67-9-1941. [DOI] [PubMed] [Google Scholar]
  • 10.Grau O, Franze-Fernandez MT, Romanowski V, Rustici SM, Rosas MF. Junin virus structure. In: Bishop DHL, Compans RW, editors. The replication of negative strand viruses. Amsterdam: Elsevier/North-Holland; 1981. pp. 11–14. [Google Scholar]
  • 11.Guirakhoo F, Heinz FX, Kuns C. Epitope model of tick-borne encephalitis virus envelope glycoprotein E: analysis of structural properties, role of carbohydrate side chain and conformational changes occurring at acidic pH. Virology. 1989;169:90–99. doi: 10.1016/0042-6822(89)90044-5. [DOI] [PubMed] [Google Scholar]
  • 12.Kielan MC, Marsh M, Helenius A. Kinetics of endosome acidification detected by mutant and wild type Semliki Forest virus. EMBO J. 1986;5:3103–3109. doi: 10.1002/j.1460-2075.1986.tb04616.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Kimura T, Ohyama A. Association between the pH-dependent conformational change of West-Nile Flavivirus E protein and virus-mediated membrane fusion. J Gen Virol. 1988;69:1247–1254. doi: 10.1099/0022-1317-69-6-1247. [DOI] [PubMed] [Google Scholar]
  • 14.Lee M, Hilton A, Cheley S, Anderson R. Attenuation of murine coronavirus infection by ammonium chloride. Virology. 1985;11:378–388. doi: 10.1016/0042-6822(85)90345-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Marsh M, Helenius A. Virus entry into animal cells. Adv Virus Res. 1989;36:107–151. doi: 10.1016/S0065-3527(08)60583-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Mann E, Edwards J, Brown DT. Polykaryocyte formation mediated by Sindbis virus glycoproteins. J Virol. 1983;45:1083–1089. doi: 10.1128/jvi.45.3.1083-1089.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Mauracher CA, Gillam S, Shukin R, Tingle AJ. pH-dependent solubility shift of Rubella virus capsid proteins. Virology. 1991;181:773–777. doi: 10.1016/0042-6822(91)90916-y. [DOI] [PubMed] [Google Scholar]
  • 18.Maxfield FR. Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblast. J Cell Biol. 1982;95:676–681. doi: 10.1083/jcb.95.2.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Mersich SE, Castilla V, Damonte EB. Lectin affinity of Junin virus glycoproteins. Ann Inst Pasteur Virol. 1988;139:277–284. doi: 10.1016/s0769-2617(88)80040-6. [DOI] [PubMed] [Google Scholar]
  • 20.Romanowski V. Genetic organization of Junin virus, the etiological agent of Argentine hemorrhagic fever. In: Salvato MS, editor. The arenaviridae. New York: Plenum Press; 1993. pp. 51–84. [Google Scholar]
  • 21.Scolaro LA, Mersich SE, Damonte EB. Reduced virulence of a Junin virus mutant is associated with restricted multiplication in murine cells. Virus Res. 1989;13:283–294. doi: 10.1016/0168-1702(89)90074-9. [DOI] [PubMed] [Google Scholar]
  • 22.Scolaro LA, Mersich SE, Damonte EB. A mouse attenuated mutant of Junin virus with an altered glycoprotein. Arch Virol. 1990;111:257–262. doi: 10.1007/BF01311059. [DOI] [PubMed] [Google Scholar]
  • 23.Silber AM, Candurra NA, Damonte EB. The effects of oligosaccharide trimming inhibitors on glycoprotein expression and infectivity of Junin Virus. FEMS Microbiol Lett. 1993;109:39–44. doi: 10.1111/j.1574-6968.1993.tb06140.x. [DOI] [PubMed] [Google Scholar]
  • 24.Stegmann T, Doms RW, Helenius A. Protein mediated membrane fusion. Annu Rev Biophys Biophys Chem. 1989;18:187–211. doi: 10.1146/annurev.bb.18.060189.001155. [DOI] [PubMed] [Google Scholar]
  • 25.Stegmann T, Moreselt HWM, Scholma J, Wilschult J. Fusion of Influenza virions in an intracellular acidic compartment measured by fluorescence dequenching. Biochim Biophys Acta. 1987;904:165–170. doi: 10.1016/0005-2736(87)90100-3. [DOI] [PubMed] [Google Scholar]
  • 26.Wahlberg JM, Garoff H. Membrane fusion process of Semliki Forest virus: low pH-induced rearrangement in spike protein quanternary structure precedes virus penetration into cells. J Cell Biol. 1992;116:339–348. doi: 10.1083/jcb.116.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Weissenbacher MC, Laguens RP, Coto CE. Argentine hemorrhagic fever. Curr Top Microbiol Immunol. 1987;139:79–116. doi: 10.1007/978-3-642-71726-0_4. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES