Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1992;122(1):201–206. doi: 10.1007/BF01321128

Adaptation of transmissible gastroenteritis virus to growth in non-permissive Vero cells

H Ishii 1, I Watanabe 1, M Mukamoto 1, Y Kobayashi 1, Y Kodama 1
PMCID: PMC7087219  PMID: 1309640

Summary

The CPK cells derived from swine kidney were infected with the attenuated TO-163 strain of transmissible gastroenteritis (TGE) virus, and fused with uninfected Vero cells in the presence of polyethylene glycol. Repeated cocultivation of the fused cells with uninfected Vero cells rendered the virus to grow in Vero cells. The Vero cell-adapted virus acquired the ability to infect and produce cytopathic effects in several other non-permissive cell lines of non-porcine origin. No major differences in viral polypeptides were shown between the Vero cell-adapted TO-163 strain and its parent strain by indirect immunofluorescence and Western blotting using monoclonal and polyclonal antibodies to TGE virus.

Keywords: Polyethylene, Glycol, Polypeptide, Polyclonal Antibody, Parent Strain

References

  • 1.Choppin PW, Scheid A. The role of viral glycoproteins in adsorption, penetration, and pathogenicity of viruses. Rev Infect Dis. 1980;2:40–61. doi: 10.1093/clinids/2.1.40. [DOI] [PubMed] [Google Scholar]
  • 2.Frana MK, Behnke JN, Sturman LS, Holmes KV. Proteolytic cleavage of the E 2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion. J Virol. 1985;56:912–920. doi: 10.1128/jvi.56.3.912-920.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Furuuchi S, Shimizu Y, Kumagai T. Multiplication of low and high cell culture passaged strains of transmissible gastroenteritis virus in organs of newborn piglets. Vet Microbiol. 1978;3:169– 178. [Google Scholar]
  • 4.Garwes DJ, Pocock DH. The polypeptide structure of transmissible gastroenteritis virus. J Gen Virol. 1975;29:25–34. doi: 10.1099/0022-1317-29-1-25. [DOI] [PubMed] [Google Scholar]
  • 5.Harada K, Furuuchi S, Kumagai T, Sasahara J. Pathogenecity, immunogenecity and distribution of transmissible gastroenteritis virus in pigs. Natl Inst Anim Health Q. 1969;9:185–192. [PubMed] [Google Scholar]
  • 6.Horzinek MC, Lutz H, Pedersen NC. Antigenic relationships among homologous structural polypeptides of porcine, feline and canine coronaviruses. Infect Immun. 1982;37:1148–1155. doi: 10.1128/iai.37.3.1148-1155.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Ishii H, Yoshikawa Y, Yamanouchi K. Adaptation of the lapinized rinderpest virus to in vitro growth and attenuation of its virulence in rabbits. J Gen Virol. 1986;67:275–280. doi: 10.1099/0022-1317-67-2-275. [DOI] [PubMed] [Google Scholar]
  • 8.Kemeny LJ, Wiltsey VL, Riley JL. Upper respiratory infection of lactating sow with transmissible gastroenteritis virus following contact exposure to infected piglets. Cornell Vet. 1975;65:352–362. [PubMed] [Google Scholar]
  • 9.Klenk HD, Rott R. Cotranslational and posttranslational processing of viral glycoproteins. Curr Top Microbiol Immunol. 1980;90:19–48. doi: 10.1007/978-3-642-67717-5_2. [DOI] [PubMed] [Google Scholar]
  • 10.Komaniwa H, Fukusho A, Shimizu Y. Micromethod for performing titration and neutralization test of hog cholera virus using established porcine kidney cell strain. Natl Inst Anim Health Q. 1981;21:153–158. [PubMed] [Google Scholar]
  • 11.Pensaert MB, Haelterman EO, Burnstein T. Transmissible gastroenteritis of swine: Virus-intestinal cell interactions. I. Immunofluorescence, histopathology and virus production in the small intestine through the course of infection. Arch Ges Virusforsch. 1970;31:321–334. doi: 10.1007/BF01253767. [DOI] [PubMed] [Google Scholar]
  • 12.Reynolds DJ, Garwes DJ, Lucey S. Differenciation of canine coronavirus and porcine transmissible gastroenteritisvirus by neutralization with canine, porcine and feline sera. Vet Microbiol. 1980;5:283–290. [Google Scholar]
  • 13.Rohde E, Pauli G, Henning J, Friis RR. Polyethylene glycol-mediated infection with avian sarcoma viruses. Arch Virol. 1978;58:55–59. doi: 10.1007/BF01315535. [DOI] [PubMed] [Google Scholar]
  • 14.Sturman LS, Ricard CS, Holmes KV. Proteolytic cleavage of the E 2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90 K cleavage fragments. J Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Underdahl NR, Mebus EL, Stair EL, Rhodes MB, McGill LD, Twiehaus MJ. Isolation of transmissible gastroenteritis virus from lungs of market-weight swine. Am J Vet Res. 1974;35:1209–1216. [PubMed] [Google Scholar]
  • 16.Wege H, Siddell S, Ter Meulen V. The biology and pathogenesis of coronaviruses. Curr Top Microbiol Immunol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]
  • 17.Woods RD, Cheville NF, Gallagher JE. Lesions in the small intestine of newborn pigs inoculated with porcine, feline, and canine coronaviruses. Am J Vet Res. 1981;42:1163–1169. [PubMed] [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES