Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1993;130(1):171–178. doi: 10.1007/BF01319005

Feline CD 4 molecules expressed on feline non-lymphoid cell lines are not enough for productive infection of highly lymphotropic feline immunodeficiency virus isolates

J Norimine 1, T Miyazawa 1, Y Kawaguchi 1, K Tomonaga 1, Y -S Shin 1, T Toyosaki 1, M Kohmoto 1, M Niikura 1, Y Tohya 1, T Mikami 1
PMCID: PMC7087261  PMID: 8389115

Summary

To investigate whether the feline CD 4 (fCD 4) molecules are involved in infections of highly lymphotropic feline immunodeficiency virus (FIV) isolates, we expressed fCD 4 stably on Crandell feline kidney cells andFelis catus whole foetus 4 cells by transfection of a cDNA encoding the fCD 4 glycoprotein, and then infected them with TM 1 and TM 2 strains of FIV, which are unable to infect these cells productively. In spite of fCD 4 being expressed on these cells, no virus production was observed. This result indicates that fCD 4 expression alone cannot induce a productive infection of the FIV TM 1 and TM 2 strains.

Keywords: Infectious Disease, Kidney Cell, Virus Isolate, Virus Production, Feline Immunodeficiency Virus

References

  • 1.Ackley CD, Hoover EA, Cooper MD. Identification of a CD 4 homologue in the cat. Tissue Antigens. 1990;35:92–98. doi: 10.1111/j.1399-0039.1990.tb01762.x. [DOI] [PubMed] [Google Scholar]
  • 2.Ackley CD, Yamamoto JK, Levy N, Pedersen NC, Cooper MD. Immunologic abnormalities in pathogen-free cats experimentally infected with feline immunodeficiency virus. J Virol. 1990;64:5652–5655. doi: 10.1128/jvi.64.11.5652-5655.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Boyer V, Desgrages C, Trabaud M-A, Fischer E, Kazatchkine MD. Complement mediates human immunodeficiency virus type 1 infection of a human T cell line in a CD 4- and antibody-independent fashion. J Exp Med. 1991;173:1151–1158. doi: 10.1084/jem.173.5.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Brown WC, Bissey L, Logan KS, Pedersen NC, Elder JH, Collisson EW. Feline immunodeficiency virus infects both CD 4+ and CD 8+ T lymphocytes. J Virol. 1991;65:3359–3364. doi: 10.1128/jvi.65.6.3359-3364.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Crandell RA, Fabricant CG, Nelson Rees WA. Development, characterization, and viral susceptibility of a feline (Felis catus) renal cell line (CRFK) In Vitro. 1973;9:176–185. doi: 10.1007/BF02618435. [DOI] [PubMed] [Google Scholar]
  • 6.Dalgleish AG, Beverley PCL, Clapham PR, Crawford DH, Greaves MF, Weiss RA. The CD 4 (T 4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984;312:763–767. doi: 10.1038/312763a0. [DOI] [PubMed] [Google Scholar]
  • 7.Hildreth JEK, Orentas RJ. Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-1 induced syncitum formation. Science. 1989;244:1075–1078. doi: 10.1126/science.2543075. [DOI] [PubMed] [Google Scholar]
  • 8.Homsy J, Meyer M, Tateno M, Clakson S, Levy JA. The Fc and not CD 4 receptor mediates antibody enhancement of HIV infection in human cells. Science. 1989;244:1357–1360. doi: 10.1126/science.2786647. [DOI] [PubMed] [Google Scholar]
  • 9.Jacobse-Geels HEL, Horzinek MC. Expression of feline infectious peritonitis coronavirus antigens on the surface of feline macrophage-like cells. J Gen Virol. 1983;64:1859–1866. doi: 10.1099/0022-1317-64-9-1859. [DOI] [PubMed] [Google Scholar]
  • 10.Kawaguchi Y, Maeda K, Tohya Y, Furuya T, Miyazawa T, Horimoto T, Norimine J, Kai C, Mikami T. Replicative difference in early-passage feline brain cells among feline immunodeficiency virus isolates. Arch Virol. 1992;125:347–354. doi: 10.1007/BF01309653. [DOI] [PubMed] [Google Scholar]
  • 11.Kawaguchi Y, Miyazawa T, Tohya Y, Takahashi E, Mikami T. Quantification of feline immunodeficiency virus in a newly established feline T-lymphoblastoid cell line (MYA-1 cells) Arch Virol. 1990;111:269–273. doi: 10.1007/BF01311061. [DOI] [PubMed] [Google Scholar]
  • 12.Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, Gluckman J-C, Montagnier L. T-lymphocyte T 4 molecule behaves as the receptor for human retrovirus LAV. Nature. 1984;312:767–768. doi: 10.1038/312767a0. [DOI] [PubMed] [Google Scholar]
  • 13.Maddon PJ, Dalgleish AG, McDaugal JS, Clapham PR, Weiss RA, Axel R. The T 4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell. 1986;47:333–348. doi: 10.1016/0092-8674(86)90590-8. [DOI] [PubMed] [Google Scholar]
  • 14.Maki N, Miyazawa T, Fukasawa M, Hasegawa A, Hayami M, Miki K, Mikami T. Molecular characterization and heterogeneity of feline immunodeficiency virus isolates. Arch Virol. 1992;123:29–45. doi: 10.1007/BF01317136. [DOI] [PubMed] [Google Scholar]
  • 15.McDougal JS, Kennedy MS, Sligh JM, Cort SP, Mawle A, Nicholson JKA. Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110 K viral protein and the T 4 molecule. Science. 1986;231:382–385. doi: 10.1126/science.3001934. [DOI] [PubMed] [Google Scholar]
  • 16.Miyazawa T, Furuya T, Itagaki S, Tohya Y, Nakano K, Takahashi E, Mikami T. Preliminary comparisons of the biological properties of two strains of feline immunodeficiency virus (FIV) isolated in Japan with FIV Petaluma strain isolated in the United States. Arch Virol. 1989;108:59–68. doi: 10.1007/BF01313743. [DOI] [PubMed] [Google Scholar]
  • 17.Miyazawa T, Furuya T, Itagaki S, Tohya Y, Takahashi E, Mikami T. Establishment of a feline T-lymphoblastoid cell line highly sensitive for replication of feline immunodeficiency virus. Arch Virol. 1989;108:131–135. doi: 10.1007/BF01313750. [DOI] [PubMed] [Google Scholar]
  • 18.Miyazawa T, Kawaguchi Y, Furuya T, Itagaki S, Takahashi E, Mikami T. Continuous production of feline immunodeficiency virus in a feline T-lymphoblastoid cell line (MYA-1 cells) Jpn J Vet Sci. 1990;52:887–890. doi: 10.1292/jvms1939.52.887. [DOI] [PubMed] [Google Scholar]
  • 19.Miyazawa T, Fukasawa M, Hasegawa A, Maki N, Ikuta K, Takahashi E, Hayami M, Mikami T. Molecular cloning of a novel isolate of feline immunodeficiency virus biologically and genetically different from the original U.S. isolate. J Virol. 1991;65:1572–1577. doi: 10.1128/jvi.65.3.1572-1577.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Miyazawa T, Toyosaki T, Tomonaga K, Norimine J, Ohno K, Hasegawa A, Kai C, Mikami T. Further characterization of a feline T-lymphoblastoid cell line (MYA-1 cells) highly sensitive for feline immunodeficiency virus. J Vet Med Sci. 1992;54:173–175. doi: 10.1292/jvms.54.173. [DOI] [PubMed] [Google Scholar]
  • 21.Norimine J, Miyazawa T, Kawaguchi Y, Tohya Y, Kai C, Mikami T. A cDNA encoding feline CD 4 has a unique repeat sequence downstream of the V-like region. Immunology. 1992;76:74–79. [PMC free article] [PubMed] [Google Scholar]
  • 22.Norimine J, Miyazawa T, Kawaguchi Y, Niikura M, Kai C, Mikami T. Comparison of the viral promoter activities in feline cell lines (CRFK and fcwf-4 cells) J Vet Med Sci. 1992;54:189–191. doi: 10.1292/jvms.54.189. [DOI] [PubMed] [Google Scholar]
  • 23.Novotney C, English RV, Housman J, Davidson MG, Nasisse MP, Jeng CR, Davis WC, Tompkins MB. Lymphocyte population changes in cats naturally infected with feline immunodeficiency virus. AIDS. 1990;4:1214–1218. doi: 10.1097/00002030-199012000-00005. [DOI] [PubMed] [Google Scholar]
  • 24.Ohta Y, Masuda T, Tsujimoto H, Ishikawa K, Kodama T, Morikawa S, Nakai M, Honjo S, Hayami M. Isolation of simian immunodeficiency virus from African green monkeys and seroepidemiologic survey of the virus in various non-human primates. Int J Cancer. 1988;41:115–122. doi: 10.1002/ijc.2910410121. [DOI] [PubMed] [Google Scholar]
  • 25.Pedersen NC, Ho EW, Brown ML, Yamamoto JK. Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science. 1987;235:790–793. doi: 10.1126/science.3643650. [DOI] [PubMed] [Google Scholar]
  • 26.Robinson WE, Montefiori DC, Mitchell WM. Complement-mediated antibody-dependent enhancement of HIV-1 infection requires CD 4 and complement receptors. Virology. 1990;175:600–604. doi: 10.1016/0042-6822(90)90449-2. [DOI] [PubMed] [Google Scholar]
  • 27.Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239:487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  • 28.Shibata R, Miura T, Hayami M, Sakai H, Ogawa K, Kiyomasu T, Ishimoto A, Adachi A. Construction and characterization of an infectious DNA clone and of mutants of simian immunodeficiency virus isolated from the African green monkey. J Virol. 1990;64:307–312. doi: 10.1128/jvi.64.1.307-312.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA. HIV-1 replication is controlled at the level of T-cell activation and proviral integration. EMBO J. 1990;9:1551–1560. doi: 10.1002/j.1460-2075.1990.tb08274.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Takeda A, Tuazon CU, Ennis FA. Antibody-enhanced infection by HIV-1 via Fc receptor-mediated entry. Science. 1988;242:580–583. doi: 10.1126/science.2972065. [DOI] [PubMed] [Google Scholar]
  • 31.Tokunaga K, Nishino Y, Oikawa H, Ishihara C, Mikami T, Ikuta K. Altered cell tropism and cytopathicity of feline immunodeficiency viruses in two different feline CD 4-positive, CD 8-negative cell lines. J Virol. 1992;66:3893–3898. doi: 10.1128/jvi.66.6.3893-3898.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Yamamoto JK, Sparger E, Ho EW, Anderson PR, O'Connor TP, Mandell CP, Lowenstine L, Munn R, Pedersen NC. Pathogenesis of experimentally induced feline immunodeficiency virus infection in cats. Am J Vet Res. 1988;49:1246–1258. [PubMed] [Google Scholar]
  • 33.Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen ISY. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 1990;61:213–222. doi: 10.1016/0092-8674(90)90802-l. [DOI] [PubMed] [Google Scholar]
  • 34.Zack JA, Haislip AM, Krogstad P, Chen ISY. Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. J Virol. 1992;66:1717–1725. doi: 10.1128/jvi.66.3.1717-1725.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Archives of Virology are provided here courtesy of Nature Publishing Group

RESOURCES